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Abstract
Hepatocellular carcinoma is the third most common cause of cancer-related death globally and portends a poor 
prognosis. The fibroblast growth factor receptor (FGFR) pathway is increasingly acknowledged to play a role in the 
pathogenesis of hepatocellular carcinoma (HCC) and is postulated to be upregulated as a mechanism of resistance 
to anti-VEGF treatment. We attempt to review the importance of the FGFR pathway in HCC oncogenesis, as well 
as the current clinical evidence on the efficacy and safety of FGFR pathway inhibitors in HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death globally[1]. Most 
patients have advanced disease on diagnosis. In unresectable advanced disease, sorafenib used to be the only 
available systemic therapy option available and prognosis was poor with a one-year survival rate of less than 
50%[2]. 

HCC tumours harbour an average of 30-40 mutations, of which 20% may be driver mutations[3]. The mo-
lecular complexity and heterogeneity of HCC likely underlies the reason for failure of multiple phase III 
trials of targeted agents over the years. With improving technologies, we have been able to learn more about 
the molecular mechanisms underlying the oncogenesis of HCC, and in recent past have seen breakthroughs 
with several new drugs being added to our armamentarium both in the front-line and second-line setting[4], 
and many more compounds showing great promise on the horizon[5]. 
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One signaling pathway that is increasingly recognized to play a role in the carcinogenesis of HCC is the fi-
broblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) pathway, which has roles in oncogen-
esis, mediating cell proliferation and neo-angiogenesis[6,7]. Preclinical models suggest that inhibition of the 
FGFR pathway is a feasible therapeutic strategy[7] and many clinical trials using FGF/FGFR pathway inhibi-
tors have since been conducted or are ongoing in hepatocellular carcinoma.

We attempt to review the importance of the FGF/FGFR pathway and current clinical evidence to date for use 
of the pathway inhibitors in HCC.

FGF/FGFR PATHWAY AND ITS ABERRATIONS IN CANCER
The human FGF family consists of 22 structurally related molecules that interact with four FGFRs. Each 
FGFR comprises three components, an extracellular domain which interacts with the FGF ligand, a trans-
membrane domain, and an intracellular domain. FGFs act as ligands which can bind to more than one kind 
of FGFR, causing downstream activation of several pathways including the mitogen-activated protein kinase 
pathway regulating cellular proliferation, and the phosphoinositide-3 kinase-Akt pathway controlling cellu-
lar survival[8]. FGF/FGFR signaling is involved in normal embryonic development of the liver and lungs[9] as 
well as adult wound healing and angiogenesis[10].

FGFRs are widely expressed in adult tissue, although their relative levels differ in the various organ systems. 
Under normal conditions, hepatocytes express high levels of FGFR3 and FGFR4 and have lower levels of 
FGFR1 and FGFR2[11]. 

FGFR signaling has significant effects on tumour neo-angiogenesis, both via the direct promotion of en-
dothelial cell proliferation through effects on the tumour microenvironment[12], as well as indirectly via 
interactions and synergism with the vascular endothelial growth factor (VEGF) and platelet-derived growth 
factor (PDGF) pathways[13]. 

FGFR pathway activation has also been shown to be an important resistance mechanism in response to 
therapeutic pressure with use of anti-VEGF therapy[6,14]. In both the preclinical[15] and clinical[16] settings, 
tumours progressing on anti-VEGF treatment have been shown to have a higher level of expression of FGF2. 
As such, upfront dual inhibition of VEGFR and FGFR, or introduction of FGFR inhibition after progression 
on a VEGF pathway inhibitor[17] can potentially result in greater clinical benefit compared to inhibition of 
the VEGF pathway alone.

