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Abstract
Colorectal cancer (CRC) is among the leading causes of mortality in adults of both sexes worldwide, while breast 
cancer (BC) is among the leading causes of death in women. In addition to age, gender, and genetic predisposition, 
environmental and lifestyle factors exert a strong influence. Global diet, including alcohol consumption, is one of 
the most important modifiable factors affecting the risk of CRC and BC. Western dietary patterns promoting high 
intakes of xenobiotics from food processing and ethanol have been associated with increased cancer risk, whereas 
the Mediterranean diet, generally leading to a higher intake of polyphenols and fibre, has been associated with a 
protective effect. Gut dysbiosis is a common feature in CRC, where the usual microbiota is progressively replaced 
by opportunistic pathogens and the gut metabolome is altered. The relationship between microbiota and BC has 
been less studied. The estrobolome is the collection of genes from intestinal bacteria that can metabolize 
oestrogens. In a dysbiosis condition, microbial deconjugating enzymes can reactivate conjugated-deactivated 
oestrogens, increasing the risk of BC. In contrast, intestinal microorganisms can increase the biological activity and 
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bioavailability of dietary phytochemicals through diverse microbial metabolic transformations, potentiating their 
anticancer activity. Members of the intestinal microbiota can increase the toxicity of xenobiotics through metabolic 
transformations. However, most of the microorganisms involved in diet-microbiota interactions remain poorly 
characterized. Here, we provide an overview of the associations between microbiota and diet in BC and CRC, 
considering the diverse types and heterogeneity of these cancers and their relationship between them and with gut 
microbiota.
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INTRODUCTION
Colorectal (CRC) and breast cancer (BC) present the highest incidence rates in Europe (12.1% and 11.8%, 
respectively), ranking among the leading causes of mortality in both sexes in the case of CRC and in women 
for BC[1].

Approximately 80% of CRC cases are developed through the conventional adenoma pathway[2] and 
originate from mucus-producing intestinal cells[3,4]. The adenoma-carcinoma sequence in the CRC 
progression usually begins with the development of abnormal structures of a benign nature, known as 
polyps or adenomas, in the epithelial tissue[5]. Subsequent activation of oncogenes and inactivation of 
tumour suppressor genes in polyps frequently lead to dysplastic lesions and the transformation of these 
structures into adenocarcinomas. Malignant adenocarcinomas spread further and invade nearby tissues, 
even penetrating all four intestinal histological layers[3,5]. Subsequently, the tumours may disseminate to 
other organs and metastasize via the lymphatic or haematogenous route[3]. Approximately 20% of CRC cases 
develop through the serrated pathway[6]. In the last decades, serrated lesions have gained clinical attention as 
serrated cases show distinctive endoscopic, anatomopathological, and molecular signatures from 
conventional adenomas. Hyperplastic polyps are the serrated lesions that are associated with a lower risk of 
turning malignant, accounting for 80% of cases, while sessile serrated adenomas (20% of serrated cases), 
accompanied by dysplasia or not, show a higher risk of turning into CRC and its surgical removal is always 
recommended[7].

BC is a heterogeneous disease with different molecular subtypes from an immunohistochemical perspective 
that relies on the expression of oestrogen receptor (ER), progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2). BC positive for oestrogen receptors (ER+), progesterone receptors (PR+), 
or both (ER+/PR+) is considered Hormone Receptor-Positive (HR) BC. To date, four major invasive breast 
carcinoma genetic subtypes from a clinical point of view have been identified with prognostic and 
therapeutic relevance. These are: the luminal subtype A presenting high expression of ER and PR receptors 
without HER2 overexpression and low cell proliferation index, the luminal subtype B (ER+, PR±, HER2±, 
and high proliferation index), HER2 enriched tumours (ER-/PR- and HER2+), and finally the triple-
negative BC subgroup or TNBC (ER-/PR- and HER2-)[8]. BC was the leading cause of cancer mortality for 
women worldwide in 2020[1] and is classified into different grades and types based on histological 
characteristics. The histological grade is a well-established prognostic tool based on the degree of 
aggressiveness or differentiation of the tumour tissue, including a combined score for several parameters 
such as the microscopic evaluation of tubule or gland formation, nuclear pleomorphism, and the mitotic 
count (i.e., determination of the proliferation marker Ki-67 by immunohistochemistry). In addition, the 
TNM is a recognized classification to designate the BC stage at the time of diagnosis and refers to the size 
and invasiveness of the tumour (T), lymph node involvement (N), and the presence of distant metastases 
(M)[9]. The intra-epithelial neoplasia of ductal carcinoma is considered a pre-invasive lesion at risk for 
invasive cancer[10]. Invasive ductal carcinoma is one of the most common types of BC (80% of the cases), 
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whereas invasive lobular carcinoma accounts for 5%-15% of BC cases and a mixed type of both carcinomas 
is present in 3%-5% of cases[11].

Factors affecting the development of CRC and BC
Several factors such as age, genetic predisposition, and environment influence the risk of these non-
communicable diseases. Among them, age is one of the most significant, as the risk of spontaneous CRC 
and BC in the general population increases progressively from the age of 50 years[2,12,13].

Another major factor is genetic predisposition, as 10% of the processes are related to hereditary CRC 
syndromes[14] such as MUTYH gene-associated polyposis (MAP), familial adenomatous polyposis (FAP) or 
hereditary non-polyposis-associated CRC (Lynch syndrome)[12] and the family history of CRC. In this 
regard, first-degree family history doubles or triples the risk of CRC[15]. In the case of BC, around 5%-10% of 
the cases are hereditary, 50% of which are due to deleterious mutations in high (BRCA1, BRCA2, TP53, 
PTEN, STK11, CDH1, PALB2) or moderate penetrance genes (CHEK2, ATM, BRIP1, BARD1, RAD51C, and 
RAD51D)[13]. In addition, gender (higher incidence in men for CRC and women for BC), origin (higher 
incidence in individuals of African origin for both cancers), or the presence of other health conditions 
increase the risk for both tumours[12,15-18].

