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Abstract
Thermoelectric (TE) materials, capable of directly converting heat to electricity, offer a promising sustainable 
energy and waste heat recovery solution. Despite extensive research, a significant bottleneck remains: the 
synthesis of high-performance TE materials still relies heavily on trial-and-error approaches, which are time-
consuming and resource-intensive. Moreover, while machine learning (ML) and design of experiments (DOE) have 
shown potential in optimizing synthesis processes across materials science, their systematic application to TE 
materials remains underexplored. In particular, very few reviews have addressed the integration of statistical and 
AI-guided methods for synthesizing and optimizing TE materials. This manuscript comprehensively reviews recent 
advances in statistical and artificial intelligence techniques for optimizing TE material synthesis. It first discusses 
the role of DOE in identifying critical synthesis parameters and explores various ML methods for predicting TE 
performance. This study then highlights case studies involving different TE material systems, synthesis strategies 
(e.g., ball milling, sputtering, electrodeposition), and ML-based performance prediction and optimization. This work 
fills a critical gap by linking data-driven optimization techniques with experimental synthesis in the TE field. It not 
only consolidates current knowledge but also sets the stage for future studies aiming to bridge material discovery 
and practical manufacturing. The insights presented are instrumental in accelerating the development of next-
generation TE devices.
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INTRODUCTION
The ever-growing energy demand has become a global challenge due to the limited reserve of fossil fuels. 
There have been considerable efforts to develop alternatives to fossil fuels, such as solar, nuclear, and wind. 
Naturally, a lot of energy is wasted as heat in the modern world. Thermoelectric (TE) technologies, which 
utilize the phenomena of energy conversion between heat and electricity, have the potential to reuse waste 
heat for sustainable electrical energy generation[1]. Nevertheless, TE technologies are environmentally 
friendly renewable energy sources and have drawn tremendous attention over the last few decades[2].

Due to the ability to convert thermal to electrical energy and vice-versa, TE materials have potential in 
various applications, including refrigeration, power generation, and waste heat recovery[3]. Recently, there 
have been plenty of research activities in the area of the use of statistical methods such as design-of-
experiment (DOE), machine learning (ML), and artificial intelligence (AI) in the area of TE technology with 
a focus on the design of TE materials and thermoelectric generators (TEGs).

DOE is a statistical way of optimizing the response of experiments. Constructing experiments with the 
minimum optimization parameter variations statistically to enhance the system's performance is crucial. AI 
is a technology operating to do the task, which is constructed through data collection, model training, 
optimization and deployment. It is used to find the new materials in the TE. ML belongs to AI, a statistical 
model for optimization and finding the relation between input and output parameters. ML is developed 
with mathematical models and algorithms for finding the pattern through statistical analysis of input data. 
Gorai et al. have reviewed optimizing materials properties and designing and discovering TE materials 
using ML[4]. Wang et al. have given an overview of the use of several ML methods, such as Bayesian 
optimization, regression, and neural network (NN) models in TE research[5]. Chen et al. have reviewed the 
use of ML in discovering and designing various materials for energy-related applications. This included ML 
in photovoltaics, batteries, catalysis, and thermoelectric[6]. Recatala-Gomez et al. reviewed the historical 
evolution of various inorganic TE materials. They postulated that combining data generation, ML, high-
throughput synthesis and characterization, and high-performance computing can accelerate the discovery 
of novel TE materials[7]. Recently, Wang et al. have critically reviewed the progress on the application of ML 
in (i) predicting and optimizing the properties (electrical and thermal transport) of TE materials; and (ii) 
the designing and screening of TE materials[8]. Furthermore, the optimization of TEGs based on statistical 
approaches such as the Taguchi method, the response surface methodology (RSM), and the analysis of 
variance (ANOVA) has been reviewed by Chen et al.[9]. Kucova et al. reviewed waste heat harvesting from 
the Internet of Things (IoT) through ML[10]. The review concluded the suitability of TEG in low-grade waste 
heat harvesting through the results of various ML algorithms. Song et al. draw the roadmap from high 
throughput materials discovery to advanced device fabrication[11]. Also, this review discussed the discovery 
of new TE material through ML algorithms. Deng et al. discussed predictive ML algorithms based on the TE 
materials[12]. The previously reported reviews on TE mainly focused on new material discovery based on the 
ML algorithm. One important part that was not discussed is atomic characteristics relation with TE 
parameters and the parameter optimization in material synthesis through ML approach. However, these are 
important to understand the TE material tailored to find a suitable approach to tune the TE performance 
with minimal optimization parameters.

Regardless of the ability of ML and DOE to direct the discovery and optimization of TE materials and TEGs, 
the ultimate ability to control the synthesis in a rational and controllable way will determine the research 
and development of future TE technologies. However, the synthesis attempt of existing and unknown TE 
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materials from existing literature based on knowledge of materials synthesis and the prediction and control 
of outcome is complicated. This is because the control over TE materials synthesis depends on carefully 
controlling many experimental parameters such as choice of precursors, synthetic methods, temperature, 
pressure, atmosphere, time, additives, etc.

There are a total of 38,413 published articles under the keyword 'thermoelectric materials' over the past ten 
years in the Science Direct database. Figure 1 shows how publication activity in TE materials has changed 
over the last ten years. The surge in TE materials research is apparent, and the number of publications has 
increased rapidly. Therefore, the research areas involving TE materials are popular among the scientific 
community. However, controllable synthesis of TE materials is a significant bottleneck for realizing 
practical thermoelectric devices such as TEGs. Notably, there is a knowledge gap between implementing 
statistical optimization methodologies, discovering new TE materials, and finding optimal synthesis and 
device fabrication conditions. This article covered the importance of ML in DOE for TE material synthesis, 
material chemistry parameters involving boosting TE performance, segregating materials based on 
performance, finding new material, and optimizing composition. In TE material creation such as a thin 
film, the ML approach in parameter optimization for coating and sintering is discussed.

