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A B S T R A C T
Chronic infl ammation has been identifi ed as an important risk factor in the development of the gastrointestinal (GI) tract cancers, 
and the underlying molecular mechanisms have been studied extensively. Chronic infl ammation is able to trigger cellular 
events to promote malignant transformation of normal epithelial cells in the GI tract to cancer. Host infl ammation responses in 
carcinogenesis are through multiple mechanisms such as reactive oxygen and nitration species from mononuclear phagocytes 
and leukocytes, immune response and pro-infl ammatory cytokines. Nuclear factor-κB (NF-κB) has been considered as the 
central mediator of the immune response. Activation of NF-κB by phosphorylation leads to translocation of NF-κB protein to 
the nucleus, and in turn regulates the transcription of several pro-infl ammatory cytokines and chemokines. Furthermore, chronic 
infl ammation creates an environment for genomic and epigenetic changes. In this review, we summarize the important molecular 
mechanisms that link chronic infl ammation and GI tract cancer, including esophageal, gastric and colonic cancers, focusing on 
infective and noninfective agents such as gastroesophageal refl ux disease, Helicobacter pylori gastritis and infl ammatory bowel 
disease.
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Introduction
It is now widely accepted that inadequately resolved 
chronic infl ammation could increase cancer risk. The 
etiology of infl ammation varies and could result from 
infection with viruses, bacteria or parasites. Alternatively, 
it may be noninfective but caused by a physical or 
chemical irritant. For example, hepatitis B and C viruses 
account for more than 80% of hepatocellular carcinoma 
cases in the world, while human papillomavirus 
infection is the leading cause of anogenital cancer, 
and Helicobacter pylori has been considered as the 
major cause of gastric adenocarcinoma and is known to 
signifi cantly increase the risk of gastric mucosa-associated 
lymphoid tissue lymphoma. Moreover, there are numerous 
examples of noninfective agents being associated with 
infl ammation and development of cancers. Several 
pathological conditions in the gastrointestinal (GI) 
tract such as gastroesophageal refl ux disease (GERD), 
infl ammatory bowel diseases (IBDs), chronic pancreatitis, 
and cholangitis-related cholangiocarcinoma illustrate this 
link.[1] As a barrier to the environment and as the main 
organ system for digestion and absorption of food, the 
GI tract is exposed to many substances and stimulants. 

Some of these, such as alcohol and acid, can cause GI 
cancers by linking to chronic infl ammation [Table 1].[2,3] 
Thus, in this review, we discussed emerging concepts 
and provided specifi c examples for the role of chronic 
infl ammation in the development of GI cancers, including 
esophageal, gastric and colonic cancers, since they have 
been investigated most thoroughly.

Role of Chronic Infl ammation in Cancer 
Development
Immune response and cytokines in cancers
Chronic infl ammation is characterized by the infi ltration 
of mononuclear cells, such as macrophages, lymphocytes 
and plasma cells in damaged tissue, together with tissue 
destruction and attempts to repair. In this infl ammatory 
state, local activation of the immune system occurs. 
Natural killer cells, monocytes, macrophages, dendritic 
cells, mast cells and granulocytes usually elicit the fi rst 
immune response and initiate infl ammation. Of the many 
cell types active during chronic infl ammatory response, 
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macrophages are one of the key players.[2] Recent studies 
showed that tumor-associated macrophages (TAMs) 
were dispersed throughout tumor lesions and contributed 
to tumor growth, invasion and metastasis by producing 
various mediators.[4,5] In general, TAMs are found 
within and surrounding most tumor cells and can, 
when activated, release numerous factors to infl uence 
the behavior of tumor cells and the local tissue 
microenvironment. Interferon (IFN)-γ induces “classical” 
activation of macrophages, while anti-infl ammatory 
mediators such as interleukin (IL)-10, IL-4 and IL-13 
provoke “alternative’’ activation of macrophages, which 
are referred as M1 and M2 macrophages respectively.[6,7] 
M2 macrophages are oriented toward promoting tumor 
progression, tissue repair and angiogenesis as well as  
suppressing adaptive immunity in tumors, whereas M1 
macrophages, as classically or alternatively activated 
macrophages, are activated by lipopolysaccharides and 
IFN-γ, and can secrete high levels of IL-12 and low 
levels of IL-10.[4,8-10]

