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Abstract
Exploring new materials with earth-abundant and low-toxicity elements has been a long-standing goal in 
thermoelectrics. Hexaferrites, a family of environmentally friendly oxides, exhibit complex and tunable structures 
and excellent magnetic properties, but receive limited attention as potential thermoelectric materials. Here in this 
study, we systematically investigated the thermoelectric transport properties of W-type hexaferrites BaFe2Fe16O27 
and the cobalt-substituted derivatives prepared by sintering in the nitrogen atmosphere. These materials exhibit an 
n-type conduction behavior and cobalt substitution can tune the electrical transport properties effectively. Low-
temperature specific heat capacity analysis unravels the existence of low-energy optical phonons that contribute to 
damping the heat transport. Low room temperature thermal conductivity of 1.27 W m-1 K-1 is obtained, and the role 
of cobalt substitution on the thermal conductivity reduction is rationalized by the Debye-Callaway model. This 
study enlightens the investigation of the thermoelectric transport properties of W-type hexaferrites BaFe2Fe16O27 
and extends the scope of new thermoelectric compounds.
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INTRODUCTION
Over the past decades, developing thermoelectric technology to directly convert energy between heat and 
electricity has drawn significant attention[1,2]. The dimensionless figure of merit (zT) of thermoelectric 
material is a vital parameter to determine the maximum conversion efficiency, which is defined as 
zT = S2σT/κ, where S, σ, T, and κ are the Seebeck coefficient, electrical conductivity, absolute temperature, 
and thermal conductivity, respectively[3]. A high zT value usually achieves high conversion efficiency, so 
decoupling the interrelation between the electrical transport parameters S, σ and thermal transport 
parameter κ has been the key task for thermoelectric research[4-7]. Moreover, exploring new thermoelectric 
materials with eco-friendly and earth-abundant elements is economically and sustainably essential to large-
scale production and commercial applications[8-10].

Oxide ceramics have been widely studied as promising thermoelectric materials by virtue of low cost, low 
toxicity, good stability, and simple preparation methods[11,12]. Starting from the single-crystalline NaxCoO2-δ 
in 2001[13], several promising thermoelectric oxides, such as Ca3Co4O9

[14], In2O3
[15], and SrTiO3

[16]
, have been 

discovered or developed. Particularly, in the early 2010s, the layered compound BiCuSeO with an inherent 
“phonon glass, electron crystal” has been found to show exceptional thermoelectric performance, reaching a 
maximum zT of around 1.4[17,18]. Therefore, complex-structured materials are considered potential 
thermoelectric candidates. However, considering the vast number of oxide materials, the transport 
properties and thermoelectric performance are still to be studied for a variety of materials.

Hexaferrites, a large family of multinary iron oxides, have attracted great attention for various applications 
such as magnetic recording, electromagnetic wave control, and communication equipment 
manufacture[19-22]. They exhibit superior magneto-crystalline anisotropy, good chemical stability and low 
cost[23-25]. In recent years, hexaferrites have also been found to possess new properties such as multiferroicity 
and low-field magnetoelectric effects at room temperature, making them a popular material system in 
condensed matter physics[26,27]. According to their building blocks and the stacking order, there are six types 
of hexaferrites including W-type, M-type, X-type, Y-type, Z-type, and U-type ferrites[25]. As to the electrical 
and thermal transport properties, all types of hexaferrites adopt a large and complex unit cell, which is likely 
to give rise to abundant optical phonons damping heat transport[28]. Among them, W-type hexaferrites 
BaMe2Fe16O27 (abbreviated as Me2W, where Me denotes a divalent metal) are particularly interesting for 
thermoelectrics since they exhibit relatively high and tuneable electrical conductivity by virtue of the 
coexistence of Me2+ and Fe3+[29-31]. However, little knowledge is available regarding the thermal transport 
properties, which are important not only to thermoelectrics but also to thermal management in 
electromagnetic applications.

The synthesis, transport properties, and thermoelectric performance of a series of W-type hexaferrites 
BaFe2-xCoxFe16O27 (abbreviated as Fe2-xCoxW) are reported in this study. Polycrystalline materials with high 
phase purity and crystallinity are successfully synthesized via a solid-state reaction in a nitrogen 
atmosphere. Electrical and thermal transport properties are comprehensively studied combining both 
experiments and modeling. Low κ values are achieved by Co substitution and the thermal transport 
properties are well modeled. This work largely enriches the knowledge on the thermoelectric transport 
physics and mechanisms of hexaferrites.