PERFORMANCE ENHANCEMENT OF THERMOELECTRIC MATERIALS
The efficiency of TEGs depends on the performance of TE materials. In this direction, significant 
advancement has been achieved through research and development toward the optimal performance of TE 
materials[13-19].

The performance of TE materials is usually expressed as the “figure of merit” ZT = S2σT/ κe + κl, where the 
Seebeck coefficient is S, the electrical conductivity is σ, and electronic and lattice thermal conductivities are 
κe and κl espectively, at temperature T. Here (κe + κl) is known as the total thermal conductivity of TE 
materials. Thus, a high value of ZT implies high performance of TE materials. Moreover, TE materials with 
high ZT values can lead to efficient TE devices for commercial applications. The high value of ZT at a given 
temperature can be achieved with TE materials having high S, high σ, and low thermal conductivities κe and 
κl. However, σ decreases when S increases. On the other hand, total thermal conductivity (κe + κl) of TE 
materials is proportional to σ. Due to this complex interrelation between the TE parameters, it is pretty 
challenging to control independent parameters experimentally for the optimization of the performance of 
TE materials. Literature-reported methods for optimizing ZT focused on the methods for reducing thermal 
conductivity and enhancing S and σ, respectively[17,20]. Finally, when the thermal conductivity of materials is 
very low or unavailable, the performance of TE materials can be expressed as the power factor S2σ.

Thermoelectric materials development
The range of materials that exhibit TE properties encompasses wide varieties, including inorganic, organic, 
and inorganic-organic hybrid[21]. Naturally, each type of material has its advantages and disadvantages. 
There are vast numbers of inorganic materials that exhibit TE properties. Typical inorganic TE materials are 
based on chalcogenides (such as Bi2Te3, PbTe, SnSe, etc.), Si-Ge alloys, multicomponent oxides, 
skutterudite-type materials, half-Heusler alloys, and clathrates[14,19]. The variation of ZT with temperature of 
some typical inorganic TE materials is shown in Figure 2[22]. As a result of extensive research and 
development over the past few decades, Bi2Te3 and Si-Ge-based materials are used in commercial TE 
devices. The main advantage of inorganic TE materials is their high TE performance. Commercial TE 
devices use inorganic materials with ZT~1. Therefore, searching for new materials with high ZT values has 
been popular in TE material research[20,23]. The disadvantages of inorganic TE materials include poor 
abundance of elements, high cost, and toxicity[24]. On the other hand, the advantages of organic TE materials 
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Figure 1. (A) Showing histogram of several results as a function of publication years with keywords “thermoelectric materials” in the 
Science Direct database. (B) Map created by VOSViewer for “thermoelectric materials” from Web of Science.

Figure 2. Variation of ZT with temperature of some common inorganic TE materials. Adapted from Jarman et al.[22]. (Licence CC By 
4.0).

include earth-abundant elements, ease of manufacturing involving solution-based methods, the possibility 
of a cost-effective scale-up process, lightweight, mechanical flexibility, low toxicity, and low thermal 
conductivity[25,26]. However, due to poor Seebeck coefficient and electrical conductivity, organic materials 
have inferior ZT values[27]. Nevertheless, the development of organic materials for TE devices has been 
reviewed by several authors[25,27-29]. Interestingly, the inorganic-organic hybrid materials are emerging as 
novel TE materials. The hybrid TE materials could combine the high S and σ of inorganic materials and the 
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low thermal conductivity of organic materials[21,30].

Design of experiment for TE materials synthesis
During the optimization of synthesis of TE materials, experiments are performed to measure the effects of 
experimental variables on responses. The optimization of preparation involves finding a combination of 
variables that gives the best response. Thus, there are many types of experiments. DOE is a statistical way of 
optimizing the response of experiments. An efficient DOE is a sequential approach wherein information 
gained in the initial stage can be used to decide which factors may be kept constant or varied in later stages. 
In this process, reducing the number of experimental variables to a more significant one is possible. Thus, 
statistical DOE through fractional factorial design can provide an opportunity to minimize the number of 
experiments by optimizing experimental conditions. The main advantages of DOE are efficiency, response 
analysis, and simple interpretation of statistical outcomes.

The DOE has existed for quite some time, but its use is very new in synthesizing TE materials. 
Selvaratnam et al. have reviewed the application of ML in general materials chemistry[31]. Recent progress in 
DOE and ML for predicting and controlling inorganic materials synthesis has been discussed by 
Willamson et al.[32]. Recent review articles on the use of DOE, ML, and AI for the synthesis of general solid-
state materials have been presented by Baum et al.[33].

The first example of the application of statistical DOE in TE materials synthesis is for the optimization of 
the sintering parameters of K2Bi8Se13-xSx (for x = 0, 4, 6, and 8)-based TE materials by Kyratsi et al.[34]. 
Sintering conditions must be optimized to obtain high-quality pellets of TE materials with the highest 
density. In this work statistical DOE through fractional factorial experiment and Taguchi table has been 
employed for identifying optimum parameters for sintering (duration, temperature, and pressure) for the 
fabrication of high-quality pellets. Based on the ANOVA, it has been postulated that the density of the pellet 
is more significantly affected by pressure than duration and temperature. The best condition for hot-press 
sintering of these TE materials has been 80 MPa pressure, 530 °C temperature, and 90 min duration, 
respectively, with a relative density of pellet approaching ~97%. These optimized sintering conditions have 
been used for sintering the pellets of the entire K2Bi8Se13-xSx compounds. Interestingly, the sample with x = 0 
exhibited a ZT value of 0.58 at 673 K.

