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Abstract
Hepatitis B virus (HBV) infection remains the most important risk factor for hepatocellular carcinoma (HCC) 
worldwide and nonalcoholic fatty liver disease (NAFLD) has developed as major etiology of chronic liver diseases, 
cirrhosis and eventually HCC in the last decades. Although nucleos(t)ide analogs are recommended as the 
first-line drug for patients with chronic hepatitis B, incomplete eradication of HBV serves as an obstacle for 
effective cure of chronic hepatitis B and even HCC. NAFLD refers to a spectrum of hepatic metabolic disorders, 
compromised with multi-system diseases. Considering the specificity of hepatocytes and enrichment of immune 
cells in liver, this review aims to summarize the mechanisms of direct pro-tumorigenesis to hepatocytes induced 
by HBV infection and abnormal lipid metabolism, and indirect oncogenic processes mediated by immune cells. We 
also discuss similarities and differences of immune cells between HBV- and NAFLD-HCC and finally focus on the 
novel immunotherapies concerning preclinical and clinical studies for liver cancer.
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INTRODUCTION
Liver cancer is one of the most common causes of cancer-related deaths worldwide, with an estimated of 
1.1 million new cases to be diagnosed in 10 years (GLOBOCAN, 2018). Hepatocellular carcinoma (HCC) 
accounts for nearly 80% of primary liver cancer and the occurrence is globally gender and geography 
biased. The estimated age-standardized incidence rates in men are mostly 3 times than that of women 
(13.9/1,000,000 vs. 4.9/1,000,000) in 2018. The high rates in Pacific Asia, West and Central Africa have 
persisted for decades, although declining trends have been observed in China and Japan in the past two 
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decades due to therapy advancement and control of etiology. In contrast, incidence and mortality rates in 
North America have been increasing since 1978, for which the main reasons are cumulative emergence of 
new risk factors and lack of efficient therapy strategies.

HCC is prominently induced by chronic hepatitis B virus (HBV)/hepatitis C virus (HCV) infection, 
alcoholic or nonalcoholic fatty liver disease, aflatoxin intake and parasitic infection, the incidence of which 
are related with geographic variance. About 80% of HCC arises from persistent HBV infection in Asia-
Pacific and Africa countries, while non-alcoholic fatty liver disease (NAFLD) is the major contributor in 
North America, followed by HCV infection. The direct-acting antiviral therapy with high rates of safety and 
sustained virologic response (> 95%), is considered as the contributing factor for eliminating HCV[1,2], which 
helps decrease the pathogenesis of HCC. However, HBV-associated HCC remains to be a global problem, 
because current nucleos(t)ide analogue therapy functionally reduces HBsAg level and suppresses HBV DNA 
but fails to control remission[3,4]. Since obesity has emerged as a new global burden, NAFLD, which is one of 
the most common metabolic syndrome manifesting in liver with estimated prevalence of 20%~30% in many 
countries, will rank as the leading cause of HCC in future decades[5-9].

Although patients diagnosed with early stage of HCC undergo surgical resection or radiofrequency ablation 
for curative intent, up to 70% of them are susceptible to recurrence within 5 years[10]. During the last decades, 
conventional chemotherapy and combination of transarterial chemoembolization and sorafenib have been 
developed for patients at intermediate and advanced stages, however, therapy efficacy and adverse effects 
should be further assessed. Although sorafenib has been approved for treatment of HCC, the tyrosine kinase 
inhibitors-induced adverse events and drug resistance still remain an issue during clinical management[11]. 
Therefore, more novel target agents and immunotherapies are being investigated and incorporated to achieve 
better outcomes[12,13]. Here, this review mainly discusses the current progress in molecular and cellular 
mechanisms of HBV- and NAFLD-related HCC respectively, specifically the immune responses in liver, 
along with current immunotherapy options.

DIRECT PRO-ONCOGENIC MECHANISMS
HBV
Genomic features are significantly different in the group of HBV-HCC compared with non-infected patients. 
These results suggest that HBV-related HCC use alternative mechanisms for tumorigenesis to some extent. 
A high frequency of p53 inactivation and stem cell genes overexpression provide a potential pathogenic 
link between impaired cell reprogramming and HBV infection. Notably, these observations have clinical 
implication since TP53 mutations were associated with poor prognosis only in HBV-related tumors.