Environmental and lifestyle factors influence CRC risk, which could be on the basis of the increasing 
incidence of CRC in developed countries[19,20]. Some modifiable risk factors for cancer depend mainly on the 
individual’s lifestyle (diet, alcohol or tobacco consumption, etc.) and health practises (such as 
cholecystectomy, radiotherapy, or breast screening practices)[12,15,17,18]. The association between smoking and 
CRC or BC remains controversial and depends on the time of exposure, age of onset, and the amount 
consumed (number of cigarettes per day)[13,15]. Regarding the consumption of alcoholic beverages, analyses 
indicate that the intake of more than two alcoholic beverages per day doubles the risk for CRC[15]. Global 
diet is also one of the major players in the development of CRC[21]. Epidemiological evidence on the effect of 
specific dietary factors pointed to red and processed meats as potential carcinogens, with special emphasis 
on alcohol consumption, which has been consistently associated with an increased risk of BC and CRC[22].

In addition, in BC, variables concerning women’s reproductive history, such as the age at menarche and at 
first birth, parity, breast density, chest irradiation, breastfeeding habits, and use of oral contraceptives, have 
an impact on disease development[23,24]. The effect of the body mass index (BMI) on the risk of developing 
BC changes according to women’s reproductive status. While the postmenopausal years are directly related 
to an increased risk, in the childbearing years, the tendency is slightly protective[24].

The connection between BC and CRC in women
Recent studies have supported the existence of a connection between BC and CRC in women[25]. BC patients 
present a 60% increased risk of developing CRC[26], and although no consensus has been achieved, the 
elevated levels of endogenous/exogenous sex hormones due to hormone/oestrogen replacement therapies 
and BC treatments (tamoxifen) may be possible factors contributing to increasing the risk of colorectal 
tumorigenesis[25]. Higher dietary consumption of potentially carcinogenic compounds such as heterocyclic 
amines (HCAs) and lower bioactives such as fibres may modulate gut microbiota towards a 
proinflammatory status[27-29]. Although inflammation and dysbiosis alone may not be sufficient to promote 
tumorigenesis, complex interactions between established risk factors for cancer, including genetic 
predisposition, obesity, dietary intake, and alcohol consumption, seem to alter the gut microbiota and 
contribute to carcinogenesis[30]. Diet has proven to be key in the modulation of gut microbiota in short- and 
long-term dietary interventions by providing substrates that can differentially promote the growth of 
specific microorganisms in the colon[31]. Dietary fibre and polyphenols are compounds with proven 
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prebiotic effects that contribute to this modulation[32]. Dietary fibre is not digested in the gastrointestinal 
tract, but it is fermented in the colon by the gut microbiota, leading to the generation of short-chain fatty 
acids (SCFAs) such as acetate, butyrate, and propionate[32]. Microbiota contributes to the maintenance of the 
overall health status of an individual. Microorganisms not only participate in the metabolic degradation of 
indigestible carbon sources such as fibres, but also exert a protective inhibition of pathogen adhesion to 
intestinal surfaces and trophic maintenance of the intestinal epithelium integrity and functionality[27]. The 
aim of this review was to analyse the role and association between microbiota and diet in the onset and 
progression of both processes, BC and CRC. This can provide a holistic approach to the interconnection 
between both types of cancer and the influence exerted on them by the binomial microbiota-diet, aspects 
that are not frequently addressed together.

Gut-Brain axis dysregulation by chemotherapy
Chemotherapy is part of cancer care for a variety of tumours. Drug cytotoxicity impacts the central nervous 
system, leading to neuroinflammation and damage to the blood-brain barrier. It is also known that 
chemotherapy causes significant disruption of the intestinal microbiota[33,34]. The vagus nerve provides 
innervation to the gastrointestinal tract and acts as a direct route of communication of the microbiota-gut-
brain axis, serving as a modulator of this circuit in inflammatory and psychiatric disorders. In addition, the 
hypothalamic-pituitary-adrenal axis, which coordinates the neuroendocrine response to stress, is involved 
in microbiota-gut-brain communication[35]. The non-selective nature of chemotherapy drugs implies that 
they also target some non-malignant cells. The parts of the body most susceptible to this toxicity are the 
gastrointestinal tract, the central nervous system, and the communication between them. Consequently, 
some adverse symptoms due to chemotherapy include sickness, diarrhoea and vomiting, anxiety and 
depression, fatigue, pain, and cognitive impairments. Healthcare professionals have underestimated, 
particularly, the chemotherapy-induced cognitive impairment over the years. As a result,  this complication 
remains under-reported and poorly understood by clinicians and researchers. Focusing on the role of the 
microbiota on these side-adverse effects, it is possible that microbial disruption due to chemotherapy causes 
changes to vagal afferent signalling and disrupts the hypothalamic-pituitary-adrenal axis, which may impact 
mood, cognitive function, and other alterations related to central nervous and immunity systems.

DIETARY PATTERNS LINKED TO THE RISK OF CANCER DEVELOPMENT
Diet is one of the modifiable lifestyle factors that mainly contribute to the occurrence and severity of some 
human pathologies, such as cancer. Despite extensive research in the past few years, no consensus on the 
role of dietary factors in cancer prevention has been reached. The fact that tumour development is a long-
term process makes the identification of cause-effect relationships difficult. Humans are exposed to a 
mixture of substances through food consumption, and evaluating their interaction through in vivo studies 
proves challenging. On one hand, food provides mutagens, but it also serves as a source of bioactive 
compounds, mainly derived from plant foods. Therefore, the understanding of the net effect of diet on 
health depends on the global balance between all the factors involved. Rather than analysing the 
relationships between the consumption of each food and the risk of the pathology, some authors suggest 
considering the dietary and lifestyle patterns into which each compound falls[16].