Bi2Te3 and its alloys, such as Bi2-xSbxTe3 and Bi2Te3- xSex, have been used in TE technologies for decades. 
However, Kanatzia et al. have employed factorial DOE via ANOVA for the ball-milling synthesis of Bi2Te3 
for the first time[35]. The analysis of parameters for ball milling, such as duration, rotation speed, and ball-to-
material ratio, respectively, suggests a strong influence of the duration and speed of ball milling on the TE 
properties of nanocrystalline Bi2Te3. The ZT value of optimized ball-milled nanocrystalline Bi2Te3 is 0.72 at 
100 °C. It is expected that DOE can further improve the ZT value of Bi2Te3-based TE materials through 
efficient optimization of ball-milling parameters.

Nuthongkum et al. applied RSM and statistical central composite design (CCD) for modeling and 
optimizing thin film deposition parameters of thermoelectric Bi2Te3 material using the radiofrequency (RF) 
magnetron sputtering technique[36]. This study has statistically analyzed the formation of Bi-Te thin films 
considering several deposition factors, such as the flow rate of Ar gas and annealing temperature. The DOE 
using RSM to find the optimal conditions for the targeted response utilizes mathematical and statistical 
methods to develop models and evaluate factors. Thus, RSM plots suggest that the concentration of Te in 
Bi-Te thin film would decrease if the annealing temperature is increased at a lower Ar flow rate. Using this 
model, it has been determined that the optimized conditions for the deposition of good quality thin films 



Page 6 of Chen et al. Energy Mater. 2025, 5, 500120 https://dx.doi.org/10.20517/energymater.2024.31121

Bi2Te3 using RF magnetron sputtering technique are 285 °C temperature of annealing and 103.5 sccm flow 
rate of Ar. However, the TE properties of stoichiometric Bi2Te3 films using this press have been poor, and 
further optimization of additional deposition parameters (for example, annealing and substrate 
temperatures) has been proposed. Furthermore, in the study of Khumtong et al., the RSM based on CCD 
has been employed to optimize thin films of Sb2Te3 deposition using the RF magnetron sputtering 
technique[37]. It has been found that the highest TE power factor of Sb2Te3 thin films requires deposition 
parameters Ar gas flow rate 120 sccm and processing temperature 375 °C. The highest power factor value 
obtained for stoichiometric Sb2Te3 film is 2.0 × 10-3 W/mK2 at 250 °C.

Carbon materials are widely studied in electronic devices due to their availability in different structures[38]. 
The high electrical conductivity is crucial for TE performance enhancement. Jagadish et al. developed a 
DOE study on the investigation of TE properties of thin films of Bi2Te3 on recycled carbon fiber by 
electrodeposition technique[39]. Herein, the DOE based on the D-optimal model under RSM has been 
adopted to optimize the combined effect of electrodeposition parameters, leading to the optimum Seebeck 
coefficient. The authors used a multivariate approach involving DOE based on 23 runs to optimize 
experimental parameters. The optimum electrodeposition parameters are potential -0.10 V, time 0.5 h, 
temperature 25 °C, and electrolyte compositions 0.240 Bi/(Bi + Te). Thus, using DOE, the optimized 
electrodeposition parameters yielded an experimental Seebeck coefficient of -13.42 μV/K, about 33% larger 
than samples prepared without DOE.

Lead chalcogenides (PbTe, PbSe, PbS) are excellent TE materials. In particular, Pb1-xSnxTe-based materials 
are promising for TE applications due to their high ZT values. Recently, Sam et al. have developed a DOE 
method for synthesizing Pb1-xSnxTe (x = 0.67) crystals by horizontal vapor phase growth method[40]. This 
study employs 2k full factorial design to correlate ZT with the effect of synthesis temperature and time. 
Based on the ANOVA of ZT, the synthesis temperature and time exhibit significant ZT response. Thus, the 
crystals prepared at 1,200 °C for 4 h have exhibited the highest ZT of approximately 0.084.

Due to high operating temperatures, SiGe alloy-based TE materials are widely used in radioisotope TEGs[41]. 
The n-type SiGe alloy may exhibit a very high ZT value of 1.84 at 1,073 K[42]. Ahmad et al. studied statistical 
DOE and RSM optimization of ball milling and hot press sintering parameters to prepare SiGe alloy[43]. In 
this study for TE properties of SiGe alloy, 13 experiments were incorporated in two-factor CCD for 
obtaining regression equations. For the maximum ZT, the hot press temperature is 1,504.5 K, and the time 
for ball milling is 53.6 h. Herein, the predicted and experimental optimum ZT values were 1.148 and 1.146, 
respectively.

Effective heating and cooling on the surface of TEG increases the temperature difference across TEG, which 
directly relates to device efficiency and output power. However, the construction of the microstructure of 
TE materials is vital to withstand significant temperature differences for performance enhancement. The 
optimization of TE legs (such as the areas of hot and cold sides, pin configuration, contact angle, etc.) and 
the construction of the 3D architecture of TE legs tailors to avoid the brittleness of material and the heat 
stagnation in its legs[44]. Maduabuchi[45] studied thermomechanical optimization using a deep neural 
network (DNN). The data obtained from the finite element method was fed to the DNN to learn the 
pattern. The well-fitting of experimental and DNN results indicated the suitability of DNN, reducing the 
simulation time. The temperature difference between the hot and cold sides was crucial to maximize the 
output power. Besides, this report discussed the optimization of temperature effect on temperature on the 
hot side (Th) and temperature on the cold side (Tc) by the wind speed. This effective cooling was achieved 
by installing low thermal conductivity material on the cold side, and the cold side temperature was 
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optimized with a cooling coefficient. Besides, the increment in Th increased the thermal stress on the legs, 
which accounted for performance reduction. Meanwhile, the optimized geometrical parameter of TEG 
minimized the thermal stress, avoiding the device's cracks and heat stagging. In the staggered and integrated 
device, mechanical stability was a crucial parameter. The same author reported the optimization focused on 
thermomechanical properties in the TEG and solar cell integrated device. The numerical method generated 
data was used to feed the DNN to predict the performance quickly and with more accuracy. After the 
optimization by focusing on the thermo-mechanical stability, the output power was increased, and the 
thermal stress was reduced[46].