FGFR aberrations occur in approximately 7% of all solid tumours and in almost every tumour type, though 
the frequency and type of aberration differ[18]. Pathway aberrations identified include[19]: (1) gene amplifica-
tion, or post-transcriptional changes giving rise to receptor overexpression; (2) gene mutations, resulting in 
constitutionally activated receptors or receptors that have a reduced dependence of ligand binding for activa-
tion; (3) translocations, resulting in expression of FGFR-fusion proteins with constitutive FGFR kinase activ-
ity; (4) alternative splicing of FGFR and isoform switching, changing ligand specificity and increasing the 
range of FGFs that can activate the FGFR; (5) upregulation of FGF ligand expression.

Overall the most common aberration seen in solid tumours is FGFR gene amplification, most commonly in 
FGFR1. FGFR mutations in cancer differ from those seen in hereditary disorders in that they are not limited 
to the kinase domains, but may occur in any part of the gene[19]. 

RELEVANCE OF THE FGF PATHWAY IN HCC
The importance of the FGF/FGFR pathway in HCC can be seen in the fact that more than 80% of HCCs 
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overexpress at least one FGF and/or FGFR[20]. The main FGFRs expressed in liver tissue are FGFR3[21] and 
FGFR4[22].

Whilst healthy hepatocytes express minimal levels of FGF1 or FGF2, these levels increase when there is cir-
rhosis and increasing levels correlate with the progression of cirrhosis into HCC. Higher levels of FGF1 and 
FGF2 are also seen in more advanced tumour stages[23]. There is hence interest in using FGF1 and FGF2 ex-
pression levels as a prognostic marker[24], though its utility as a diagnostic marker or for follow-up of HCC 
patients is limited by its non-specificity[25]. 

In preclinical models, FGF1 and FGF2 were shown to stimulate proliferation of HCC cell lines[26] through the 
activation of tumour invasion and angiogenesis resulting in an increase in capillarised sinusoids[27]. There is 
however substantial redundancy in FGF1- and FGF2-mediated signaling, suggesting that direct targeting of 
these ligands may have limited therapeutic efficacy[28]. 

The FGF8 subfamily, comprising FGFs 8, 17 and 18, also promotes oncogenesis through stimulating hepato-
cyte proliferation. At least one member of the FGF8 subfamily or its corresponding receptors FGFR2, FGFR3 
and FGFR4 is upregulated in more than 50% of HCCs[20]. The use of small interfering RNA (siRNA) target-
ing FGF18 has been shown to reduce the viability and proliferation of HCC cells[20].

The FGF19 subfamily, comprising FGFs 19, 21 and 23, act as endocrine factors mediating metabolic effects 
through FGFR signaling. FGF19, which comes mainly from the ileum, plays a role in the physiological regu-
lation of bile acid and cholesterol metabolism as well as insulin sensitivity. FGF19 binds exclusively to FGFR4 
with the co-receptor β-Klotho (KLB) stabilising the interaction. FGF19/FGFR4 signaling is thought to be of 
particular importance in the carcinogenesis of HCC[29], with FGF19 expression increased, through focal am-
plification of 11q, in approximately 6%-12% of HCC cases[30]. FGFR4 expression is also upregulated in almost 
half of HCCs[31]. In addition, FGF19 levels may be prognostic, with higher expression in resected HCC speci-
mens being associated with larger tumour size and stage and higher risk of recurrence after hepatectomy[32]. 

In vitro studies show that FGF19 induces HCC cell proliferation[29] and inhibits apoptosis[33]. Mice models 
also confirm that the ectopic expression of FGF19 promotes hepatocyte proliferation, dysplastic change and 
precipitates the formation of HCC[34]. Similarly, FGFR4 knockout mice showed increased hepatocyte injury 
when challenged with the hepato-toxin carbon tetrachloride[35]. Targeting the FGF19/FGFR4 interaction 
through various approaches appears to be effective in  inhibiting hepatocarcinogenesis and HCC growth 
in preclinical models, be it through the use of a neutralizing antibody against FGF19[36], through genetic 
knockdown[30], or though siRNA[33]. Using siRNA to knockdown FGFR4 also showed similar results in mice 
models, which had impaired regeneration and increased liver injury after partial hepatectomy[37].