Virally oncogenic proteins
HBV genome contains four overlapping open reading frames, including preS1/preS2/S, preCore/Core, 
X and Pol, encoding viral proteins. Among them, hepatitis B X protein (HBx) is the most important 
oncogenic protein. Mutated or deleted HBx is frequently detected in HCC and plays critical role in liver 
carcinogenesis[14-16]. Although it is still debated, a growing body of evidence suggests that both wild type HBx 
and truncated HBx promote tumorigenesis by abrogating cell-cycle arrest and apoptosis inhibition[17-19]. HBx 
promotes HCC progression mainly through interaction with host factors including proteins and non-coding 
RNAs. HBx mutants interact with Bcl-2 and farnesoid X receptor leading to enhanced carcinogenesis[20-22]. 
HBx-cortactin (CTTN) interaction promotes HCC progression by up-regulating expression of CREB1 
and its downstream targets, cyclin D1 and MMP9[23]. As a major conserved cellular pathway that controls 
critical cell processes, the ubiquitin proteasome system is often hijacked by HBx, leading to dysregulated 
ubiquitination. HBx stabilizes critical transcriptional oncoproteins Myc and PAX8 via blocking Skp2-
mediated ubiquitination[24,25]. Silencing lncRNA-MALAT1/miR-124 axis or miR-5188-FOXO1/β-catenin-
c-Jun feedback loop significantly block HBx-mediated upregulating stemness markers and reprogramming 



Song et al. Hepatoma Res 2020;6:27  I  http://dx.doi.org/10.20517/2394-5079.2020.05                                               Page 3 of 15

proteins in HCC[26,27]. Besides, HBx targets genes at transcriptional level. HBx complexed with HDAC1 binds 
to glycogen synthase 2 (GYS2) and transcriptionally inhibit the expression[28] [Figure 1].

As the most abundant proteins, HBV surface (HBs) proteins are composed of three proteins, the large (L), 
middle (M), and small (S) HBs, encoded by the preS1/preS2/S gene respectively[29-31]. Particular deletion 
mutants in preS2 have been reported to be associated with progression of chronic liver diseases. Mutated HBs 
accumulated in hepatocytes induce endoplasmic reticulum (ER) stress and initiate multiple cellular signal 
pathways, leading to cell growth advantages[32,33]. Intrahepatic LHBs induce DNA damage and up-regulation 
of Plk1 to provoke hyperploidy, which disrupts the genomic stability of host cells[34]. Pre-S2 deletion mutant 
also promote carcinogenesis by up-regulating expression of various oncogenes, including hTERT, TAZ in 
hippo pathways, and GPC3[35-38] [Figure 1].

As the major capsid protein and important viral replication mediator, HB core-related antigen (HBcrAg) 
is reported to be an independent risk factor for HCC development[39]. Mechanistically, hepatitis B core 
protein (HBc) function as an immunogen as well as an important mediator of hepatocarcinogenesis via 
several mechanisms. HBc mutations P5T/H/L stimulate ER response, further increasing production of 
radical oxidative species (ROS) and activating NF-κB signaling pathway, which directly promote infected 
hepatocytes to malignant transformation. Furthermore, HBc promotes proliferation, glycolysis and amino 
acid metabolism or suppress apoptosis via regulating Src/PI3K/Akt pathway, blocking TRAIL/Fas pathway or 
expression of p53 in transcriptional/post-transcriptional manner[40-44] [Figure 1]. 

Figure 1. Direct oncogenic mechanisms of HBV- and NAFLD- HCC. HBV-encoded proteins lead to cellular heterogeneity via multiple 
manners. HBx stabilizes oncoproteins by suppressing ubiquitination or regulates transcription of host genes through transactivation. 
Cytoplasmic accumulation of HBs induces ER stress and thereby initiates cellular hippo pathways. Besides ER response, NF-κB, Src/
PI3K/Akt and TRAIL/Fas pathways are involved in HBc-induced abnormal proliferation and metabolism of hepatocytes. Furthermore, 
HBV DNA integration and viral protein result in DNA damage and genomic instability, which drive cellular heterogeneity. Excessive lipid 
accumulation stimulates ER stress and dysregulates apoptosis and fibrogenesis via STAT3 and hippo pathways. The STAT5 and Akt 
pathways are involved in upregulation of the lipogenetic genes and downstream targets. Moreover, gene polymorphism is significantly 
related with NAFLD progression. HBV: hepatitis B virus; NAFLD: nonalcoholic fatty liver disease; HCC: hepatocellular carcinoma; ER: 
endoplasmic reticulum 