Designing an ML model based on actual environmental conditions is crucial, which helps design the TEG 
for large-scale applications and suitable environmental conditions. However, the temperature of the TEG 
surface depends on the environmental conditions. Ameenuddin Irfan et al. designed the TEG based on the 
actual environment by analyzing the humidity variation and actual room temperature, predicting Th and 
Tc

[47]. For this, 35-day real-time data was recorded, which was used to feed the ML model to analyze the 
variation. ML models, such as linear, tree regression, and Gaussian process regression (GPR), were 
employed, and the GPR model had a high accuracy in predicting the environmental conditions.

MACHINE LEARNING (ML) METHODS
In ML methods, problems are solved by developing mathematical models and algorithms by discovering 
patterns through statistical analysis of input data. The most common ML algorithms in chemistry are 
support vector machine (SVM), random forest (RF), k-nearest neighbors (kNN), ensemble, decision tree 
(DT), and NN methods, respectively.

Machine learning in materials chemistry
In materials chemistry, AI technologies, including ML methods, have been increasingly used to predict the 
crucial factors for the synthesis and select the optimal reaction conditions. Gulevich et al. have reviewed the 
application of ML methods to develop synthesis and choose the best synthesis conditions for colloidal 
nanomaterials[48]. As shown in Figure 3, AI technologies have several benefits for synthesizing colloidal 
nanomaterials[48]. Thus, optimization of synthesis parameters (time, temperature, concentration of 
precursors, and additives) necessary for the synthesis of nanocrystals of several chalcogenides (CdS, CdSe, 
PbS, and ZnSe) have been studied using ML[33]. The use of similar ML methods for synthesizing size and 
shape-controlled chalcogenides-based TE nanomaterials is yet to be known. This is one area that will 
expand in the coming future.

The relation between the structural parameters in chemistry and the thermoelectric parameters is crucial to 
segregating the material from high performance to low performance. Compared with the conventional 
cascaded arrangement of TE devices, low-cost spin-driven thermoelectric (STE) consisting of simple layered 
structures gained much attention since it has been fabricated by sputtering, coating, and platting, which is a 
direct approach. However, STE consists of rare earth elements that are pretty costly. Applying ML to 
analyze suitable composition is more time-efficient and can reduce material waste.

Iwasaki et al. applied the ML approach to discover novel STE material through actual material synthesis[49]. 
The experimental data of series of rare earth substituted yttrium iron garnet Pt/R:YIG (R = La, Ce, Pr, Nd, 
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, except Pm) fabricated on Gd3Ga5O12 (GGG) and 
Gd2.675Ca0.325Ga4.025Mg0.325Zr0.65O12 (SGGG) substrates taken to analyze the Seebeck coefficient (SSTE) relation 
with other parameters such as atomic weight nR, spin and orbital angular momenta SR and LR, lattice 
mismatch Δa between R:YIG and the substrate under spin driven effect. In this study, four types of ML 
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Figure 3. Showing the benefits of using AI for synthesizing colloidal nanomaterials[48]. (License Number 6015211273249).

models were applied: decision tree regression (DTR), elastic net (EN), quadratic polynomial-least absolute 
shrinkage and selection operator (QP-LASSO), and NN to predict the relationship between the parameters. 
Thus, four ML algorithms converge, with SSTE showing a positive connection with nR and LR but a negative 
correlation with Δa and SR. The positive correlation of LR with thermopower tested with another material 
Fe-Pt-T (T = Sm, Gd, Cu, and W) ternary alloys, relying on anomalous Nernst effect (ANE) originating in 
the spin-orbit interaction. LR value for Sm was larger than Gd, Cu, and W, while this material has LR = 0. 
The composition around Fe0.665Pt0.27Sm0.065 shows a large SSTE at least one order greater than the other ANE 
materials. ML is a suitable approach to finding suitable TE parameters among clusters of materials (a 
combination of various periodic table elements) in relation to their crystal structure, compound chemistry, 
and interatomic bonding. Finally, the linear fitting of predicted SSTE through ML and the experimental SSTE 
indicates better accuracy. Among four MLs, NN gives better accuracy, which means well-matched 
experimental and predicted values.

Further, analyzing new materials and their TE properties is crucial. Tewari et al. applied the ML approach to 
classify thermal conductivity among oxides and oxide alloys of transition metals, that is, elements of groups 
3-11 and periods 4-6[50]. A two-step ML model was employed: one is classification, and another is regression. 
The complete set-off ML model is shown in Figure 4. Gradient boosted tree classifier was used to predict the 
key material properties influencing κl and to classify material with low, medium, and high κl. These key 
material properties were lattice energy per atom, atom density, band gap, mass density, and oxygen ratio by 
transition metal atoms. Above mentioned properties define the crystal structure, compound chemistry, and 
interatomic bonding of a compound. The regression model was employed to predict absolute κl with various 
models, including Cubist, GPR polykernel, kNN, GBM, XGBoost, RF, Kernel ridge, and deep neural nets. 
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Figure 4. ML approach to predict low κl value among oxide-based alloys[50]. (License CC By 4.0).