As previously mentioned, the FGF/FGFR pathway has been shown to be upregulated after initial blockade of 
the anti-VEGF pathway[38], and may be an important resistance mechanism to anti-VEGF therapy including 
that of sorafenib. For a long time, sorafenib was the only systemic treatment option for advanced HCC, hav-
ing demonstrated an improvement in overall survival of 2-3 months in two large phase III trials[39,40]. Whilst 
having inhibitory effects on multiple targets including VEGFR, PDGFR and Raf kinases, sorafenib has no 
anti-FGFR activity[41]. Concomitant dual blockade of FGF/FGFR and VEGF pathways are hence a potentially  
attractive approach in the efforts to overcome this resistance[38]. 

OVERVIEW OF FGF/FGFR PATHWAY INHIBITORS AND THEIR TOXICITIES
Current available inhibitors against the FGF/FGFR pathway can be classified into Figure 1: (1) monoclonal 
antibodies which competitively inhibit FGF binding to the FGFR extracellular domain; (2) FGF-ligand traps; 
and (3) small molecule tyrosine kinase inhibitors (FGFR TKIs).
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Most of the FGF/FGFR pathway inhibitors currently in development belong to the last category. These TKIs 
can be further divided into multi-kinase inhibitors and the selective FGFR TKIs. 

Most of the multi-kinase inhibitors have inhibitory effects on both VEGFR and FGFR because of the struc-
tural similarities in the kinase domains of both receptors, though they may vary in their relative potency for 
inhibition for the two groups of receptors, with the majority having a higher potency for VEGFR than FGFR. 
Whilst multi-kinase inhibitors may potentially increase therapeutic efficacy by simultaneously disrupting 
resistance pathways, toxicity and off-target effects inevitably increase, which may limit the ability to achieve 
doses required for effective FGFR inhibition[19,42].

Selective FGFR inhibitors on the other hand, may have unique on-target dose-limiting toxicities. Preclinical 
models with selective FGFR TKIS caused hyperphosphataemia-mediated tissue calcification through the in-
hibition of FGF23 signaling in the kidney and bone, where it plays a critical role in vitamin D and phosphate 
homeostasis[43,44]. This was replicated in the clinical setting with 83% of patients treated at the maximum 
tolerated dose in the BGJ398 phase I trial developing hyperphosphataemia[45]. This resulted in repeated dose 
interruptions and reductions, and ultimately prompted trial sponsors to explore an alternative intermittent 
dosing schedule[45]. An increase in serum FGF23, phosphate and vitamin D levels is being studied as poten-
tial on-target biomarkers for effective FGFR inhibition[46]. Other mechanism-based toxicities observed in 
preclinical models and clinical studies include cutaneous toxicities such as nail toxicities, xerostomia, stoma-
titis, as well as dose-dependent keratopathy and retinal pigment epithelial detachment. Although multiki-
nase VEGFR/FGFR inhibitors may cause hypertension and proteinuria, these problems seem to occur with a 
lesser frequency with selective FGFR inhibitors. 

COMPLETED CLINICAL STUDIES OF FGF/FGFR PATHWAY INHIBITORS IN HCC
An overview of the completed clinical studies of FGF/FGFR pathway inhibitors in HCC is given below 
[Table 1].

Brivanib
Brivanib is a selective inhibitor of VEGFR2 and FGFR1. In preclinical studies, it attenuated hepatic fibrosis in 
vivo[47] and hence was postulated to be useful in slowing the progression of cirrhosis to HCC[48]. In a single-