Globally, two dietary patterns receive the attention of the scientific community and accumulate the most 
robust degree of health-related evidence. While the Western pattern is characterized by a high presence of 
fats, sugars, processed foods, and red meat, the Mediterranean model is represented by a higher 
consumption of vegetables, fruits, legumes, extra virgin olive oil, nuts, fish, whole grains, and low intake of 
sugars, red and processed meat and dairy products[36]. It is generally recognized that the Westernized pattern 
is strongly associated with an increased risk of BC and CRC[37-39], while adherence to a Mediterranean diet 
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(MD) has the opposite relationship[37,38] [Figure 1]. MD has been associated with a lower risk of both 
cancers[37,40-43] and this protective association in BC patients was especially significant in postmenopausal 
women without red wine consumption[44]. Moderate wine intake with meals is a representative element of 
the MD[36]. However, alcohol consumption has been shown to increase the risk of both tumours regardless 
of the dose[41,45]. A consumption of 35-44 grams of ethanol per day is enough to increase the risk of BC by 
46% (95% CI = 1.33-1.61)[46-48]. Even though the promotion of moderate alcohol consumption in the 
prevention of cancer has been controversial, several hypotheses have been postulated in support of 
abstaining from alcohol. The specific molecular mechanisms underlying this correlation are still unclear, but 
it is known that excessive amounts of alcohol can be metabolized to acetaldehyde, interfering in the 
antioxidant defence system, in DNA synthesis and repair systems[49], as well as in the ability to suppress 
oestrogen-metabolising enzymes in the liver or by enhancing the aromatase liver activity[50-53]. High 
adherence to a Mediterranean dietary pattern has been associated with decreased CRC risk in several 
studies[37]. The potentially protective effect of MD may be related to lipid metabolism, the protection against 
oxidative stress, inflammation, and platelet aggregation, or the alteration of hormones and growth factors 
involved in BC pathogenesis[54], and/or to the potential contribution of other associated healthy behaviours 
in women who show closer adherence to a MD[42]. Furthermore, adherence to healthy dietary and lifestyle 
patterns may also be associated with improved survival post-diagnosis[55].

Dietary patterns or scores derived from mechanistic approaches have also been studied in association with 
CRC. For example, the dietary inflammatory index (DII) has been shown to be related to inflammatory 
markers[56] being consistently associated with an increased CRC risk[57]. Conversely, to the promoting role of 
inflammation, the Non-Enzymatic Antioxidant Capacity (NEAC) index has proven to be a useful tool to 
estimate the total dietary antioxidant capacity encompassing antioxidants and bioactive compounds present 
in the diet and their synergistic effects[58].

Concerning individual foods, a lower risk of CRC was noted with a higher consumption of fish and a 
reduced intake of red and processed meats. This protective effect was limited to fatty fish in BC[41]. Red and 
processed meats have been classified by the International Agency for Research on Cancer (IARC) as 
“carcinogenic” and “probably carcinogenic” to humans, respectively[59]. The exact mechanism by which 
meat has been related to cancer is unknown. However, the thermal formation of different carcinogens 
during cooking, such as HCAs and polycyclic aromatic hydrocarbons (PAHs), the endogenous N-nitroso 
compounds (NOCs) formation from haem iron, the generation of lipid and protein oxidation products, and 
the addition of NOCs to cured meats may be the underlying causes of this association[27,60,61]. In this regard, 
haem iron found in meat is related to the production of NOCs at the intestinal level and has been associated 
with the generation of aldehydes with cytotoxic and genotoxic potential[62]. PAHs are formed in a large 
variety of foods, including oils, grains, and vegetables, after applying a heat treatment for cooking (frying, 
baking, grilling, etc.) or processing. Among the different types of PAHs, benzo(a)pyrene (BaP) has been 
classified as carcinogenic to humans[63]. Nevertheless, given the ubiquity of PAHs in food and their presence 
as environmental contaminants, it is very difficult to assess to what extent the amount ingested from food 
may contribute to cancer development[64]. PAHs can be formed by pyrolysis of organic matter at high 
temperatures, by direct contact of lipid droplets with a heat source, by the smoke produced during cooking, 
or by the incomplete combustion of coal or wood in barbecues or grills[65,66]. The maximum levels of PAHs 
have been found in smoked foods and grilled meats[65]. HCAs have provided the strongest scientific evidence 
as cancer risk factors and are the only xenobiotic formed exclusively during the cooking process. HCAs are 
formed from creatinine, creatine, hexoses, amino acids and some dipeptides, which are present mainly in 
the muscles of meats and fish[67,68]. As the formation of HCAs increases with temperature and with the 
browning degree of cooked food[69], cooking methods such as frying, grilling, or roasting lead to the 



Page 6 of 20 Ruiz-Saavedra et al. Microbiome Res Rep 2024;3:6 https://dx.doi.org/10.20517/mrr.2023.36

Figure 1. Schematic representation of the main characteristics of the Western diet and Mediterranean patterns that influence the risk of 
colorectal and breast cancers. Western diets are generally richer in fat, single sugars, processed foods, and red meat and have been 
associated with higher intakes of ethanol and xenobiotics derived from food processing. Ethanol can be metabolized to acetaldehyde, 
which impairs antioxidant defence systems and DNA synthesis and repair mechanisms of the host, and interferes with oestrogen-
metabolising enzymes and potentiates aromatase activity in the liver, thus increasing circulating free oestrogens. Xenobiotics have 
mutagenic, genotoxic, and cytotoxic potential. Mediterranean diet is characterized by higher consumption of vegetables, fruits, 
legumes, extra virgin olive oil, nuts, fish, and whole grains, which lead to a higher intake of polyphenols and fibres that decrease 
exposure to carcinogens by diverse mechanisms. Figure created with BioRender.com.

formation of higher amounts of HCAs than boiling, stewing, or braising[70]. Although most of the existing 
literature links the intake of these xenobiotics mainly with the risk of CRC, some recent studies have 
hypothesized that they could also influence BC risk by means of the accumulation of PAHs in breast 
adipose tissue and their interaction with the cellular oestrogen receptor[71].