Among these, Cubist, GPR polykernel, GBM, and Kernel ridge models have better fit with actual value with 
the coefficient of determination (R2) > 0.9, which is mainly used on low κl materials. Another report by 
Juneja et al. detailed the segregation of low and high κl among 120 materials for TE and thermal barrier 
coatings, respectively[51]. These materials' maximum phonon frequency integrated Gruneisen parameter up 
to 3 THz, average atomic mass, and unit cell volume obtained from material project relay on κl. GPR was 
employed as an ML model to predict and segregate the materials based on κl. The data was collected from 
the material project, and the obtained log(κl) values between experimental and ML approaches were 
analyzed with fitting. In this study, 15 new materials were identified from primitive and face-centered 
crystal classes, with a very low κl range between 0.13 and 0.98 Wm-1K-1, considerable to TE performance. 
GPR model predicted the log-scaled κl through ARD Matern 5/2 covariance function, which gave the train/
test RMSE of 0.20/0.21 and the R2 of 0.99/0.99. The same log-scaled κl predicted through the slacker model 
overestimated the values and showed poor variability with the slacker model.

TE parameters are related to one another, raising the importance of finding the physical descriptors that 
connect all the TE parameters. Juneja et al. applied ML to predict the relation between elemental descriptors 
and electronic transport properties (S and σ)[52]. Initially, 2838 compounds were screened based on the band 
gap (greater than zero) for nonmetallic compounds and the phonon frequency (greater than zero) for 
stability. After the screening process, 135 compounds remain and used for further process. GPR was 
developed as a predictor model by employing a 10-fold cross-validated least absolute shrinkage and 
selection operator (LASSO). Among 135 compounds, 34 compounds had a high-scaled power factor. In 
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them, 6 has κl less than 2 Wm-1K-1. From these, a material PdBr2 was identified with a high power factor and 
low lattice thermal conductivity. LASSO helped to screen the descriptor in relation to electronic transport 
parameters. The higher accuracies were obtained through the elemental and bonding descriptors. The 
transport parameters σ and S revealed the dependency relation with coordination number, boiling point, 
the heat of formation, and molar-specific heat coming under the bonding descriptor. From this, σ and S 
commonly relate to the bond strength. Further, κl shows a close relation with the coordination number 
through anharmonicity. Volume is inversely correlated with the κl. Hence, electronegativity, bond strength, 
bond distance, volume, and coordination number have an excellent correlation with the electronic and 
thermal transport properties related to the chemical bonding descriptor. In conclusion, the chemical 
bonding-driven descriptor is a key point to connect the electronic and thermal transport properties. These 
reports find a common relation that could help to understand future experimental research in this domain. 
A total of 2,838 compounds were taken from different groups of materials: alkaline, transition, alkali, and 
lanthanide elements, and these were screened based on the band gap and phonon frequency; after that, 185 
compounds were found to be nonmetallic and stable. Figure 5 illustrates the screening process, which 
includes the optimization, band gap, and phonon frequency. Also, another report has verified the relation 
between chemical bonding characteristics and κl.  In this, the coordination number had a high value when 
the bond strength was weak and the bond distance was large[53].

Various atomic characteristics of materials that change the TE properties lead to identifying their 
relationship. Indeed, ML reduces the cost of material synthesis by predicting this relation. Li et al. applied 
the ML approach to analyze the TE performance of high entropy GeTe materials by correlating atomic 
features and the ZT[54]. Nine atomic features were selected for this analysis: atomic number, ionization 
energy, pseudopotential radius, atomic radius, electronegativity, electron affinity energy, molar volume, 
number of valence electrons, and atomic weight. Each element's atomic fraction is treated as a weighted 
score for its atomic properties. The following equation constructs the ML model in relation to atomic 
characteristics:

where the letters i and j represent certain elements, and Vi is the average atomic characteristic, which is 
defined before (V1 is the average atomic number, V2 is the average atomic radius, V3 is the average 
pseudopotential radius, V4 is the average molar volume, V5 is the average electronegativity, V6 is the average 
ionization energy, V7 is the average electron affinity energy, V8 is average ionization energy, V9 is the average 
atomic weight, V10 is the average number of valence electrons, T is measuring temperature), υi,j represents 
the atomic characteristic, and cj is the atomic fraction. Different ML models are tested in this, namely 
LightGBM, surface vector regression (SVR), Ridge E, XGBoost, RF, and linear regression. LightGBM 
exhibits the least error value among these, with an R2 of 0.954. Among the atomic characteristics, 
temperature has a greater impact on ZT, while V4 and V5 randomly decreased, and the optimum values of 
V4 = 17.5 and V5 = 2.05 were fixed in this. Then, the composition ratios of Ge, Te, Sn, and Mn are optimized, 
and the ZT values are tested at 790 K, the optimum temperature for this composition. Another composition 
set with Ge, Te, Sb, Sn, and Te was optimized, and the peak ZT is obtained at 800 K. Finally, the condition 
was applied practically, and the synthesized materials are new, with considerable ZT, ensuring low-cost 
synthesis.

The influence of input data size on training the ML model is vital to achieve accuracy. The sample data size 
defines the degree of freedom (DoF) on fitting. Zhang et al. studied the data size influence with descriptors 
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Figure 5. Process of screening compounds under the optimization, band gap, and phonon frequency to get nonmetallic and stable 
compounds, to calculate electronic properties[53]. (Creative Commons Attribution 4.0 license).

to predict the band gap, κl, and elastic properties of zeolites[55]. Rather than directly influencing model 
precision, the size of the dataset exerts its effect indirectly through the model DoF. It was challenging to 
predict the results in unknown domains without affecting the precision. Integration of crude estimation 
features in ML model improved the predictive accuracy without using the high DoF. Experimental and 
density functional theory (DFT)-based datasets were used to train the model before and after integrating the 
crude estimation, respectively. Kerne ridge regression ML model was used to predict the κl, the error of 6.2% 
that occurred was reduced to 4.1% after the integration of the crude estimation feature. This study implies 
the improvement of accuracy with the integration of crude estimation, which needs less data to create an 
ML model.