Figure 1. Overview of FGFR pathway inhibitors (adapted from[31] and Sandhu et al .[28]). FGFR: fibroblast growth factor receptor; VEGFR: 
vascular endothelial growth factor receptor
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arm phase II study in advanced HCC, brivanib was shown to have anti-tumour activity in both the frontline 
and second-line setting, reporting a 6-month progression free survival rate of 18% when used as first line 
treatment[49]. The registration phase III trial (BRISK-FL) however was a negative trial, with brivanib failing 
to demonstrate non-inferiority to sorafenib in the first-line setting, though it had similar anti-tumour activ-
ity albeit a less well-tolerated safety profile with higher rates of drug discontinuation[50]. A second-line phase 
III study of brivanib against placebo after sorafenib failure or intolerance (BRISK-PS) also failed to show an 
overall survival advantage though it had a better improved time to progression and overall response rate[51]. 
Following the results of these two trials, the phase III trial of brivanib as adjuvant therapy to transarterial 
chemoembolization (TACE) was prematurely terminated though analysis similarly suggested no improve-
ment in survival with brivanib use[52].

Dovitinib
Dovitinib is a non-selective FGFR inhibitor which also has effects on VEGFR, PDGFR, FGFR, c-KIT and 
other targets. In HCC xenograft models, dovitinib inhibited tumour growth and angiogenesis, and reduced 
the development of metastases and prolonged mouse survival[53]. In other preclinical work, it also induced 
apoptosis in sorafenib-resistant cell lines[54]. When translated to the clinical setting however, the randomized 
phase II study comparing dovitinib versus sorafenib as first-line treatment in advanced HCC in Asian-Pacif-

Table 1. Summary of completed clinical trials of FGFR multikinase inhibitors in hepatocellular carcinoma (adapted and 
updated from[76])

Trial Endpoints
Brivanib PII: 1L systemic therapy  in advanced HCC[49]

n  = 55
NCT00355238

6m PFS 18.2%
mPFS 2.7m
mOS 10 m

PII: 2L systemic therapy in advanced HCC
n  = 41
NCT00355238

mTTP 2 m

PIII: 1L systemic therapy in advanced HCC (non-inferiority trial)[50]

n  = 1155
NCT00858871

mOS 9.5 m (brivanib) vs.  9.9 m (sorafenib) 

PIII: 2L systemic therapy in advanced HCC
n  = 295
NCT00825955

mOS 9.4 m (brivanib) vs.  8.2 m (placebo) (NS)
mTTP 4.2 m (brivanib) vs.  2.8 m (placebo) (SS)
ORR 10% (brivanib) vs.  2% (placebo) (SS)

PIII: in combination with TACE as adjuvant[52]

NCT00908752
mOS 26.4 m (TACE/brivanib) vs.  26.1 m (TACE/
placebo)

Dovitinib RPII: 1L systemic therapy in advanced HCC in Asia-Pacific population
n  = 165
NCT01232296

mOS 8.0 m (dovitinib) vs.  8.4 m (sorafenib)
mTTP 4.1 m (dovitinib) vs.  4.1 m (sorafenib)

Orantinib
(TSU-68)

PI/II: any line systemic therapy advanced HCC[56]

n  = 12 (PI) n  = 35 (PII)
NCT00784290

ORR: 2.9% CR, 5.7% PR, 42.8% SD
mTTP 2.1 m, mOS 13.1 m

PIII: in combination with TACE as adjuvant[58]

n  = 889
NCT01465464

mOS 31.1 m (TACE/orantinib) vs.  32.3 m (TACE/
placebo)

Nintedanib
(BIBF 1120)

PI/RPII: 1L systemic therapy in advanced HCC in Western population[60]

n  = 93 (PII)
NCT01004003

mTTP 5.5 m (nintedanib) vs.  4.6 m (sorafenib)
mOS 11.9 m (nintedanib) vs.  11.4 m (sorafenib)
mPFS 5.3m (nintedanib) vs.  3.9m (sorafenib)
G3 or higher AE 68% (nintedanib) vs.  90% (sorafenib)

PI/RPII: 1L systemic therapy in advanced HCC in Asian patients 
n  = 95 (RPII)[61]