Reactive oxygen species, nitric oxide and 
cyclooxygenase-2
Chronic infl ammation creates a microenvironment 
locally to induce genomic instability in cells. At 
the site of chronic infl ammation, cells are exposed 
to oxygen and nitrogen radicals from mononuclear 
phagocytes and leukocytes. These radicals can cause 
DNA damage. For example, nitric oxide and its products 
may exert oncogenic effects via several mechanisms, 
including inhibition of DNA mismatch repair, protein 
damage, induction of hypermethylation, inhibition of 
apoptosis, mutation of DNA and disruption of cellular 
repair functions such as those involving the p53 
pathway.[11-13] Release of reactive oxygen and nitrogen 
species is enhanced by pro-infl ammatory cytokines such 
as tumor necrosis factor (TNF), IL-1β and IFN-α.

Another inducible enzyme with carcinogenic properties 
that is active in infl amed and malignant tissues is 
cyclooxygenase-2 (COX-2). Strong epidemiological 
evidence implicates that COX-2 plays a role in the 
pathogenesis of a number of epithelial malignancies, 
including esophageal, gastric and colorectal 

cancers (CRCs). Several mechanisms of COX-2-
mediated intestinal carcinogenesis have been elucidated. 
These include inhibition of apoptosis, modulation 
of cellular adhesion and motility, promotion of 
angiogenesis and immunosuppression.[14-16] Among 
the most potent inducers of COX-2, there are key 
pro-infl ammatory cytokines, IL-1α, IL-1β and TNF-α. 
COX-2 is signifi cantly overexpressed in malignancies, 
and non-steroidal anti-infl ammatory drugs are associated 
with a reduction in the incidence of a variety of GI 
cancers.[17,18]

Nuclear factor-κB
Infl ammatory responses contribute to carcinogenesis 
through multiple mechanisms. As mentioned above, 
reactive oxygen species, COX-2 and some cytokines 
interact with each other in a complex manner during 
development and progression of an infl ammatory 
environment. One such mediator is the transcription factor 
nuclear factor-κB (NF-κB), which is a key mediator of 
infl ammation and involved in the regulation of apoptotic 
and oncogenic gene expression and activation.[19] NF-κB 
has often been described as the central mediator of the 
immune response and as being critically involved in 
cancer-associated infl ammation and the tissue repair 
response.[2,20] Aberrant activation of NF-κB protein was 
associated with infl ammation and cancer in mouse models 
and in human GI cancers.[21-23] Activation of NF-κB plays 
an important role in integrating multiple stress stimuli and 
regulating immune responses.[23,24] Bile acids, particularly 
deoxycholic acid, have been shown to activate the NF-κB 
pathway.[25] NF-κB activation through phosphorylation 
leads to translocation into the nucleus, and in turn 
regulates the transcription of several pro-infl ammatory 
cytokines such as TNF-α, IL-1β, IL-6, IL-8, and 
chemokines such as CXCL-1 and CXCL-2.[24,26]

Thus, chronic infl ammation could lead to carcinogenesis 
by sustaining pro-infl ammatory oncogenic signaling, 
angiogenesis and immune suppression.

Esophageal Cancer
There are two major histological subtypes of esophageal 
cancer, that is, esophageal squamous cell carcinoma 

Table 1: Gastrointestinal malignancies linked to chronic infl ammation
Organ Tumor type Chronic infl ammation
Esophagus Squamous cell carcinoma Cigarette smoking, alcohol and hot beverages

Adenocarcinoma GERD
Stomach Adenocarcinoma H. pylori, autoimmune

MALT lymphoma H. pylori, HCV
Colorectal Colorectal cancer Ulcerative colitis, Crohn’s disease
Liver Hepatocellular carcinoma HBV, HCV and cirrhosis (alcohol, NAFLD)
Pancreas Pancreatic ductal adenocarcinoma Chronic pancreatitis
Biliary system Gallbladder carcinoma Chronic cholecystitis