Doping is crucial for TE material performance enhancement. However, more elements can be used for 
doping in a particular site due to the availability of more elements in a similar oxidation state. Determining 
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the elements tailored to reduce material waste, cost, and time consumption is also crucial. He et al. reported 
the prediction of superior thermoelectric performance in unexplored doped-BiCuSeO via ML[56]. The 
experimental data of Bi1-xMxCuSeO (M represents Ca, Mg, Sr, Ba, Na, La, Sm, Er, Ho, Cd, Sb, Pb, Ag, Al, Fe, 
K, Rb, Co, Cs, Mn, Nd, Sn, Yb, Zn, and Ni) was collected from the literature. The descriptors, a set of input 
parameters such as temperature, the content of the doping element, the relative molecular mass of 
Bi1-xMxCuSeO, the Mendeleev number of dopant, the Pauling electronegativity of dopant, the first ionization 
energy of dopant, the ionic radius of Bi1-x (r) and the Pauling electronegativity of Bi1-x, where x ranges from 0 
to 0.2 referred the doping content, used to generate a ML model. The workflow from data collection to ML 
prediction with the application of ML is shown in Figure 6A. Totally, six ML approaches were developed to 
solve this problem. Among these, GBR has an R2 of 0.96, indicating better fitting with experimental input 
data. The correlation between descriptors and the ZT helps identify the new composition's ZT through the 
ML model. Figure 6B shows the ZT of the experimentally obtained value of doped elements and the 
predicted value. The optimized content of Bi0.86Po0.14CuSeO and Bi0.88Cs0.12CuSeO has improved ZT by 104% 
and 98% at 923 K, respectively. The employed ML approach identified how to analyze the suitable doping 
element among the more elements for TE performance enhancement with the input help of descriptors. 
Minhas et al. used the database of synthesized materials trained with ML models to predict the suitable 
doping elements to dope into GeTe, SnTe, PbTe, Sn1-xSe, Bi2-xSbxTe3), skutterudite (CoSb3, As2Te3), clathrates 
(Ba8Ga16Ge30), and transition metal-based chalcogenides (Cu2-xSe,Ag2-xTe2)[57]. Among various ML models, 
eXtreme gradient boosting regression (XGBR) has the best fitting with experimental database. The 
maximum ZT of 2.20 at 1,000 K was identified for Bi0.1Sb1.9Te3. The correlation between the materials 
descriptors and the output parameter helped to find the new high-performance material. The descriptors 
selected were based on the material chemistry influencing the structural and transport properties. Also, the 
classification of the material was based on the performance of the RF classifier ML model in the different 
structures.

The ML model is accelerating to find a new TE material and highly efficient dopant. Parse et al. constructed 
an ML model to discover a new dopant to place in the Bi site in BiCuSeO[58]. The model design focused on 
the accuracy improvement by normalizing ZT of doped BiCuSeO with pristine BiCuSeO. The developed 
model produced the best fitting data with experimental. The R2 value of 0.93 from the developed extra tree 
regression model was much closer to 1, indicating more accuracy than the initial model. New dopants were 
discovered through this model without wasting the material, which satisfied the thermoelectric principle. 
Based on various descriptors, the selected Si as a dopant for the Bi site improves the ZT by increasing 
mobility. Table 1 lists the survey of this review and refers to the descriptors, targets, and findings of the 
study related to ML in material chemistry.

Machine learning in TE materials synthesis
The efficient synthesis of TE materials requires understanding the connection between various parameters 
involving synthesis conditions. In this direction, ML has great potential to control the synthesis conditions 
of novel TE materials. By learning existing synthesis information, ML can recommend efficient synthesis 
conditions with few trials. Thus, the ML can be used to understand complex relationships and predict 
optimal synthesis conditions with a high probability of success by employing existing initial synthesis data 
of TE material. Tang et al. have explored the feasibility of ML for guiding the MoS2 synthesis by Chemical 
Vapor Deposition (CVD) and hydrothermal synthesis of carbon nanostructures for the first time[59]. 
Figure 7 shows the schematic of ML workflow for materials synthesis developed by Tang et al.[59]. This study 
has constructed an ML model for the general control of synthesis parameters for future experiments. The 
model could predict the probability of success and recommend the optimal synthesis conditions. 
Furthermore, a progressive adaptive model (PAM) to maximize the outcome of synthesis experiments 
through minimum trials has been introduced. This successful ML methodology for CVD of MoS2 has the 
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Table 1. The survey of this review refers to the descriptors, targets, and findings of the study related to ML in material chemistry

Publication Sample 
source Samples Descriptors Targets Finding Best ML 

algorithms

Juneja et al., 2019[51] Material 
project

2,162 binary, ternary, and 
quaternary compounds

Maximum phonon frequency, integrated Gruneisen parameter up 
to 3 THz, average atomic mass, and volume of the unit cell

Analyzed the κl for 120 
materials in relation to the 
parameters

Low κl materials between 0.13 
and 0.98 (CsK2Sb, TlI, Ba2BiAu, 
SrTePd, Ba2SbAu, TlBr, Cs2Se, 
PbI2, LiFeP, TlCl, Ba2AgSb, PbI2, 
LaCoTe)

GPR

Zhang et al., 2018[55] Previous 
reports

93 binary 
semiconductors

Electronegativity, atomic radius, effective nuclear charge, Vander 
Waals radius, covalent radius, row number in the periodic table, 
block number, enthalpy of formation of gaseous atoms, ionization 
energy, and valence number

Proposed a method to 
increase prediction 
accuracy by incorporating 
property estimation in the 
feature space to establish 
ML models

Increased accuracy about 2.1% 
than before. Used to more 
accurately predict the κl of 
materials having more than 0.1 
Wm-1K-1