NCT00987935

mTTP 2.8 m (nintedanib) vs.  3.0 m (sorafenib)
mOS 10.2 m (nintedanib) vs.  10.7 m (sorafenib)
G3 or higher AE 56% (nintedanib) vs.  84% 
(sorafenib)

Lenvatinib
(E7080)

PII: 1L systemic therapy in advanced HCC in Asian patients[63]

n  = 46 
NCT00946153

mTTP 7.4 m
mOS 18.7 m
ORR 37% DCR 78%

RPIII: 1L systemic therapy in advanced HCC (non-inferiority trial)[64]

n  = 954
NCT01761266

mOS 13.6 m (lenvatinib) vs.  12.3 m (sorafenib)

HCC: hepatocellular carcinoma.
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ic patients failed to show improved overall survival and anti-tumour activity with dovitinib. Of note though, 
subgroup analysis showed that the subset of patients with higher baseline plasma soluble VEGFR1 (sVEGFR1) 
levels had longer median overall survival[55], and although inconclusive, it suggests that the enrichment of a 
patient population through biomarker selection may be a feasible approach for future studies. No phase III 
trials were or are being conducted using dovitinib for the indication of HCC.

Orantinib (TSU-68)
Orantinib, a multi-kinase inhibitor of FGFR, VEGFR and PDGFR, showed promising efficacy in pretreated 
patients with advanced HCC, with 51% of patients achieving disease control, and a good safety profile in 
phase I/II HCC studies[56]. Following a similarly designed phase II study suggesting prolonged progres-
sion free survival[57], a randomized phase III trial was conducted in Asia in patients with unresectable HCC 
studying either orantinib or placebo after TACE. This study was however terminated early for futility after 
interim analysis showed no improvement in overall survival with the use of orantinib[58].

Nintedanib (BIBF 1120)
Nintedanib, a multikinase VEGFR/PDGFR/FGFR inhibitor, showed inhibition of HCC cell line growth in 
vitro and decreased tumour growth and angiogenesis in a xenograft mouse model of HCC[59]. Two phase I/
randomized phase II trials comparing nintedanib and sorafenib in patients with unresectable HCC were 
performed in the Western population[60] and the Asian population[61] with similar results. Both trials report-
ed similar overall survival and time to progression results with both drugs, with fewer serious drug-related 
adverse events but higher drug discontinuation rates. We await further studies of this compound in patients 
with advanced HCC.

Lenvantinb (E7080)
Lenvantinib is a multi-kinase inhibitor with inhibitory effects against VEGFR, FGFR1 - 4, KIT and RET. 
Although higher doses have been tested in other solid tumour types, a lower dose of 12 mg was tested in a 
phase I trial of lenvantinib in HCC patients[62], and used subsequently in a Phase II trial conducted in Japan 
and South Korea[63]. This led to the phase III study comparing lenvatinib and sorafenib in patients with un-
resectable HCC (REFLECT), showing non-inferiority of lenvatinib in terms of overall survival, and improve-
ments in secondary endpoints of progressive free survival and objective response rate with lenvatinib[64]. 
Following this study, further studies of lenvatinib in advanced HCC are being conducted or planned, such as 
a trial studying the combination of lenvatinib and anti-programmed death 1 (anti-PD1) inhibitors in the first 
line setting (NCT03418922, NCT03006926), as well as a trial studying the safety and efficacy of subsequently 
second-line treatment after initial lenvatinib use (NCT03433703).

ONGOING CLINICAL STUDIES OF OTHER FGF/FGFR INHIBITORS IN HCC
Although most of the completed clinical studies in HCC used multi-kinase inhibitors, several ongoing clini-
cal studies are being conducted with promising selective FGFR inhibitors.