HBV DNA integration
HBV DNA integration occurs early once HBV entering into hepatocytes and remains stable throughout 
tumor progression, which explains the existence of monoclonal or polyclonal origins of HCC from the 
view of virus infection[45,46]. HBV DNA susceptibly integrates into rare fragile sites or functional genomic 
regions, which are proximate to protein coding or non-coding genes. Functionally, the protein-coding genes 
are deeply associated with tumorigenesis and the non-coding genes are involved in telomere maintenance, 
protein modification processes, and chromosome localization[47-49]. For example, integration drives mutation 
in tumor suppressor gene ZNF717 and over-expression of critical oncogene c-MYC. Meanwhile, integration 
into intron of cyclin A2 generates a pseudo-exon forming a chimeric fusion with CCNA2, which encodes 
protein promoting cell cycle progression[46,50,51]. Moreover, HBV DNA integration is closely correlated with 
gender-bias and recurrence of HCC. Androgen receptor, but not estrogen receptor, enhances transcription 
responsive of TERT promoter with HBV integration to sex hormones via hepatocyte nuclear factor 4 alpha 
(HNF4α)- dependent manner[52]. Multiple studies have identified fragile integration sites more in non-
cancerous tissue than those in neoplastic tissues, which implies tumor recurrence[48,53].

Genomic instability
In infected hepatocytes, both HBV DNA integration and viral proteins lead to genomic instability. 
Sequencing analysis of 373 liver cancer samples demonstrated ultra-high structural instability and preserved 
un-methylation in HBV integrated regions[54]. HBx directly induces genomic instability via inhibiting mono-
ubiquitylation of an evolutionarily conserved E3 ligase and impairing homologous recombination, which 
contribute to tumorigenesis[55]. LHBs are the major viral protein leading to genomic instability. By inducing 
DNA damage and G2/M checkpoint failure, LHBs promote formation of hepatocyte aneuploidy and further 
self-propagating cycles of chromosomal instability, which drives cellular heterogeneity and clonal cancer 
evolution[56,57].

NAFLD
NAFLD and its complication nonalcoholic steatohepatitis (NASH) are becoming the leading cause of 
HCC. Multiple pathways, such as abnormal metabolism, dysbiosis of gut microbiota and dysregulated 
immune responses, are involved in NAFLD initiated hepatocarcinogenesis and have been well summarized 
recently[58]. Here, we mainly focus on dysregulated pathway mediated by lipid accumulation which is 
fundamental in progression of NAFLD related HCC. The abnormal intrahepatic lipid metabolism invokes 
insulin resistance, alteration of signaling pathways and oncogenes, followed by inflammation, fibrogenesis 
and hepatocarcinogenesis. In clinical samples, level of p-STAT5 is positively correlated with expression of 
sterol regulatory element binding protein-1 (SREBP1) and further in vivo and in vitro essays demonstrate 
that mTORC1 interacts and phosphorylates STAT5 to upregulate expression of lipogenetic genes, including 
SREBP1, fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC)[59]. Both oxidative and ER stress 
caused by chronic lipotoxicity play critical roles in NAFLD-HCC. Oxidized LDL (oxLDL) uptake triggers 
CEBPβ expression to directly upregulate Nogo-B, an ER-residential protein, and promote lipophagy leading 
to lysophosphatidic acid-enhanced YAP oncogenic activity[60]. In addition to hippo signaling pathway, 
STAT3-mediated pathways are frequently involving in pathogenesis of NAFLD-HCC, which mediated lipid 
accumulation, apoptosis and fibrogenesis[61-66].