MATERIALS AND METHOD
A solid-state reaction method was used to synthesize pristine and cobalt-substituted W-type hexaferrites 
with nominal compositions of BaFe2-xCoxFe16O27 (x = 0, 0.2, 0.4, 1). BaCO3, Fe2O3 and Co3O4 powders of 
analytical purity were used as the raw materials and mixed well after being weighted according to formula. 
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Then, the mixture was first subjected to high-temperature calcination of 1,200 °C for 20 h in a tube furnace 
in a flowing nitrogen atmosphere. The resulting materials were ground into fine powders by using a mortar 
and pestle after calcination, followed by adding a self-prepared 5 wt% polyvinyl alcohol (PVA) solution as 
an adhesive for the granulation process. Finally, the granulated powder was compacted into disk-shaped 
pellets and preheated at 600 °C for 1.5 h in the air to expel the PVA, followed by another sintering process 
in nitrogen at 1,240 °C for 4 h to obtain the BaFe2-xCoxFe16O27 (x = 0, 0.2, 0.4, 1.0) ceramics.

Powder X-ray diffraction (XRD, Bruker D8 Advance) was employed to determine the phases of all 
materials. A scanning electron microscope (SEM, ZEISS Sigma300) was used to examine surface 
microstructures. The σ and S were measured ranging from 300 to 1,000 K under a helium atmosphere by 
ZEM-3 (ULVAC-RIKO) apparatus. The κ was calculated according to κ = dλCp. Here, the density d and the 
thermal diffusivity λ were measured by the Archimedes method and laser flash method (LFA-457, Netzsch), 
respectively. Additionally, Dulong-Petit law was used to estimate the specific heat capacity Cp. Physical 
Property Measurement System (PPMS, Quantum Design) was employed to measure the low-temperature 
heat capacity. Raman measurements were conducted by a Raman spectrometer using a 633 nm laser 
(HORIBA Scientific). Measurement uncertainties for S, σ, and κ are around 5%, 5% and 7%, respectively[5].

Vienna Ab initio Simulation Package (VASP) was used to perform the density functional theory (DFT) 
calculations[32]. The generalized gradient approximation (GGA) parameterized by Perdew, Burke and 
Ernzerhof (PBE) was used for the exchange-correlation terms[33]. The 5s25p66s2, 3d74s1, and 2s22p4 electrons 
were treated as valence electrons in the projector-augmented wave (PAW) potentials for Ba, Fe and O, 
respectively[34]. All GGA + U calculations used Dudarev’s approximation with U equivalent to the Ueff 
parameter (Ueff = U - J, where U and J represent Hubbard on-site Coulomb energy and the exchange 
parameter, respectively)[35]. An energy cutoff of 600 eV for the plane waves was adopted and reciprocal space 
was sampled on G-centered k-point grids with a resolution of 0.03 π/Å, with convergence thresholds of 
1 × 10-6 eV for electronic energy and 1 × 10-2 eV/Å for force. U = 4 eV was used for Fe 3d orbital in all 
GGA + U calculations. All calculations were spin-polarized with atomic spin configurations initialized 
according to the Gorter scheme. Elastic constants were determined according to the energy-strain method 
and the elastic tensor was processed using the Voigt-Reuss-Hill approximation[36]. Visualization for 
Electronic and Structural Analysis (VESTA) software was used to model the structures of the material[37] and 
visualize the charge densities and the electron localized function (ELF).

RESULTS AND DISCUSSION
XRD and microstructure analysis
Figure 1A shows the hexagonal crystal structure of BaFe2Fe16O27 material (space group P63/mmc). Blocks of 
R (BaFe6O11)2- and S (Fe6O8)2+ are usually used to describe the crystal structure of the W-type hexaferrite 
BaFe2Fe16O27, and the stacking arrangement of the material is RSSR*S*S*, where the asterisk indicates a 
specific block rotated 180° around the c axis[38-40]. As presented in Figure 1A and Supplementary Figure 1, 
the calculated Bader charge of Fe ions in BaFe2Fe16O27 ranges between +1.44 and +1.76. This is slightly lower 
than the values in literature reported before[41]. The Bader charge for Ba is +1.58, while the value for O is in a 
range of (-1.0~-1.21), similar to the reported charge value of -1.16 for O atomic calculated in water 
molecular[42]. Supplementary Figure 1A presents the calculated electron localization function (ELF) and 
charge density of BaFe2Fe16O27. It is clearly seen that electrons from the Ba and Fe are transferred to the 
nearby oxygen, a typical characteristic of the ionic material.