Dietary fibre is a dietary component with the potential to decrease the carcinogenic power of ingestion. 
Consumption of high levels of fibre contributes to reduced exposure of the colon mucosa to carcinogens[72]. 
In addition, fibre acts as an absorbent gel in the faecal mass, making it more difficult for carcinogenic 
compounds to be incorporated into the organism[27,73].

GUT MICROBIOTA SIGNATURES IN THE ONSET AND PROGRESSION OF CANCER
Common features in the alterations of the gut microbiota
The interactions between gut microbiota and cancer onset and progression can be considered at three levels: 
primary, secondary, and tertiary interactions. Primary interactions refer to the direct association of the 
microbiota with the tumour microenvironment, by creating dysbiosis that promotes carcinogenesis. The 
secondary interactions involve the connection between members of the microbial community and changes 
in the tumour microenvironment in a given tissue/organ. The tertiary interactions are related to the effect of 
microbial communities on tumours located in different sites in the body[74].

�https://www.biorender.com/
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Dysbiosis is a common feature in CRC, and the “driver-passenger” theory has been proposed to explain 
how gut bacteria named “drivers” induce CRC by progressive damage of the epithelial DNA and then 
trigger tumorigenesis. In turn, these microorganisms also promote the proliferation of “passenger” bacteria 
by providing them with a suitable environment for proliferation[75]. The substitution of normal microbiota 
communities by opportunistic pathogen species is a significant and common signature in the gut 
microbiota of CRC patients. In addition to this, the microbial metabolome and some pro-carcinogenic 
functions of specific bacteria and fungi also align with the alterations in the microbiota composition. In this 
respect, alterations in the gut metabolome occur in the early development of CRC[76], and some lipids such 
as polyunsaturated fatty acids, secondary bile acids, and sphingolipids have been found to be elevated in 
patients with colorectal adenomas, a previous stage to CRC development[77]. It is also interesting to remark 
that Kim et al. found a stronger association between gut microbiota and metabolome in females compared 
to males[77].

The relationship between gut microbiota and BC is less known. Alterations in gut metagenomes have been 
reported in postmenopausal BC patients in which the presence of genes encoding for microbial LPS 
biosynthesis, beta-oxidation, and iron complex transport systems have been detected[78]. The pre-existence 
of gut microbiota disturbances has been correlated with an increased risk of BC metastasis[79]. Observational 
and in vitro studies support the relationship between gut microbiota and BC through the travel of 
metabolites produced by the gut microbiota into the blood to influence BC and immune cells[80]. Oestrogens 
are one of the metabolites that could be influenced by the gut microbiota. The estrobolome is defined as the 
collection of intestinal bacterial genes that can potentially metabolize oestrogens. The gut microbiota 
controls levels of oestrogens by producing glucuronidases that deconjugate oestrogens, converting them 
into active forms. This process could be altered by gut microbiota dysbiosis, thus affecting several 
conditions such as metabolic syndrome, endometriosis, polycystic ovary, fertility, and cancer, among 
others[81].

The connection between BC and CRC in women seems to be mediated by elevated levels of sex hormones, 
although this point is still controversial. Some researchers have identified an increased risk of CRC or the 
occurrence of adenomatous polyps in patients with a history of BC[26,82].

Colorectal cancer
The identification of gut microbiota signatures through CRC development is a challenging task that would 
need systems biology approaches for its development; this could be of interest for its application to the 
prevention of disease progression and for the potential discovery of new biomarkers. Despite the variable 
genetic basis of the disease, late-onset CRC, which is the most commonly detected, is highly influenced by 
environmental factors, such as lifestyle and diet[83,84]. Microbiological key signatures may vary according to 
the different stages of the disease, thus influencing its progression. In terms of microbial diversity, values of 
this parameter decrease when healthy patients are compared with CRC cases[85-88], and also shift when late 
CRC samples (Stages III and IV) are compared with early CRC samples (Stages I and II)[89]. CRC is 
accompanied by dysbiosis, and the presence of certain bacteria has been strongly associated with CRC 
development at any point of its progression. Among them, Escherichia coli (pks+), Enterococcus faecalis, 
Streptococcus gallolyticus (previously known as Streptococcus bovis), Bacteroides fragilis, Fusobacterium 
nucleatum or Parvimonas micra are frequently found increased in faecal and tumour CRC samples[85,86] 
[Figure 2]. Differences in the microbiota of patients according to the type of sample analysed should also be 
considered, i.e., biopsies or faecal samples. In this regard, paired samples from mucosal tumour tissue and 
surrounding non-tumour mucosa were similar in terms of microbial taxa and overall composition, 
according to various multiple cohort studies[89-92]. Moreover, a study by Flemer et al. revealed that the 
signatures detected in mucosa and tumour samples of CRC patients compared to samples from healthy 
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Figure 2. Schematic representation of the microbial group associations with CRC and BC. Differences in microbial composition and 
abundance are indicated according to the type of sample (stool, breast, or intestinal biopsies), the stage of cancer development, the 
molecular characteristics of the disease, and the approach/design of the study. The left side of the image shows breast microbiota 
profiles in different BC subtypes by 16S rRNA gene sequencing and pan-pathogen array (Pathochip array) and gut microbiota patterns 
associated with BC stage and prognosis by 16S rRNA gene and shotgun metagenomics. The right side shows differences in the intestinal 
mucosa microbiota detected by 16S rRNA gene sequencing, terminal restriction fragment length polymorphism, clone sequencing, and 
fluorescent in-situ hybridization analysis of the 16S rRNA genes for patients diagnosed with intestinal adenomatous polyps. Faecal 
samples were studied using 16S rRNA gene sequencing for patients diagnosed with HP and shotgun metagenomics and 16S rRNA for 
patients showing AP and high-risk adenomas (HRA: presence of high-degree dysplasia, tumours ≥ 10 mm, and/or presence of three or 
more adenomas of any size). Up or down arrows indicate higher or lower presence, respectively, of the microbial groups. The 
information represented has been obtained from studies showing significant changes in CRC[76,85,86,95-103] and BC processes[115-117,123,124]. 
AP: Adenomatous polyps; BC: breast cancer; CRC: colorectal cancer; ER: oestrogen receptor; FCR: fear of cancer recurrence; HER2: 
human epidermal growth factor receptor 2; HP: hyperplastic polyps; HRA: high-risk adenomas; PR: progesterone receptor; TNBC: triple-
negative breast cancer. Figure created with BioRender.com.