Other than metabolic disorder, gene polymorphism is significantly responsible for NAFLD. Recent genome-
wide association studies (GWASs) in European ancestry suggest a robust relationship of PNPLA3 gene cluster 
with NAFLD activity, progression to HCC and liver-associated death[67-69]. This study also demonstrated 
an association of novel loci near IL17RA and ZFP90-CDH1 with NAFLD disease severity and fibrosis[67]. 
rs368234815 variant in IFNL4 and FNDC5 rs3480 polymorphism are respectively identified to be associated 
with liver damage and fibrosis in patients with NAFLD[70,71]. In addition, gender-bias is as well  observed in 
NAFLD-HCC. As the confirmed risk factor for male HCC, androgen receptor (AR) transcription activity is 
enhanced by key enzymes and specific unsaturated fatty acid produced in lipogenesis via activation of Akt 
kinase[72] [Figure 1]. 
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ALTERATION OF IMMUNE MICROENVIRONMENT
Multiple resident or migratory immune cells, including innate and adaptive immune cells, are responsible 
for maintaining immune homeostasis in the liver. In addition, the dysregulation of hepatic immune cells 
play critical roles in liver cancer pathogenesis. Liver is rich of innate immune cells including myeloid cells 
and innate immune cells. The myeloid cells contain macrophages, dendritic cells and myeloid-derived 
suppressor cells (MDSCs). Liver innate lymphocytes are represented by natural killer (NK) cells, NKT cells, 
mucosal associated invariant T cells and γδT cells. CD4+ T, CD8+ T and B cells comprise major adaptive cells 
in liver[73]. Both virus infection and metabolic disorder invoke the immune environment from tolerogenic 
status to active inflammation, leading to further cellular injury, fibrosis and eventually hepatocarinogenesis. 
Moreover, various subtype immune cells and related markers in tumor microenvironment are significantly 
predictors for clinical outcome of patients[74]. Here, this part will discuss the similarities and differences of 
immune cells responses between HBV and NAFLD-associated HCC [Figure 2].

Macrophages
Macrophages compromise almost 20% of overall immune cells in liver, containing residential Kupffer 
cells (KCs) and migratory monocyte-derived macrophages. Hepatic macrophages are extremely plastic 
and accommodative to signals from the microenvironment. Both inflammatory stimuli and viral proteins 
reprogram macrophages towards M2-like tumor macrophages, which in turn promote HCC progression[75-77]. 
In chronic HBV-infected tissue, macrophages are manipulated by HBV for persistent maintenance in liver. 

Figure 2. Alteration of immune cells in HBV- and NAFLD- HCC and corresponding immunotherapies. In HBV-infected liver 
microenvironment, MDSCs are recruited and macrophages are educated to polarization of pro-tumor phenotype, which constitute 
immunosuppressive microenvironment. However, excessive lipid accumulation and lipotoxic hepatocytes induce macrophages to 
pro-inflammatory phenotype which promotes liver damage. In both etiologies- associated HCC, cytotoxic T cells and NK cells inhibit 
progression of tumor formation through cytokines secretion or phenotype switch. B cells control progression of HBV infection by 
antibodies production and cytokines secretion, whereas promote NAFLD development towards fibrosis via inducing CD4+ T cells. 
Overall, activation and function of effector immune cells are suppressed by MDSCs and macrophages through interaction of checkpoint 
molecules, such as PD-1, PD-L1, CTLA-4, TIM-3 and LAG-3. Furthermore, several drugs blocking inhibitory checkpoint receptors have 
been developed and approved for treatment of cancer diseases. Collaboratively, CAR-T and CAR-NK cell therapy are investigated to be 
promising in treatment of liver cancer. HBV: hepatitis B virus; NAFLD: nonalcoholic fatty liver disease; HCC: hepatocellular carcinoma; 
MDSCs: myeloid-derived suppressor cells; CAR: chimeric antigen receptor; NK: natural killer; Mφ: macrophage; Arg1: arginase 1; MMP9: 
matrix metallopeptidase 9; IL: interleukin; IFN: interferon; TNF-α: tumor necrosis factor-alpha; TCR: T-cell receptor; BCR: B-cell receptor 

Song et al. Hepatoma Res 2020;6:27  I  http://dx.doi.org/10.20517/2394-5079.2020.05                                               Page 5 of 15



HBV suppresses pattern recognition receptors (PRRs) sensing or downstream interferon (IFN) response 
in hepatocytes but activate macrophages to secrete cytokines at high titer[78]. Furthermore, HBc protein is 
detected within macrophages in liver tissues from HBV-infected patients. Macrophages exposed to HBV or 
HBV-producing cells are prone to secrete more IL-10, which subsequently impairs lymphocyte activation, 
but less pro-inflammatory cytokines such as IL-6 and IL-1β with property of inhibition on HBV infection[76]. 
Accordingly, HBV drives macrophages to be suppressive immune cells. In offspring with horizontal 
transmission of HBV, HBeAg induces up-regulation of checkpoint molecular PD-L1 on macrophage and 
polarization to M2 protumor subtype, which impairs responses of CD8+ T cell to HBV and lead to virus 
persistence[79]. Moreover, macrophages produce matrix metalloproteinase 9 (MMP9) and IL-23 under 
the stimulation of HBV, which blocks binding of IFN-α to IFNAR1 and facilitate tumor angiogenesis and 
progression[80,81].