Room-temperature XRD patterns of all BaFe2-xCoxFe16O27 (x = 0, 0.2, 0.4, 1.0) hexaferrites are presented in 
Figure 1B. All the diffraction peaks can be indexed to the standard BaFe18O27 compound, and no secondary 
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Figure 1. (A) Crystal structure of BaFe2Fe16O 27. The local bonding of Ba and Fe (at 6g and 4e sites) ions are highlighted. (B) Powder XRD 
patterns of BaFe2-xCoxFe16O27 (x = 0, 0.2, 0.4, 1.0) hexaferrites. (C) Raman spectra and (D-G) SEM surface images of BaFe2-xCoxFe16O27.

phases are observed. The Co substitution does not cause an obvious shift in the XRD peak positions, likely 
due to the similar ionic radii between Co2+ (~0.82 Å) and Fe2+ (~0.83 Å). As displayed in Figure 1C, the 
dominant Raman peaks of all BaFe2-xCoxFe16O27 (x = 0, 0.2, 0.4, 1.0) hexaferrites are located at 124, 174, 213, 
276, 321, 463, 514 and 670 cm-1, relating to the intrinsic vibrations of hexagonal hexaferrite crystal[43]. 
Lamellar grains are observed by SEM [Figure 1D-G], consistent with the hexagonal layered structure. 
Noticeably, micro-sized pores are found, resulting in a low relative density of 64.7%~73.2%.

Electrical transport properties
Considering the cases of both spin up and spin down for Fe ions, we calculated the electronic band 
structures of BaFe2Fe16O27. As displayed in Figure 2A and B, the conduction-band minimum and valence-
band maximum are located on the Γ and H points, respectively. Along the direction parallel to the c-axis, 
eigenenergy dispersion curves change slowly, while curves perpendicular to the c-axis are steep, indicating a 
larger effective mass of carriers along the c-axis, which aligns well with expectations for layered materials. 
The computed total density of state (TDOS) presented in Figure 2C for BaFe2Fe16O27 shows a small band gap 
of ~ 0.17 eV. Besides, the calculated high symmetry points of BaFe2Fe16O27 are presented in Figure 2D.

Figure 3A and B presents the temperature-dependent σ and S for all BaFe2-xCoxFe16O27 (x = 0, 0.2, 0.4, 1.0) 
hexaferrites from 300 to 1,000 K. For all the samples, the σ values are around 101-102 S m-1 at 300 K and 
increase with temperature, exhibiting a non-degenerate semiconductor behavior. Below ~900 K, Co-doped 
samples show relatively lower σ values compared with the pristine ones. In the whole temperature range, all 
S values are negative, indicating an n-type conduction behavior. In line with the composition-dependence 
of electrical conductivity, the alloyed samples exhibit higher S values than the undoped ones. This suggests 
that Co substitution probably decreases the carrier concentration. Moreover, according to a previous 
study[41], valence states of 6g sites can be changed from mixed valence state to 3+ by Co doping. Therefore, 
the energy of Fe will increase and enter into the conduction band, leading to the disappearance of ‘‘heavily 
doping states’’ and thus the decrease of the carrier concentration and electrical conductivity. For 
BaFe1Co1Fe16O27, the sudden decrease of S with T around 800 K suggests a phase transition. This phase 
transition may be a magnetic phase transition caused by magnetic moment arrangement changes 
originating from the change of lattice parameters at high temperatures[25,44]. Maximum power factors (PFs) 
reach 0.26 μW cm-1 K-2 for Fe1Co1W at 1,000 K [Figure 3C]. As shown in Figure 3D, the S and σ roughly 
follow the single parabolic band (SPB) model[45].
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Figure 2. (A) Spin up and (B) Spin down energy band structures along the high symmetry directions. (C) Total density of states of 
BaFe2Fe16O27. (D) Calculated high symmetry points of BaFe2Fe16O27.

Figure 3. Temperature-dependent (A) σ, (B) S, and (C) PF between 300 and 1,000 K for BaFe2-xCoxFe16O 27. (D) Room-temperature S vs. 
σ plot. The dashed line is fitted based on SPB model using a fixed weighted mobility.

ELASTIC AND THERMAL PROPERTIES
We carried out the DFT calculation to obtain the elastic parameters of pristine BaFe2Fe16O27. As shown in 
Table 1, the average sound speed and the Debye temperature θD calculated are 3,667 m/s and 517 K, 
respectively. The values are higher than common thermoelectric materials, reflecting the stiffer bonding of 
BaFe2Fe16O27

[46,47]. The low-temperature heat capacity was measured and modeled for further understanding 
of the lattice dynamics. One Debye mode and two Einstein modes are needed to accurately describe the 
data, as presented in Figure 4[48,49]. The fitted Debye temperature is 516 K [Supplementary Table 1], which is 
in excellent consistency with the DFT calculation above (517 K). The Einstein temperatures are fitted to be 
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Table 1. DFT-calculated elastic and physical properties of BaFe2Fe16O27