volunteers were still evident in faecal samples[93]. In spite of these findings, it is difficult to ascribe the cause 
of dysbiosis to one or more microorganisms. As right and left colon cancer present distinct molecular 
signatures, the location of the tumour can contribute to variations found in the gut microbiota among 
individuals. In this way, a differential higher presence of genera Fusobacterium, Escherichia, and 
Leptotrichia has been reported in the mucosa-associated microbiota of the left colon, whereas Prevotella, 
Selenomonas, and Peptostreptococcus were more abundant in samples from right colon[94]. Nevertheless, 
many studies lack information about the anatomical location of tumours, which increases the difficulty of 
comparing them and reaching sound conclusions.

The earliest stages of mucosa alterations, before reaching the status of CRC, are characterized by the 
presence of a certain grade of gut mucosa damage and/or alterations, such as the presence of polyps. Some 
of the alterations showing lower malignant potential are classified as hyperplastic polyps (HP), which 
belong to the serrated neoplasia pathway. When the faecal microbiota of healthy individuals was compared 
with that of subjects showing HP, an increased abundance of genera Prevotella and Anaerostipes and 
decreased abundance of the order Enterobacterales and the genus Coprobacillus was found in the HP group 
with respect to control samples[95,96].

https://www.biorender.com/
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The presence of adenomatous alterations, developed through the adenomatous pathway, represents a 
medium risk for the development of CRC, and therefore, the surgical removal of adenomas after their 
diagnosis is a desirable prevention procedure. In patients showing adenomatous polyps (AP), a decreased 
and increased relative abundance of faecal levels of phyla Bacillota (previously known as Firmicutes) and 
Fusobacteriota, respectively, was detected compared with faecal samples from healthy controls[97]. This was 
consistent with the observations by Hale et al., who reported a differential increased abundance of Bacillota 
and the Veillonella genus in faeces from the control group. Moreover, the adenoma group of this study 
showed a differentially increased abundance of the phylum Bacteroidota and Bilophila, Sutterella and 
Mogibacterium genera[98]. In contrast, the study carried out by Shen et al. in mucosa samples reported a 
lower abundance of Bacteroidota and a higher abundance of Pseudomonadota (former Proteobacteria) in 
adenoma cases as compared to the control group. At the genus level, case subjects showed an increased 
abundance of Dorea sp. and Faecalibacterium sp., and lower proportions of Bacteroides sp. and Coprococcus 
sp. than controls[99]. Several members from the class Clostridia and some genera such as Cronobacter, 
Pseudomonas, and Ruminococcus were found to be reduced in the stools of individuals with conventional 
adenomas compared to faeces from controls[96,100,101]. Furthermore, the study by Yachida et al. revealed nine 
species shifted in faecal samples of subjects with multiple AP. These include enriched levels of Atopobium 
parvulum, Fusobacterium nucleatum subsp. nucleatum, Schaalia odontolytica, Phascolarctobacterium 
succinatutens, Selenomonas sputigena, and Oleidesulfovibrio vietnamensis, and a decrease in Bifidobacterium 
longum subsp. Bifidobacterium longum subsp. longum, Lachnospira multipara, and Lachnospira eligens as 
compared to samples from healthy individuals[76]. Interestingly, similar shifts were found by Saito et al., who 
found a significant increase in Atopobium, Parvimonas, and Fusobacterium in mucosal colorectal adenoma 
samples as compared to healthy mucosa samples[102].

As malignant transformations occur, AP may turn into high-risk adenomas (HRA). Faecal samples of 
individuals presenting HRA displayed an increased relative abundance of Erysipelotrichaceae and the genus 
Blautia[95]. Indeed, this genus was also found enriched in advanced adenoma faecal samples in another study 
conducted by Xu et al., along with increased abundances of Bifidobacterium, Dorea, Sutterella, and 
Clostridium whereas Parabacteroides and Coprobacter were enriched in controls[103].

An increased risk of CRC is also associated with the development of less frequent sessile serrated adenomas 
(SSA) from the serrated pathway. Stools from subjects with SSA showed a decreased abundance of class 
Erysipelotrichia compared to samples from control subjects[96].

On the other hand, the presence of aberrant crypt foci (ACF) is the first histological alteration of the 
intestinal mucosa. Although these elements are not currently considered in clinical diagnosis, their 
evolution is being followed in CRC intervention studies with experimental animals[104]. Some of these studies 
show that the oral administration of probiotic strains such as Lacticaseibacillus rhamnosus or Butyrivibrio 
fibrisolvens attenuates the formation of ACF in experimental animals[105,106]. In a similar way, possible early 
microbiota alterations associated with ACF in humans could constitute an interesting field of research in 
the area of CRC.