Erdafinitib (JNJ-4276493)
Erdafinitib is an oral selective pan-FGFR inhibitor which has shown a manageable safety profile in a phase 
I study in advanced or refractory solid tumours. Common drug-related adverse events encountered in the 
phase I study included hyperphosphataemia, nausea, stomatitis and dysguesia, with one dose-limiting toxici-
ty of bilateral retinal pigment epithelium detachment necessitating treatment discontinuation[65]. An ongoing 
phase I/IIa study is currently recruiting targeting Asian patients with advanced HCC with FGF19 amplifica-
tion (NCT02421185). Phase II and III trials are also being conducted with the drug in other tumour types, 
and notably, the drug received FDA breakthrough therapy designation in the treatment of FGFR-alteration 
positive urothelial cancer recently, following promising results in a phase II clinical trial[66].

BLU-554
BLU-554, a selective and potent inhibitor of FGFR4, was derived from an earlier compound BLU9931 which 
suppressed proliferation in HCC tumour xenograft models with an activated FGFR4 signaling pathway[67]. A 
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phase I first-in-human study of BLU-554 in patients with HCC (NCT02508467) is ongoing, and preliminary 
results reported suggest promising clinical activity in FGF19 immunohistochemistry positive (IHC+) pa-
tients who have failed prior systemic therapy[68].

OTHER PROMISING FGF/FGFR INHIBITORS IN CLINICAL STUDIES
BGJ398
BGJ398 is a selective and potent pan-FGFR inhibitor which has shown to have preliminary clinical activity 
in a variety of solid tumours including FGFR3-mutant bladder and urothelial cancers, FGFR1-dependent 
squamous lung and head and neck cancers[45] as well as FGFR-altered cholangiocarcinoma[69]. Ongoing clini-
cal trials are being conducted and/or planned in the above tumour types.

AZD4547
AZD4547 is a selective FGFR1 - 3 inhibitor with activity in FGFR2-amplied gastric cancer models[70] as well 
as FGFR1-amplified NSCLC models[71]. The randomised phase II trial in FGFR2-amplified gastric cancer did 
not show an improved progression free survival for AZD4547 compared to paclitaxel though exploratory 
biomarker analyses suggests that marked intratumoural heterogeneity of FGF2 amplification could have 
contributed to the negative results[72]. The phase II/III study of AZD4547 as second-line therapy in treating 
FGFR-positive patients with stage IV squamous cell lung cancer is ongoing (NCT02965378).

Anti-FGFR antibodies
GP369, a monoclonal antibody against the extracellular domain of the FGFR2-IIIB receptor has shown po-
tent anti-tumour activity in breast and gastric cancer cell lines with FGFR2 amplification[73]. MFGR1877S 
(R3Mab) (NCT01363024) and B-701, both monoclonal antibodies targeting FGFR3, show promise in urothe-
lial cancers, with the latter compound being tested in combination with pembrolizumab in the second line-
setting (NCT03123055).

On the other hand, the auristatin-based antibody drug conjugate BAY 1187982 also shows significant tu-
mour growth inhibition in models of FGF2 amplified human gastric and breast cancers[74], which led to a 
phase I dose-escalation trial in FGFR2-expressing solid tumours (NCT02368951) though the trial had to be 
terminated early due to concerns over toxicity. 

FGF-ligand traps
FP-1039 comprises of a soluble fusion protein consisting of extracellular FGFR1-IIIc fused to the Fc domain 
of IgG1 hence acting as a ligand trap of FGF1, FGF2 and FGF4. A phase II trial is currently recruiting to 
study FP-1039 alone and in combination with chemotherapy (docetaxel or paclitaxel and carboplatin) in 
solid tumours (NCT01868022).

CONCLUSION 
Although the majority of clinical studies with FGF/FGFR pathway inhibitors have been negative in hepato-
cellular carcinoma aside from REFLECT, the results suggest that these compounds do have anti-tumoural 
activity and better biomarker-based enrichment of a target population is likely the key in planning more 
successful future trials[75]. Several ongoing clinical trials of FGF/FGFR pathway inhibitors in a biomarker-
enriched population are ongoing and we await the results of these promising studies. 
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