Elastic parameters Calculated value

C11 (GPa) 321

C12 (GPa) 190

C13 (GPa) 182

C33 (GPa) 301

C44 (GPa) 61.9

C66 (GPa) 65.6

Bulk modulus B (GPa) 228

Young’s modulus E (GPa) 175

Shear modulus G (GPa) 63.8

Poisson’s ratio v 0.372

Pugh’s ratio (B/G) 3.57

Longitudinal wave velocity (m/s) 7,204

Transverse wave velocity (m/s) 3,252

Average wave velocity (m/s) 3,667

Debye temperature (K) 517

Figure 4. Cp/T as a function of T2 for BaFe2Fe16O27 at low temperature. Black squares represent the experimental data. The red solid line 
represents the fitted curve by using one Debye mode and two Einstein modes. The other dashed lines represent the electronic term φ, 
Debye term β, and two Einstein terms, ΘE1 and ΘE2, respectively. The adjusted R2 value for the fitted curve is 0.99959 and the Chi-
squared value is 6.058 × 10-3.

47.7 and 127 K, corresponding to the phonon energies of 4.1 and 11 meV, respectively. The low-energy 
optical phonons are also consistent with the Raman measurement mentioned above (peak around 124 cm-1, 
aka 15.4 meV), which should damp part of the heat transport.

Figure 5A shows the temperature-dependent κ for all BaFe2-xCoxFe16O27 samples. Considering the low σ, the 
electronic portion of κ contributes as low as 1%-3% at 300 K, so the lattice thermal conductivity (κL) can be 
treated numerically equal to the total one. Low κ values of 1.27 W m-1 K-1 at 300 K and 0.69 W m-1 K-1 at 
750 K are obtained in the Fe1.8Co0.2W sample. The room-temperature κ values are pretty low among oxides 
compared to other counterparts such as In1.99Ge0.01O3 (11.5 W m-1 K-1)[15], SrTiO3 (8.1 W m-1 K-1)[50] and 
Ca3Co4O9 ceramic (2.3 W m-1 K-1)[51]. Nonetheless, the values may not reflect the intrinsic properties of the 
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Figure 5. (A) Thermal conductivity (κ) varying with temperature for BaFe2-xCoxFe16O27 hexaferrites. (B) Porosity-corrected thermal 
conductivities as functions of content of Co for BaFe2-xCoxFe16O27 at 300 K. (C) Point-defect scattering parameter Γ, Γmass and Γstrain as a 
function of Co content. (D) zT varying with temperature.

samples since there exists an appreciable number of pores. Therefore, for further analysis, we correct the 
thermal conductivity values by the porosity via[52]

where κreal is the measured thermal conductivity, κdense corresponds to that of fully dense samples, and Φ is 
the porosity. The corrected thermal conductivities as a function of Co content at room temperature are 
shown in Figure 5B. Apparently, the existing pores can lead to the decrease of the thermal conductivity but 
their influence on the thermoelectric performance can be complicated as they will also lower the carrier 
mobility, thus reducing electrical conductivity. There is a ~20% reduction of κ when x increases from 0 to 
0.4. This reduction is mainly attributed to the point defect scattering induced by Co substitution for Fe. 
Based on the fitted results within the Debye-Callaway framework, we derive the point-defect scattering 
parameter Γ, which includes mass fluctuation (Γmass) and strain field fluctuation (Γstrain)[53]. The fitted results 
of temperature-dependent thermal conductivity are presented in Supplementary Figure 2. As plotted in 
Figure 5C, Γstrain dominates the point-defect scattering. This is reasonable since the mass difference between 
Co and Fe is less than 6%, so the contributions of Γmass should be small.

Figure 5D presents the zT for all BaFe2-xCoxFe16O27 (x = 0, 0.2, 0.4, 1.0) samples calculated based on the 
measured transport properties. The reduced thermal conductivity compensates for the deterioration in 
electrical properties, resulting in a similar calculated zT in all BaFe2-xCoxFe16O27 samples. Maximum zT 
around 0.03 at 1,000 K is achieved for all BaFe2-xCoxFe16O27 samples. Further optimizing the electrical 
transport properties may push zT to higher values.

CONCLUSIONS
In summary, thermoelectric transport properties of polycrystalline BaFe2-xCoxFe16O27 (x = 0, 0.2, 0.4, 1.0) 
hexaferrites have been systematically investigated. The DFT calculations indicate a band gap of around 
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0.17 eV and a strong anisotropy in band structure. The materials exhibit an n-type conduction behavior and 
Co substitution can tune the electrical transport properties effectively. Low κ values of 1.27 W m-1 K-1 at 
300 K and 0.69 Wm-1K-1 at 750 K have been achieved in the Fe1.8Co0.2W sample. The low thermal 
conductivity can be ascribed to point-defect scattering, the low-energy optical phonons, and the pores 
formed during synthesis. This work enriches the knowledge on the thermoelectric properties of hexaferrites.
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