Cholangiocarcinoma PSC, chronic cholangitis and liver cirrhosis
GERD: Gastroesophageal reflux disease; H. pylori: Helicobacter pylori; HBV: Hepatitis B virus; HCV: Hepatitis C virus;
NAFLD: Non-alcoholic fatty liver disease; PSC: Primary sclerosing cholangitis; MALT: Mucosa-associated lymphoid tissue
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(ESCC) and esophageal adenocarcinoma (EAC). 
Tobacco smoking and alcohol consumption are the two 
major risk factors in ESCC,[27] with a risk of heavy 
smokers/drinkers for 50 times greater in the induction 
of ESCC.[28] Tobacco smoking and alcohol consumption 
have been associated with the fi eld of cancerization 
in the upper aerodigestive tract. For example, Oka 
et al.[29] demonstrated that tobacco smoking was 
likely to induce global DNA hypomethylation and 
site-specifi c CpG island promoter hypermethylation 
in the normal-appearing esophageal mucosa. Both 
these mutations are representative of DNA methylation 
alterations occurring in cancer cells. In addition, we also 
previously reported that global DNA hypomethylation 
in normal esophageal mucosa was observed in ESCC 
patients who habitually smoked,[30] suggesting epigenetic 
fi eld defected after exposure to risk factors. Recently, 
defi ciency in the enzyme aldehyde dehydrogenase 
2 (ALDH2), which causes the so-called alcohol fl ushing 
response, has been revealed to increase the risk of 
alcohol-related ESCC.[31] In East Asian populations, 
there is a variant of ALDH2 in which the glutamate 
at position 487 is replaced with lysine, resulting in an 
inactive protein.[32] Consumption of hot beverages is also 
suspected to cause chronic infl ammation in esophageal 
squamous cell mucosa.[33] In addition, the infl uence of 
human papillomavirus in increasing ESCC risk is still 
under debate.[34]

Gastroesophageal refl ux disease (GERD), cigarette 
smoking and obesity are all risk factors in EAC.[35] EAC 
develops through chronic exposure to gastroesophageal 
refl ux, Barrett’s esophagus, dysplasia and adenocarcinoma 
as a sequence.[36,37] Increased exposure of the esophagus 
epithelium to refl uxed gastric and bile acid, particularly 
deoxycholic acid, has a critical role in promoting the 
development of Barrett’s esophagus and EAC. NF-κB is 
a key regulator of the infl ammatory process that has been 
shown to be activated in EAC. Several studies report 
that NF-κB was activated by bile acid components and 
subsequently involved in the development of metaplasia 
of Barrett’s esophagus and cancer.[25]

Gastric Cancer
Gastric adenocarcinoma is the second leading cause 
of cancer-related death in the world.[38] H. pylori 
causes chronic gastritis, and the relationship between 
H. pylori-induced chronic infl ammation and cancer is one 
of the best-elucidated factors. Indeed, H. pylori induces 
active chronic gastric infl ammation, which progresses 
to gastric adenocarcinoma, resulting in approximately 
660,000 worldwide new cases of gastric cancer 
per year.[39] However, only a few percentage of infected 
persons do develop neoplasia.

Several recent studies described that cytotoxin 
associated gene A (CagA)-positive H. pylori strains were 
identifi ed to be particularly carcinogenic. Compared to 

CagA-negative strains, H. pylori strains that harbor the 
CagA pathogenicity islands (PAI) are associated with a 
signifi cantly increased risk of distal gastric cancer.[40] After 
attached to gastric epithelial cells, H. pylori CagA-positive 
strains eject the CagA protein directly into the gastric 
epithelial cells. After translocation, CagA undergoes 
tyrosine phosphorylation by Src and Abl kinases and the 
tyrosine phosphorylated-CagA binds to the Src homology 
2 (SHP-2) domain, leading to morphologic alterations 
such as cell scattering and elongation.[41] Furthermore, 
CagA-activated SHP-2 deregulates the MAP kinase 
signaling cascade.[42] The CagA protein of certain 
H. pylori strains can stimulate expression of IL-8 by 
activating NF-κB,[43] thereby contributing to neutrophil 
infi ltration in the gastric mucosa. In addition, chronic 
infl ammation caused by H. pylori infection contributes 
to neoplastic transformation by establishing a positive 
feedback loop via the signal transducer and activator 
of transcription (STAT) 3-dependent COX-2 induction, 
which in turn infl uences STAT3 regulation via IL-6.[44]

Another mechanism of H. pylori-induced gastric 
carcinogenesis is genomic alteration and gene mutation. 
For example, prevalence of the TP53 mutation in gastric 
cancer is, on average, approximately 40%.[45] Previous 
studies have shown that various genetic alterations 
occur in the gastric mucosa during chronic gastritis,[46,47] 
suggesting an importance of the accumulated genomic 
mutations induced by H. pylori infection in the 
development of gastric cancer. Activation-induced 
cytidine deaminase (AID), a member of the cytidine 
deaminase family that functions to edit genomic DNA, 
is an enzyme essential for somatic hypermutation and 
class-switch recombination in immunoglobulin genes.[48] 
However, inappropriate AID expression acts as a genomic 
mutagen to contribute to tumorigenesis.[49,50] Infection 
with CagA PAI-positive H. pylori ectopically induced 
high expression of AID via NF-κB activation in human 
gastric epithelial cells, leading to multiple mutations 
in the host genome, such as those found in TP53. The 
accumulation of nucleotide alterations will lead to the 
development of gastric cancer.[51]