Kernel ridge 
regression

Juneja et al., 2020[52] DFT + 
Boltztrap 
code

2,838 compounds Boiling point, melting point, specific heat, molar specific heat, 
molar volume, heat of fusion, heat of vaporization, Pauling 
electronegativity, first ionization energy, group and period in the 
periodic table, elemental thermal conductivity, atomic number, 
atomic mass, covalent radius, van der Waals radius, density, the 
average bond distance, average bond strength, volume per atom, 
volume of cell, and coordination number

Found the common 
parameters influencing 
electrical and thermal 
transport properties. 
Tested with 135 
compounds

Common parameters driving 
chemical bonding such as 
electronegativity, bond 
strength, bond distance, 
volume, and coordination 
number

GPR

Juneja et al., 2020[53] DFT 2,838 nonmetallic 
compounds after high 
throughput screening 185 
compounds were 
analyzed

Boiling point, melting point, specific heat, molar specific heat, 
molar volume, heat of fusion, heat of vaporization, Pauling 
electronegativity, first ionization energy, group and period in the 
periodic table, elemental thermal conductivity, atomic number, 
atomic mass, covalent radius, van der Waals radius, density, the 
average bond distance, average bond strength, volume per atom, 
volume of cell, and coordination number

Found the correlation 
between the chemistry of 
bonding and κl

The bond strength obtained 
was weak for high coordination 
numbers, and the bonding 
distance was large

GPR

Tewari et al., 2020[50] DFT 315 compounds lattice energy per atom, atom density, band gap, mass density, 
and oxygen ratio by transition metal atoms

Segregating and 
discovering material based 
on κl

Identified low κl among 315 
transition metal oxides, values 
less than 5 Wm-1 K-1

XGBoost classifier 
and regression 
(cubist, kernel ridge, 
and Gaussian 
process)

potential to be expanded to efficient synthesis of chalcogenide-based TE materials using CVD techniques.

Among chalcogenides, Bi2Te3-based materials show the best TE properties. Wang et al. have applied ML to optimize hot-extruded CuxBi2Te2.85+ySe0.15 TE 
materials for the first time[60]. Principal component analysis (PCA) has been employed to characterize multiple variables. It has been found that the extrusion 
temperature and Cu content are the most important parameters in the CuxBi2Te2.85+ySe0.15-based TE material processing design. This study developed artificial 
neural network (ANN), SVR, and RF regression models to analyze the relationships between processing conditions, microstructural information, and TE 
properties.
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Figure 6. (A) Workflow and (B) identified ZT of doped elements through the ML approach[56]. (License Number 6015491243882).

The ML approach was used to understand the practical conditions involving coating, printing, and 
synthesizing the TE materials, as a result of which the time required to carry out the experiment and recover 
the material costs was lowered. BiSbTe is a well-known composition in TE applications exhibiting ZT 
greater than 1. However, predicting the suitable printing parameter through ML is an effective way to 
optimize the ZT. Song et al. employed a GPR-based ML model to predict the thermoelectric properties as a 
function of ink formulation and printing parameters in 3D printing[61]. Initially, the data was collected 
through experiment results to make ML algorithm. Considering the TE particle loadings and X-gum 
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Figure 7. Schematics of ML-guided synthesis of materials by CVD and hydrothermal process. The three key steps of ML to material 
synthesis are model construction, optimization, and maximizing experimental outcomes. Adapted from Tang et al.[59]. (License Number 
6015150101969).

concentrations for ink formulation, filament spacing, and stand-off distance for printing parameters, the 
ML approach optimizes the ZT of BiSbTe, as shown in Figure 8A. After round 4 optimization the predicted 
value through GPR was highly matched with the experimental value. Figure 8B shows the ML results. After 
applying the optimal condition, the material has a ZT of 1.3 at room temperature which was much higher 
than previous results.

Bi2Te3 is a well-known inorganic commercialized TE material operating at mid-temperature. The dopants 
Cu, Se, and Pb have been studied for Bi2Te3. Analyzing dopant concentration through ML is an effective way 
to get peak ZT. Alrebdi et al. developed support vector regression (SVR) (using both radial basis function 
and polynomial kernels) and DTR ML models to solve some real-world problems, including the effect of 
cu (metal), Se (non-metals), and Pb (toxic metal) on the values of κ[62]. The employed method results are 
almost close to the experimental data obtained from the literature; also, the minimum concentration of 
these Cu, Se, and Pb doping into Bi2Te3 exhibits the minimum thermal conductivity. In addition, the 
substrate temperature used for Bi2Te3 filmmaking shows considerable effect in the crystal formation during 
pulsed laser deposition (PLD), identified optimum substrate temperature through ML models matched with 
the reported experimental data. Identified through testing and training the datasets, the R2 value was 
increased on trained data. The R2 value of DTR was 1, indicating better fitting with the experimental value 
than SVR regression. This report gives the knowledge for future optimization processes using these ML 
models suitable to predict the optimum concentration of dopants and substrate temperature during PLD.

Sintering conditions influence the TE properties change while the optimum condition predicted through 
the ML approach reduces the number of iterations taken manually to increase the ZT. Also, more accurate 
knowledge about the sintering condition is not yet explored through experiments. Here, Headley et al. 
employed an ML approach to finding suitable sintering conditions for Ag1.96Se through an ultrafast flash 
sintering technique to achieve high performance[63]. The GPR model developed to identify optimum flash 
sintering variables includes voltage, pulse duration, pulse delay, number of pulses, and thickness related to 
power factor measured during the analysis based on Bayesian expected improvement. As the number of 
data increased, the GPR prediction uncertainty converged to the experimental measurement uncertainty. 
Finally, the optimum parameters were used to perform the experiment, and the maximum ZT was obtained 
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Figure 8. (A) Workflow of the ML-assisted extrusion printing of thermoelectric inks, including the four input variables listed in box 1 and 
three out properties of interests in box 4, (B) ZT of BiSbTe using the optimum condition identified through this ML model and reported 
values. Reproduced from Ref.[61] with permission from the Royal Society of Chemistry. (License under Creative Commons Attribution 
3.0 Unported License).

within 1 s flash sintering time (optimized time). The sintering time was comparatively less than the previous 
sintering time.