Contrarily, pro-inflammatory macrophages are essential for progression of NASH-associated HCC. In a 
high-fat diet (HFD) zebrafish model, hepatic macrophage morphology is changed and number of TNF-α 
positive positive macrophages is increased, and liver size is subsequently reduced in macrophage-ablation 
NAFLD/NASH associated HCC larvae but not in HCC or NAFLD alone[82]. The process from NAFLD to 
HCC is proximately accompanied by inflammation and fibrosis, in which, innate and adaptive immune cells 
are enriched and trafficking in liver. A recent study demonstrates that KCs induce recruitment of platelet in 
early stage of NAFLD, which is associated with hepatic injury. Furthermore, antiplatelet treatment abrogates 
infiltration of CD8+ T cells, Ly6G+ granulocytes, especially CD11b+ F4/80+ monocyte-derived macrophages 
and KCs, which alleviates the progression of carcinogenesis[83].Mechanistically, excessive toxic lipids and 
cholesterol crystals accumulate in macrophages, forcing cells polarization to pro-inflammatory phenotype, 
and depletion of KCs dampens release of pro-inflammatory cytokines and liver damage[84-87]. Meanwhile, 
lipotoxic hepatocytes activate macrophages polarization via releasing exosomes containing miR-192-5p[88]. 
Generally, NF-κB and JNK signaling pathways mainly mediate the activation of macrophages towards 
the pro-inflammatory phenotype. Stimulator of interferon genes (STING) invokes the polarization of 
macrophage to produce TNF-α and IL-1β via JNK/NF-κB pathways, which further modulate increase lipid 
deposition in hepatocytes and exacerbate progression of NAFLD[89]. 

MDSCs
MDSCs, generated as immature myeloid cells from bone marrow, are the major immunosuppressive cells 
which inhibit T cells proliferation and function and enhance induction of Treg cells and tumor-associated 
macrophages in chronic inflammation and cancers. Multiple studies have reported that MDSCs are closely 
related with HBV persistence and HCC. In patients with chronic HBV infection (CHB), HBeAg induces 
expansion of monocytic MDSCs (mMDSCs) via indoleamine-2,3-dioxygenase (IDO), to suppress autologous 
T cell proliferation and IFN-γ production, favoring the establishment of tolerant immune environment[90]. 
Similarly, HBsAg promotes differentiation of mMDSCs through activation of ERK/IL-6/STAT3 signaling 
feedback[91]. Mechanistically, cell cycle-related kinase (CCRK), as a direct AR-regulated oncogene, 
mediates virus-host signaling to promote progression of HBV-associated HCC[92], and further induces 
polymorphonuclear (PMN) MDSCs in HCC[93]. Moreover, AR-CCRK pathway is consistently shared by 
tumorigenesis in NASH-related HCC. Induction of CCRK activates mTORC1/4E-BP1/S6K/SREBP1 cascades 
and recruits PMN MDSCs to initiate metabolic reprogramming and immunosuppressive microenvironment 
to facilitate the progression of HCC[94]. Concordantly, hepatic lipid deposit promotes accumulation of 
MDSCs and further enhances the cellular production of ROS in NASH-model mice[95,96].

NK cells
Lymphocytes represent another crucial population in intrahepatic innate immune cells, including NKT cells, 
ILCs (NK cells and other ILC subpopulations) and γδT cells. NKT and NK cells, which mainly contain 
conventional circulating NK and liver-resident NK cells, comprise about 50% of lymphocytes in liver. 
Generally, hepatic NK cells recognize and restrain virus-infected cells via direct cytotoxicity or secreting 
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immunoregulatory cytokines, such as IFN-γ and TNF-α, to activate T cells[97,98]. Recent studies demonstrate 
that liver-resident CD56 (bright) NK cells, which show increased expression of NKG2D and TRAIL and 
low production of IFN-γ, represent a cell population adapted for tolerogenic liver microenvironment and 
inducible anti-viral immunity[99,100]. Accumulating evidence illustrates that function of NK cells is impaired in 
CHB and HBV progressed diseases. NK cells in blood from CHB patients express higher level of suppressive 
cell surface molecules and cytokines, such as Tim-3, PD-1 and IL-10, which is induced by HBsAg-mediated 
increase of monocytes[101,102]. Besides, HBV nucleic acids-contained exosomes entering into NK cells inhibit 
expression of pattern-recognition receptors and thus NF-κB and p38 MAPK pathways, which results in 
dysfunction of NK cells[103]. Furthermore, intrahepatic NK cells-mediated apoptosis of hepatic stellate 
cells (HSCs) is reversed via blockade of TGF-β in HBV-infected liver cirrhosis patients, which leads to 
impairment of anti-fibrosis capacity in NK cells[104]. In HBV-associated HCC, LINC01149 variant upregulates 
MICA expression through serving as miR-128-3p sponge to recruit NK cells to lyse infected cells, which 
process releases highly soluble MICA and thus induces exhaustion of NK cells[105].