Recently, exciting data showed an association of 
H. pylori infection with cancer stem cell population. 
The leucine-rich repeat-containing G-protein coupled 
receptor (Lgr5) is known as the stem cell marker of GI 
cancers, including gastric cancer. Lgr5-positive epithelial 
cells have higher levels of oxidative DNA damage than in 
Lgr5-negative cells from patients with H. pylori-positive 
gastric cancer, indicating that H. pylori specifi cally 
targets Lgr5-positive epithelial cells.[52]

Other infl ammatory risk factors that either act 
independently of H. pylori infection or further enhance 
its effects have been also identifi ed. For example, 
chronic gastritis caused by bile refl ux can cause 
intestinal metaplasia as a neoplastic precursor lesion in 
gastric cancer. Moreover, T-cell-mediated autoimmune 
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gastritis fosters the development of intestinal type gastric 
cancer.[53,54] Thus, these risk factors lead to a state of 
chronic infl ammation and then development of gastric 
cancer.

Colorectal Cancer
CRC is one of the leading causes of cancer-related 
deaths in the world. CRC is one of the most serious 
complications of IBD, including ulcerative colitis and 
Crohn’s disease. The relative risk of CRC in patients 
with colitis is two to eight times higher than the 
general population.[55] Although it is clear that chronic 
infl ammation is a CRC risk factor, pathogenesis of 
colitis-associated cancer (CAC) is still uncertain.

CAC develops in chronically infl amed mucosa and is 
believed to develop in a colitis-dysplasia-carcinoma 
sequence. The chronic infl ammation in IBD often results 
in increased re-epithelialization of cells and cell turnover 
in the colonic mucosa and thus, leads to increased 
risk of errors in DNA repair and cell cycle regulation. 
Oxidative stress and impaired DNA mismatch repair are 
combined with proliferation, invasion and angiogenesis, 
thereby promoting cell growth signaling. In contrast with 
sporadic CRC, p53 mutations occur in the early stages 
and APC mutations occur in the late stages of the genesis 
of CAC.[56,57]

Moreover, obesity-related infl ammation has been 
considered to be a plausible link between obesity 
and cancer.[58] In general, survival of cancer cells is 
critically dependent on their interaction with neighboring 
non-malignant cells.[59] The contribution of the tumor 
stroma to cancer cell survival has been widely studied. 
The adipocytes surrounding tumor lesions are one of the 
major components of the tumor stroma. Furthermore, 
adipose tissue can secrete signaling molecules such 
as adipocyte-derived cytokines (termed adipokines), 
pro-infl ammatory cytokines, proangiogenic factors and 
extracellular matrix constituents.[60] From a clinical 
viewpoint, obese individuals are at an increased risk 
of developing colon cancer, in addition to the fact that 
increased adiposity is associated with morbidity and 
mortality.[58,61] In IBD, many infl ammatory cytokines 
are involved in carcinogenesis, as evidenced by the 
elevated circulating levels of IL-6 and TNF. TNF is 
highly elevated in the colon of C57/BL6 mice fed 
with a high fat diet.[62] Moreover, treatment with 
TNF-neutralizing monoclonal antibodies decreased 
growth of colon cancer xenografts and tumor incidence 
in azoxymethane (carcinogen)-treated leptin-defi cient 
mice.[63] These studies demonstrated that local 
infl ammation mediated by TNF had a key role in tumor 
initiation in obese rodents.

Most recently, the gut microbiota has been also 
implicated in the initiation and promotion of CAC.[64,65] 
It is thought that microbe-driven intestinal infl ammation 
as an etiological factor contributes to CAC development; 

however, better understanding of the underlying 
molecular mechanism needs further investigation.

Conclusion
In this review, we have discussed the links between 
chronic infl ammation and cancer development, with 
special reference to GI cancers. Future studies will 
determine the role for this novel anti-infl ammation 
treatment modality in the prevention of GI cancers.
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