Hou et al. applied ML to optimize the PF of Al2Fe3Si3 by varying the composition of Al/Si[64]. Experimentally 
obtained data was used to train the ML model to predict unknown power factors. The commonly used 
anisotropic squared-exponential (SE) covariance function in GPR was chosen to describe the covariance 
between the feature variables of composition and temperature. Finally, the optimal ratio of 0.9 shows the 
increase of PF up to 40% at 510 K compared with the original composition. Headley et al. applied the ML 
approach to make a n-type Bi2Te2.7Se0.3 under laser powder bed fusion (LPBF) processing[63]. The four steps 
are followed to predict the optimized LPBF-built complex geometries using an iterative augmented strategy, 
as shown in Figure 9. Initially, the new 13-line scan parameter (power and scan speed) combinations are 
predicted. Then, this parameter value was used as input for melt pool characterization. The width and depth 
of melt pool geometrical values were obtained, and these training datasets were used for ML. Again, 93-line 
scan parameter combinations were used to predict the melt pool geometry with uncertainties. Then, 
optimized parameter combinations were given to the LPBF-built to make Bi2Te2.7Se0.3 with three geometries: 
the rectangular prism, hollow rectangle, and trapezoid. Integrating ML techniques helps to visualize and 
quickly understand changing melt pool dimensions concerning varied laser parameters.

AI for TE materials synthesis
The first and only report during the writing of this article on the application of AI for TE materials synthesis 
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Figure 9. Showing the iterative augmented strategy to understand the melt pool geometrical (width and depth) using LPBF processing 
of n-type Bi2Te2.7Se0.3 thermoelectric. A total of six iterations were performed with feedback[63]. (License number 6015220339088).

is by Na et al.[65]. This study converts chemical reaction formulas into a machine-readable format using a 
"synthesis graph". The synthesis graph describes the chemical formula in terms of the elements present in 
the starting and final materials, as shown in Figure 10. To predict the synthesis recipe of TE materials, a 
DNN-based architecture called the synthesis process encoder-decoder (SPENDE) has been developed 
[Figure 11]. Herein, based on the benchmark of synthesis dataset of 771 unique TE materials; first, a 
synthesis graph has been generated followed by calculation of graph embedding vector using a graph NN 
graph-based reaction encoder (GRE). Then, the NN operation sequence decoder (OSD) has achieved the 
prediction of each step's operation level. Finally, the preparation conditions are predicted by engineering 
conditions networks (ECNs) predicts. Thus, this architecture has successfully predicted the synthesis 
parameters involving grinding, heating, cooling, and sintering for synthesizing TE materials.

CHALLENGES AND PERSPECTIVES
The rapid development of statistical methods has significantly influenced the discovery and design of TE 
material. This critically means that exciting new materials are being discovered; however, these materials are 
yet to be produced. ML and AI have the potential to learn patterns of synthesis design from a given data set 
of experimental synthesis procedures and then predict the outcome. Nevertheless, the design of synthesis 
parameters for TE materials is challenging because the sequence of reactions during the synthesis depends 
on many factors including choice of synthesis procedure and precursors. Therefore, the unavailability of an 
organized and comprehensive database of synthesis procedures of TE materials is a big challenge that needs 
to be overcome. For training the algorithm, converting available synthesis condition data and processing it 
into a suitable format for the algorithm is another obstacle. Finally, the synthesis parameters predicted by 
statistical optimization can be confirmed by experiments and further improved and developed.

Atomic properties are building blocks to construct the crystal system. Also, these parameters are related to 
the TE performance. Experimentally, finding this relation consumes more time and material cost. However, 
ML easily and quickly interprets this relation through the available data from materials projects or research 
articles. Interpretation of atomic properties with TE parameters tends to material classification which could 
help to identify new materials or compositions without any cost. Besides, the ML approach quickly 
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Figure 10. Example of a synthesis-graph for the conversion of a chemical reaction into a machine readable format developed by 
Na et al.[65]. (License CC-BY-NC-ND 4.0).

Figure 11. SPENDE architecture and its forward process for the prediction of synthesis sequence of a chemical reaction. Adapted from 
Na et al.[65] (License CC-BY-NC-ND 4.0).

identifies the exact atomic properties among many other atomic properties, helping to understand the 
material chemistry of the system. Further, it would help to develop the appropriate synthesis by controlling 
the identified atomic properties for high-performance TE material. Besides, controlling this parameter 
through experiments needs to be explored through the ML.

CONCLUSIONS
In conclusion, statistical and data-driven methods such as DOE, ML, and AI have been reviewed to 
optimize and guide the synthesis of TE materials. Advanced statistical methods can simplify the complex TE 
materials synthesis process. In the traditional synthesis of TE materials, experiments are performed to 
measure the effects of experimental variables on responses. The optimization of the preparation of TE 
materials involves finding a combination of variables that gives the best results. Recent advances can guide 
the multi-variable synthesis of new TE material, improve the outcome of experiments, and save time. It has 
been demonstrated that the proposed methodologies may be extended to synthesize various categories of 
TE materials. Various atomic properties are involved in material chemistry. Also, finding atomic properties 
related to TE parameters extends to the material classification based on the performance. Materials 
classification based on the performance can be easily achieved through ML concerning atomic properties. 
Identifying suitable atomic properties helps develop a new composition or class of materials for TE without 
experimental cost.
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