IL-15 is crucial for homeostasis of NK cells. Deficiency of IL-15 or IL-15Rα inhibits high fat diet-induced 
accumulation of lipids and inflammation in liver[106], which probably suggests dysregulation of NK cells 
involving in NAFLD progression. Although NK cells is a cell population with cytotoxicity in infected 
tissues, these cells convert to less cytotoxic ILC1-like phenotype in NAFLD, which probably protect obese 
liver from severe NAFLD but dampened capability to kill cancer cells[107]. In advanced stages of fibrosis in 
NAFLD accompanied by insulin resistance, the ability of NK cells to restrain HSCs is impaired, mediated by 
low expression of insulin receptors, which leads to deterioration of the liver and fibrosis[108]. Furthermore, 
NKp46+ NK cells, as immunoregulatory cells, induce polarization of hepatic macrophages towards M1-like 
phenotype via IFN-γ, which prevents NASH progression to fibrosis[109].

T cells
T cells represent the major adaptive lymphocytes in transformation from inflammation to cancer. CD8+ 
T cells frequently show restricted proliferation and exhausted function with high expression of inhibitory 
checkpoint molecules such as CTLA-4, PD-1 and TIM-3 in CHB and HBV-HCC. High expression of PD-1 
on HBV-specific T cells or B cells induces exhaustion of T cells or reduced antibodies production, which is 
partially reversed by PD-1 blockade[110-112]. In HCC tissue, there exist CD8+ T cells expressing different levels 
of PD-1. The population with high-level PD-1 expresses TIM-3 and/or LAG-3 and produce limited IFNγ and 
TNFα when exposed to anti-CD3[113]. Beyond, thymocyte selection associated high mobility group box (TOX) 
in CD8+ T cells promotes PD-1 translocation to cell surface by regulating endocytic recycling of PD-1[114]. 

Abundant exhausted CD8+ T cells and Tregs exist and potentially clonally expand in cancerous tissues 
from HCC patients[115], contributing to evasion of tumor cells from immune surveillance. However, several 
studies illustrate that CD8+ T cells potentiate to promote persistent hepatic inflammation susceptible to HCC 
development when HBV-specific CD8+ T cells stay in activation but lack of capability to constrain virus 
replication[116]. Consistently, CD8+ T cells possess dual functions in progression of NAFLD-related HCC. 
In diet-induced obese mice, CD8+ T cells are recruited to liver to promote insulin resistance and glucose 
metabolism, leading to steatohepatitis[117]. Meanwhile, another study demonstrates that activation of CD8+ T 
cells is suppressed by liver-resident immunoglobulin-A-producing (IgA+) cells, which express high levels of 
PD-L1 and IL-10[118]. 

Compared to CD8+ T cells, HBV-specific CD4+ cytotoxic cells in PBMCs from HBV-associated HCC present 
at the similar level, but display weaker cytolysis capability and suppress cytotoxicity of CD8+ T cells in the 
absence of Tregs[119]. The antigen-experienced T cells, CD4+ follicular helper T (Tfh) cells diminish HBV via 
response to HBsAg, which is impaired by CTLA-4-mediated Treg suppression[120]. Contrary with CTLA-4, 
increased expression of co-stimulatory molecule OX40 on peripheral CD4+ T cells is associated with HBV 
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clearance[121]. Furthermore, combined OX40 stimulation and PD-L1 blockade effectively activate IFN-γ 
producing Th1 cells and IL-21 producing Tfh cells, which potentiates the application of immunotherapeutic 
approaches[122]. Consistent with anti-tumor function in HBV-related HCC, surveillance from CD4+ T 
cells are crucial for NAFLD[123,124]. However, selective loss of CD4+ T cells has been recently detected in 
NAFLD, which promotes hepatocarcinogenesis[125]. Mechanistically, linoleic acid (C18:2) is released from 
dead hepatocytes caused by lipotoxicity into CD4+ T cells. C18:2 then co-localizes within mitochondria, 
upregulating expression of carnitine palmitoyltransferase, which further promotes production of ROS and 
cell apoptosis[124].