Shifts in the microbiota abundance at the early stages of development of intestinal mucosal damage may be 
the cause of a plethora of changes in human metabolism, thus influencing health. For example, a 
disturbance in the gut microbiota composition could be associated with lower faecal SCFA concentrations, 
finally decreasing the production of IgA[88]. Additionally, the activity of gut microbiota is involved in the 
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production of some bile acids such as deoxycholic, glycocholic, and taurocholic acids, which have been 
found to increase in CRC-related conditions[76,107,108]. Moreover, in CRC-diagnosed patients, higher faecal 
concentrations of aromatic and branched-chain amino acids or polyamines such as putrescine and 
cadaverine are usually associated with some microbial groups[76,107-109]. Furthermore, certain bacteria are 
producers of toxic metabolites or genotoxins[110]. Various studies have found differential associations 
between microbes and metabolites in CRC for members of the Bacteroidota, Bacillota, and Actinomycetota 
phyla or even families such as Enterobacteriaceae[77,111]. In this regard, studies on how faecal microbiota and 
metabolites are intertwined at the early stages of intestinal mucosa damage are still scarce.

Breast cancer
In the last years, the microbiota has gained prominence as an important regulator of tumour incidence and 
progression as well as tumour microenvironment in BC, but it is currently unknown whether cancer 
pathology leads to alteration in the gut microbiota or whether dysbiosis in itself is the carcinogenic factor. 
The study of the interaction between the metagenome and the host genome has been the subject of 
investigation and could be instrumental in greatly improving the mechanistic understanding of variable 
outcomes among different patients. Unfortunately, the role of microbiota in BC is only starting to be 
revealed and current data is controversial because the different clinical studies have been performed with a 
small sample size and, in most of the cases, are cross-sectional. In addition, clinical studies present patients 
with different ages and tumour stages and sometimes there is not a control group, which frequently makes 
the results not comparable.

Regarding the differences in gut microbiota between women with and without BC, the current data is not 
clear and the availability of clinical studies is limited. Goedert et al. reported that postmenopausal women 
with BC have altered faecal microbiota composition and oestrogen-independent lower alpha diversity[112]. 
The opposite results were indicated by Zhu et al., who observed that BC patients displayed higher 
microbiota richness and diversity; however, it is important to note that the two above clinical studies have 
not considered the different types of cancer[78]. A recent observational study has not found gut microbiota 
differences in women with and without BC from Ghana[113]. Likewise, it has also examined the gut 
microbiota from postmenopausal women with ER+/HER2- BC and postmenopausal controls, and no 
differences were observed in intestinal microbiota richness, diversity, and composition[114]. The microbiota-
gut-brain axis in BC patients has also been recently studied. It has been observed that women diagnosed 
with invasive BC and associated with fear of cancer recurrence have a different microbial profile 
characterized by lower microbial diversity, higher relative abundance of Bacteroides, and lower relative 
abundance of Lachnospiraceae and Ruminococcus[115] [Figure 2].

It seems that the intestinal microbiota is altered in advanced BC and that alterations in the microbiota may 
affect BC progression. Luu et al. concluded that gut microbiota differs according to the type of tumour and 
BMI. They indicated that patients with advanced stage of BC had increased numbers measured by qPCR of 
Blautia coccoides and Clostridium leptum clusters, as well as Faecalibacterium prausnitzii, compared with 
patients with low-grade cancer[116]. It has been indicated by shotgun metagenomics that healthy volunteers 
and pre and post-treatment samples of patients with low risk or early BC (mostly RH+ patients) were 
enriched in Butyrivibrio crossotus and Collinsella aerofaciens but on the contrary Bacteroides uniformis, 
Enterocloster bolteae, Parabacteroides merdae, Enterocloster asparagiformis, Roseburia intestinalis, 
Barnesiella intestinihominis and Bilophila wadsworthia were associated with worse BC prognosis[117].

When considering microbiota dysbiosis and the association of the microbiota with BC development, the 
breast’s microbiome also has to be taken into account. Evaluating the gut and the breast microbiota in the 
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same patient is very useful and can provide associations between the microbiota and BC systematically. The 
human breast is not sterile and the microorganisms could come from the gut, the skin, via the nipple-
areolar orifices, nipple-oral contact via lactation, and/or sexual contact[118,119]. The comparison of breast 
tissue from invasive and benign BC and healthy volunteers also revealed differences in their 
microbiota[120-122]. It is quite consistent between different studies that the dominant bacterial phyla in breast 
tissues are Pseudomonadota, followed by Bacillota and Actinomycetota, but as it occurs with the gut 
microbiota, opposite bacterial profiles have been reported between patients with and without BC in 
different studies. Two recent works have explored the differences in local microbiota between different 
molecular types of BC (luminal A, B, HER2+, and TNBC) and identified different bacterial profiles 
associated with each type of BC[123,124]. TNBC was, for example, more abundant than the other types of BC in 
phyla Euryarchaeota, Cyanobacteria, and Bacillota[124]. Cross-sectional studies cannot determine causality, 
and in addition, the comparison of breast microbiome among clinical studies is difficult because of 
differences in tissue source, the experimental protocols used for DNA extraction, and microbiota analysis. 
However, standardizing this type of study could help to improve our knowledge of the relationship between 
microbiota and BC and open the possibility of assessing prognoses and identifying bacteria associated with 
procarcinogenic stages that could allow suggesting breast microbial interventions (diet, antibiotics, selective 
antibiotics...) as an adjuvant to the standard therapies.

There is emerging evidence suggesting that the gut microbiota may also impact BC and its medical 
treatment by mediating drug efficacy and toxicity. The estrobolome, as indicated before in this review, may 
contribute to explaining the relationship between gut microbiota and hormone-dependent BC. Oestrogens 
can influence the gut microbiome, and in its turn, the microbiota can significantly affect oestrogen levels 
through microbial β-glucuronidase and β-glucosidase enzymes able to deconjugate oestrogens in the 
intestine, enabling these hormones to bind to receptors of eukaryotic cells and leading to the subsequent 
physiological downstream effects[125]. Gut microbiota genera that can express β-glucuronidases, include 
Alistipes, Bacteroides, Bifidobacterium, Citrobacter, Clostridium, Collinsella, Dermabacter, Edwardsiella, 
Escherichia, Faecalibacterium, Lactobacillus, Marvinbryantia, Propionibacterium, Roseburia, a n d  
Tannerella. Additionally, it has been reported that a decrease in the gut bacterial diversity could lead to 
oestrogen release and finally an increase in the BC risk[126]. Microbial β-glucuronidase could also 
deconjugate xenobiotics and xenoestrogens, increasing the time they remain in the organism[127]. The 
influence of all these known factors, including the complexity of the microbiota, supports the suggestion 
that these types of cancers are initiated and developed by multiple pathophysiological factors. Radiotherapy, 
chemotherapy, and immunotherapy can also modify the microbiota, and at the same time, the gut 
microbiota can metabolize medical drugs in systemic treatments of cancer, modulating the immune 
response to treatment and influencing the development of side effects of therapies. However, investigation 
in this way is still scarce[115,128].

MICROBIOTA AND DIET INTERACTIONS IN THE INITIATION AND PROGRESSION OF 
CANCER
Recent studies have evidenced a high correlation among habitual diets, microbiome composition and its 
associated metabolome, health and disease markers, and host metabolism[129-131]. Generally, diets that show 
higher diversity and higher scores in health parameters, such as the MD, display modified ratios of specific 
bacteria, with elevated levels of microorganisms producing SCFAs and lower cancer risk. In contrast, less 
healthy diets, such as Western patterns, promote specific bacteria that may affect carcinogenic pathways, 
reduce intestinal epithelial immune defences, and alter intestinal permeability[132]. Some microbial groups 
have been positively associated with healthy plant-based diets and negatively with metabolic-risk markers, 
which mostly include butyrate producers such as F. prausnitzii, Prevotella, Roseburia hominis, 
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Agathobaculum butyriciproducens, and Anaerostipes hadrus, as well as Akkermansia muciniphila, among 
others[129,131]. Notably, De Filippis et al. reported that microbes poorly characterized until now drive the 
strongest associations between microbiome and habitual diet, which can be mostly due to the difficulty in 
cultivating these microorganisms[129]. This emphasizes the need for culturomics and metabolomics 
approaches to improve our knowledge of these potentially beneficial uncultivable microorganisms. In 
contrast, some microbial species were positively associated with less-healthy plant-based and animal-based 
diets and include, among others, several Clostridium species, Mediterraneibacter gnavus and Flavonifractor 
plautii, with the latter two also associated with CRC[133,134].

The gut microbiome plays a key role in the interplay between diet and host health. The gut microbiome and 
the human intestinal immune system are interconnected. In a healthy status, pathogens are suppressed or 
remain compartmentalized in the gut, and the intestinal barrier efficiently prevents the passage of toxic 
components from the intestine to the general circulation. On the other hand, a low inflammatory and 
hyporesponsive environment is generated, and there is a downregulation of reactive immune T-cells[135-137].

A role as preventive agents against cancer has been attributed to some dietary compounds, among which 
are fibres and phytochemicals such as phenolic compounds/polyphenols. Fibres are indigestible complex 
carbohydrates that represent a major component of plant-based diets. When these compounds reach the 
colon, some microorganisms of the gut microbiota are able to use them as fermentable substrates, 
producing SCFAs. Acetate, propionate, and butyrate interact with intestinal epithelial cells, can cross the 
epithelial layer and interact with immune cells of the lamina propria, and can enter into systemic circulation 
to reach other tissues. SCFAs can serve as cell energy sources and display anti-inflammatory properties 
through G protein-coupled receptors (GPCRs) and through the increase of histone hyperacetylation, which 
promotes the immune-mediated apoptosis of cancer cells. In the intestine, SCFAs participate in microbial 
cross-feeding interactions, promoting beneficial modifications of the intestinal microbiota. Moreover, 
dietary fibres contribute to shortening the intestinal transit time and sequestrating dietary toxic 
molecules[138,139], which helps to decrease intestinal toxicity. Several meta-analyses suggest that individuals 
consuming higher amounts of dietary fibre may benefit from a reduction in the incidence of CRC and a 
small reduction in the incidence of BC[140].