B cells
HBV viral load as well as HBsAg and HBeAg levels differed with progression of distinct phases of chronic 
HBV infection, accompanied by alteration of immune cells. Immunoglobulin-encoding genes and B cell 
function-related genes are more enriched in immune active patients than those in immune tolerant and 
inactive carrier patients[126]. B-cell response and humoral immunity are essential for controlling progression 
of chronic HBV infection[127,128]. However, differentiated HBsAg-specific B cells from patients with CHB are 
defective in antibody production and express high levels of inhibitory receptors, such as PD-1, FcRL4 and 
FcRL5[112,129]. Blockade of PD-1 on B cells effectively reverses cellular dysfunction to maturation and cytokines 
secretion[111]. Mechanistically, HBsAg inhibit toll-like receptor (TLR) promoter activity by suppressing 
phosphorylation of CAMP responsive element binding protein (CREB), thereby comprehensively inhibits 
expression of TLR9 in B cells, leading to reduced proliferation of B cells and decreased proinflammatory 
cytokines secretion[130].

Intrahepatic B cells are highly associated with NAFLD. CD20+ B cells are increased in liver tissues from 
NAFLD patients with activity score higher than 5, compared with those of 0 or 1~4[131]. Consistently, hepatic 
B cells account for more in HFD-induced NAFLD mice than in control mice. Moreover, the B cells in 
NAFLD liver tissues potentiate to produce higher levels of IL-6 and TNF-α, and promote differentiation 
of CD4+ T cells to Th1 cells[132]. Functionally, the maturation of hepatic B2-cells and the increase of IgG 
in circulation targeting oxidative stress-derived epitopes predict the onset of steatohepatitis, and B cells-
mediated activation of Th1 cells contributes to NAFLD progression toward fibrosis[133].

IMMUNOTHERAPIES
As discussed above, a long duration is taken for both HBV- and NAFLD-related HCC, therefore, treatments 
aiming at eliminating HBV infection or blocking NASH progression and fibrogenesis can prevent the 
development of tumors. Abundant alterations of hepatic immune cells during liver carcinogenesis provide 
wide-range targets. Several immunotherapies have been approved for clinical application, nonetheless, the 
induced resistance and adverse events remain to be further investigated. The following sections will discuss 
immunotherapies in HCC, such as immune checkpoint inhibitors, virus or tumor vaccines, and adoptive 
cells transfer.

Immune checkpoint blockade
Inhibitory checkpoint receptors (ICRs) including CTLA-4, PD-1 and PD-L1, are recognized as master 
regulators for anti-tumor immunity. Immune checkpoint inhibition (ICI) therapy using antibody against 
PD-1, PD-L1 and CTLA-4 have been since been approved by the Food and Drug Administration[134]. 
Moreover, function of exhausted CD8+ T cells is restored through implementation of anti-PD-1 therapy 
and even combined blockade of ICRs[113,114]. In a cohort study with 262 patients enrolled between 2012 and 
2016, nivolumab, a monoclonal antibody against PD-1, showed a decent safety profile, including acceptable 
tolerability[135]. Consistently, safety and efficacy of nivolumab was comparable in Asian patients, compared 
to intent-to-treat overall population[136]. However, a phase III trial showed that pembrolizumab, another 
PD-1 inhibitor, did not display significant increase in overall survival (OS) and progression-free survival 
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(PFS), compared with control groups[137]. Since medicines based on anti-PD-L1 monoclonal antibodies have 
been validated to be effective for several cancer diseases, a phase Ib clinical trial of atezolizumab combined 
with bevacizumab, the anti-PD-L1 antibody and VEGF blocking antibody respectively (ClinicalTrials.gov 
NCT02715531), has announced an overall response rate of 32% among 73 patients with advanced HCC[138]. 
Moreover, this combined therapy-based IMbrave150 phase III trial (ClinicalTrials.gov NCT03434379) is 
currently implemented and significant improvements in OS and PFS compared with sorafenib have been 
reported by the sponsor[139,140] [Figure 2].