Most dietary phytochemicals are present in nature as glycoconjugates and can be transformed into 
aglycones through deglycosylating enzymes produced by the intestinal microbiota, then increasing their 
biological activity and bioavailability. Deconjugated compounds can be absorbed or be further metabolized 
by the gut microbiota into other products. This biotransformation of phenolic compounds is subjected to a 
high interindividual variability due to differences in the intestinal microbiota composition, which then 
influences the final effect of phenolic compounds on the host[139]. Soya isoflavonoids are transformed into 
aglycones and further metabolized to products such as equol, a compound derived from daidzein[141] that 
presents the greatest antioxidant activity among isoflavones. The best-characterized microorganism to date 
involved in the production of equol is Adlercreutzia equolifaciens (family Eggerthellaceae, class 
Coriobacteriia, phylum Actinomycetota)[142]. Ellagitannins can be transformed into urolithins, compounds 
that display enhanced biological activity with respect to the untransformed ones[143]. Some species of the 
genus Gordonibacter (family Eggherthellaceae) have been found to be related to the production of urolithins 
from ellagic acid[144]. Plant lignans are mostly converted into mammalian enterolignans enterodiol and 
enterolactone[145]. These derived phenolic compounds have a variable capacity to inhibit angiogenesis and 
inflammatory factors, which is related to their anticancer properties[139]. The conversion of lignans occurs in 
several steps in which diverse species from Bacteroides, Clostridium, Butyribacterium, Eubacterium, 
Peptostreptococcus, and Blautia are involved. Members of Eggerthella lenta and Eggerthella sp., Clostridium 
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scindens, and Ruminococcus sp. carry out the final steps in the formation of enterodiol and 
enterolactone[146]. Lignans and soya isoflavonoids belong to the phytoestrogens group of compounds and 
can exhibit estrogenic and antiestrogenic activities in humans depending on the levels of the human 
hormone estradiol[147]. High intake of lignans and isoflavones have been associated with a reduced risk of 
BC, although in the case of soy, evidence suggests this consumption must occur preferentially early in life, 
during childhood and/or adolescence[148]. Nevertheless, some in vitro studies have reported an inhibitory 
effect of the isoflavone genistein on the aromatase inhibitor Fadrozole, a pharmacological agent used for the 
treatment of oestrogen-responsive BC[149]. In this regard, the report of some controversial results relating 
food or soy supplement consumption and markers of BC[150,151] prompted more observational studies 
supporting the positive effect of soy isoflavone intake for BC post-diagnosis[148,152]. The study of the role 
played by diet in BC has an added difficulty, because the mass effect of the two microbiotas, from gut and 
breast, should be considered. In the meantime, more studies are needed to disentangle the microbiota-
mediated association between BC and CRC in women.

NOCs, HCAs, PAHs, and acrylamide that could be present in diet after cooking and processing foods[27] can 
promote modifications in the intestinal microbiota profiles. The intestinal microbiota can metabolize and 
transform them, increasing or decreasing their toxicity to a variable extent depending on the microbiota 
composition, the amount and type of compound, other components of diet interacting with microbiota and 
xenobiotic, and the detoxification mechanisms of the host (cytochrome P450 enzymes superfamily)[27]. 
Moreover, although dietary ethanol does not enter direct contact with the microbiota, it can unfavourably 
modify it through the activation of gut microbial acetate dissimilation pathways[153]. Dietary xenobiotics can 
alter the microbiota composition and its metabolic activity as well. For a more comprehensive review of this 
subject, we have recently outlined the interactions of xenobiotics derived from food processing with the 
intestinal microbiota in the context of CRC[27].

In spite of recent advances in this matter, most microorganisms and microbial biochemical reactions 
mediating the transformation of dietary bioactive compounds and xenobiotics by the gut microbiota remain 
unknown, which represents a challenging field of research connecting the human microbiota, diet, and 
prevention and treatment of BC and CRC. The role played by micronutrients as phenolic compounds and 
phytochemicals and dietary carcinogens has proven difficult to study due to the small quantities of these 
agents in human diets. In this regard, integrated research including experimental models and germ-free 
mice could be useful in the study of the role that diet, especially in the case of micronutrients and 
carcinogens, plays in the alteration of the microbiota and its connection with CRC and BC.

Translational aspects
Diet is one of the main modulators of gut microbiota. SCFA and other microbial metabolites are 
synthesized by members of the gut microbiota from different dietary sources, which determine the 
differential growth of certain microbial populations. Dietary patterns and specific food and nutrients exert 
pleiotropic systemic effects in the body, also influencing the physiology and immune system of the host. 
Therefore, dietary interventions focused on modulating the gut microbiota could contribute to preventing 
the development of cancer, slowing down its progression, and/or enhancing the efficacy of anticancer 
therapies. Possible translational approaches in this way can be directed to interventions with diets with low 
DII, and high NEAC index. Specifically, more translational research is needed to know the short-term, 
medium-term, and lasting effects of the reduced intake of dietary xenobiotics and the increased 
consumption of fibres and phytochemicals in CRC and BC. The use of probiotics, prebiotics, and 
postbiotics may have a protective role in cancer prevention[21]. Moreover, addressing dysregulated 
microbiota-gut-brain axis communication is an area of expansion for research and personalised cancer care, 
including personalised or adapted diets and the potential use of psycobiotics[34,154].
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CONCLUSION
The scientific evidence underlined in this review on the interconnection between diet and the intestinal 
microbiota in the evolution of precancerous lesions towards BC and CRC points to the need for deeper 
studies to design dietary strategies for cancer prevention. More studies, including systems biology and the 
integration of experimental models and germ-free mice, are required for the study of the role of the less 
abundant dietary components as carcinogens and micronutrients in the development of BC and CRC. It is 
necessary to decipher the microbiota-mediated association existing between BC and CRC in women, 
considering the two interacting microbiotas from gut and breast. Most microorganisms and biochemical 
pathways that mediate the transformation of dietary bioactive and harmful compounds by the gut 
microbiota remain unknown. In spite of variations found in some microbial populations during the 
progression of mucosal lesions to cancer, its true role in the development of the disease is not clear. It seems 
then reasonable to conclude that neoplasia may be triggered by the net influence of a wide variety of 
microbes that provide a microclimate suitable for the malignant change when operating in genetically 
susceptible and environmentally inducing conditions. Therefore, there is an urgent need to improve our 
knowledge in this field in order to design strategies for the treatment and prevention of BC and CRC 
through the binomial diet-microbiota. Current advances in omics techniques (Next Generation Sequencing, 
culturomics, and metabolomics) and bioinformatics are available to address this complex task.
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