CTLA-4 is another inhibitory molecule that attenuates activation and function of T cells. Upregulation of 
CTLA-4 promote the apoptosis, secretion of anti-inflammatory cytokines and exhaustion of CD4+ Th and 
CD8+ T cells in liver tissues from CHB and HCC patients[141-144]. Tremelimumab, which is the monoclonal 
antibody blocking CTLA-4, was administered in HCV-related HCC patients and assessed to possess 
antitumor and antiviral activity, along with good safety profile. The disease control rate was 76.4% and time 
to progression was 6.48 months (95%CI: 3.95-9.14)[145]. The similar efficacy displayed in another cohort with 
32 HCC patients enrolled. Combinational administration of Tremelimumab and tumor ablation results in 
accumulation of intratumoral CD8+ T cells and median OS of treated patients was 12.3 months (95%CI: 
9.3 to 15.4 months), which is a potential new therapy for patients with advanced HCC[146]. Furthermore, a 
preclinical study of durvalumab combined with tremelimumab was analyzed in patients with unresectable 
HCC (11 HBV+, 9 HCV+, 20 uninfected). Among 40 patients, 60% (24/40) had discontinued treatment. The 
uninfected patients after treatment showed predominantly clinical activity and no unexpected safety signals 
were observed. The phase II portion of this study is still ongoing[147] [Figure 2].

Adoptive cells transfer
Chimeric antigen receptor (CAR) therapy is a promising strategy for cancer immunotherapy. Accumulating 
evidence has demonstrated CAR-T cell therapy as effective strategy against lymphoid leukemia and multiple 
myeloma[148-150], whereas, efficacy and safety of CAR-T therapy for treatment of solid tumors remain elusive. 
Glypican-3 (GPC3) is broadly expressed on liver cancer cells, but minority on normal hepatocytes. GPC3-
targeted CAR-T cells efficiently kill GPC3-positive hepatoma cells and the T cells expressing third-generation 
CAR potentiate to suppress growth of xenografts with even low GPC3 expression level in mice[151]. Moreover, 
GPC3-specific CAR-T therapy combination with sorafenib could effectively promote apoptosis of liver 
cancer cells[152] [Figure 2]. 

However, side effects to CAR-T therapy contain high manufacturing and fatal toxicities, such as cytokine 
release syndrome[153]. CAR-NK therapy is under investigation and probably provide better options. Similar to 
CAR-T, FLT3- and CS1-targeted CAR-NK cells respectively suppress proliferation of cancer cells in myeloid 
leukemia and multiple myeloma[154,155]. Furthermore, DAP12-targeted CAR-NK cells efficiently suppressed 
tumor cells in ascites and proliferation of liver-metastatic tumors in colorectal cancer patients[156]. In vivo 
studies have shown that injection of ErbB2-specific NK-92/5.28.z cells possess the ability to prolong survival 
of glioblastoma-xenograft mice[157] [Figure 2].

CONCLUSION
Chronic HBV infection-induced progression of HCC mainly depends on direct intrusion of viral 
components in hepatocytes, which disturbs its normal cellular metabolism and function. This subsequently 
stimulates immune imbalance in liver. Frequently accompanied by systemic metabolic syndrome, 
advancement of NALFD- associated HCC encompasses excessive lipid accumulation in hepatocytes 
and immune cells, insulin resistance and inflammation induced malignant transformation. The hepatic 
complexity of immune cells mediates tumorigenesis in situation of anergy of cytotoxic cells and enhancement 
of immunosuppressive cells. Cytotoxic T cells are the major factor which eradicates HBV-infected cells or 
malignant cells. The exhaustion mediated by MDSCs or Tregs leads to persistence of HBV and evasion of 
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cancer cells. Flexibility of macrophages facilitates themselves to polarize according to different signals from 
microenvironment. Macrophages mostly function as suppressive cells to inhibit proliferation and activation 
of CTLs in HBV-related HCC, while promotes liver damage and fibrosis via releasing pro-inflammatory 
cytokines.

Since there still remains lack of effective drug specifically targeting eradication of HBV or controlling 
development of NAFLD, illustrating molecular mechanisms of immune cells and establishing novel 
immunotherapies will provide promising options for treatment of HCC. Unbridling cytotoxic cells (ICI) and 
stimulating the cells specifically engineered with tumor-associated antigens (CAR-T and CAR-NK) mutually 
contribute to effectively restrain progression of HBV- and NAFLD-induced HCC. Taken together, the drug 
resistance and adverse effect induced by immunotherapies should be further recorded and investigated in 
future studies.
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