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Abstract
Over the last few decades, synchrotron radiation has experienced a flourishing growth, fueled by cutting-edge 
spectroscopic techniques that have empowered its remarkable ability to probe down to the atomic level. Indeed, 
this advancement has been inspiring, unlocking powerful insights and capabilities in the realm of electrochemistry 
community. This perspective showcases recent ground-breaking efforts and remaining challenges with respect to 
X-ray spectroscopy, as well as their implications for ongoing research.
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Synchrotron radiation, electromagnetic emission from relativistic charged particles traveling along a circular 
trajectory, was first discovered in the late 1940s[1]. Once known as a notorious by-product in high-energy 
physics, synchrotron radiation has come a long way and is now on the cusp of a new era - an unprecedented 
brilliant, tunable and short pulsed light source[2,3]. Over the enduring decades, synchrotrons have 
revolutionized our ability to probe and understand the matter with the motto “making visible the 
invisible”[4,5]. This perspective aims to provide an overview of synchrotron-based X-ray spectroscopic 
interrogation in the realm of electrochemistry, which has inspired accumulative research outputs in this 
community spanning classical electrochemistry, electrocatalytic and spectroscopic aspects. An additional 
note is that we focus exclusively on the synchrotron-based studies here, and we refer the reader elsewhere 
for other independent excellent contributions.
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CLASSICAL ELECTROCHEMISTRY: ELECTRICAL DOUBLE LAYER
In electrochemistry, a typical scenario involves an electrified surface in contact with an electrolyte solution 
[Figure 1A]. The electrical double layer (EDL), also known as the Stern layer and the diffuse layer, is a 
micro-region of a few nanometers in thickness and is spatially concealed between the two bulk phases of 
solid and liquid[6]. For the imbedded interface, there is increasing consciousness that its molecular-level 
characteristics, to a large extent, underpin the critical functions and properties relevant in many 
electrochemical processes, while these characteristics remain hitherto elusive. Electron-yield X-ray 
absorption (XAS) and X-ray photoemission spectroscopy (XPS) offer a promising solution to this old yet 
current enigma, benefiting from their inherent surface sensitivity. By virtue of instrumental innovation, 
Velasco-Velez et al. pioneered the extension of soft XAS (sXAS) to operando electrochemical measurements 
in 2014[7]. They applied a modulated (piezo-actuated chopped) incoming X-ray and lock-in amplifier to 
extract the neat total electron yield (TEY) signal under electrical bias and experimentally identified the 
evolved water orientation once the electrode potential deviates from the potential of zero (free) charge 
(pzfc) [Figure 1B and C]. This finding serves as a paradigm for the argument on the interfacial electrical 
field-driven water reorganization behavior, which accounts for large kinetic pH effect in hydrogen evolution 
reaction[8]. In alkaline media, the significant cathodic shift of electrode bias with respect to the pzfc leads to a 
stronger interfacial electric field and, therefore, an increased water reorganization barrier to accommodate 
charge transfer. The initial XPS studies were conducted using immersed electrodes under static conditions, 
with a particular focus on the specific adsorption of ions at the inner Helmholtz plane[9,10]. The investigation 
of bias-dependent probing of EDL was not accessible until the introduction of the “dip and pull” method 
[Figure 1D][11]. The creation of a stable nanometer-thick electrolyte layer on the surface of the working 
electrode showcases compatibility with in-situ measurements and provides direct access to the potential 
drop within the EDL and the pzfc by means of ambient pressure XPS [Figure 1E-H][12]. Here, it is worth 
pointing out that the co-presence of cations/anions in alkaline/acidic electrolytes significantly complicates 
the  EDL of  in teres t .  Pr ior  s tudies  emphas ize  the  non-cova lent  in terac t ions  wi th  
reactants/intermediates[13-16], while Li et al. very recently argued that the near surface concentrated Na+ 
exerts noticeable statistical effects on the hydrogen bond network connectivity in the EDL[17]. Hitherto, the 
critical role and diversity between various ions remain not well documented. Future work will continue 
devoting to these remaining details (partially solvated alkaline cations, cation-surface distances and 
concentrations), and we anticipate correlative X-ray-based techniques, such as surface X-ray scattering[18] 
and sXAS, would provide additional spectroscopic evidence to shed light on this topic and offer further 
insights.

MODERN ELECTROCATALYSIS
Recent decades have witnessed a remarkable flourishing of electrocatalysis that extends beyond classical 
electrochemistry. X-ray absorption fine structure (XAFS) spectroscopy, with its unique combination of both 
element specificity and local structure sensitivity[19], experiences highly productive advancements driven by 
the growing demands of nanocatalysts for electrochemical applications. It provides comprehensive insights 
into electronic state and local structure of reactive centers, including quantitative information at the atomic 
level with respect to the photo-absorbing atom, i.e., near-neighbor species (the accuracy of determining the 
atomic number Z, ±5 or so) and interatomic distance, symmetry and coordination number [Figure 2A]. 
Particularly, the spectral characteristics bring new opportunities to build on progressive guidelines for 
predictive activity and rational design of target catalysts, in striking contrast to the sophisticated theoretical 
ones. For instance, Huang et al. developed experimental Sabatier plot for Pt-alloy oxygen reduction reaction 
(ORR) catalysts based on tangible descriptors of strain and asymmetry factor[20]. Besides, the XAFS 
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Figure 1. Imbedded interface-the electrical double layer. (A) schematic of the classical Gouy-Chapman-Stern model. The IHP, OHP and 
diffuse layer are indicated. The potential φ is shown with respect to the distance from the surface. The yellow and purple denote the 
cations and anions, respectively; (B) schematic of the modulation setup consisting of piezo-actuated chopped incoming X-ray and 
lock-in amplifier to extract neat TEY XAS signal under electrical bias; (C) the bias-dependent TEY O K-edge NEXAFS spectra of water 
collected at the Au electrode. The intensified pre-edge peaks at around 535 eV under negative bias (-20, -60 mV vs. Ag) fingerprint the 
SD orientation of water molecules (single donor parallel and perpendicular toward the gold surface), namely the dangling hydrogen 
bonds. These figures are quoted with permission from Velasco-Velez et al.[7]; (D) schematic of the “dip and pull” setup for ambient 
pressure XPS measurements. WE, RE, and CE correspond to the working electrode, reference electrode, and counter electrode, 
respectively; (E and F) normalized bias-dependent N 1s and O 1s core-level peaks collected in KOH aqueous solution containing a 
spectator molecule pyrazine; (G) double-layer capacitance as a function of applied potential; (H) spectral broadening of liquid phase 
LPPY N 1s and LPW O 1s components as a function of applied potential. The pzfc of +160 mV, +141 mV extracted from the minimum of 
indicated N 1 s, O 1s V-shaped plots aligns well with that (+123 mV) of a double-layer capacitance method. This figure is quoted with 
permission from Favaro et al.[12]. IHP: Inner Helmholtz plane; OHP: outer Helmholtz plane; XAS: X-ray absorption; TEY: total electron 
yield; XPS: X-ray photoemission spectroscopy; NEXAFS: near-edge X-ray absorption fine structure.

technique is completely compatible with in-situ/operando studies. Measurements under realistic working 
conditions empower us to monitor the potential-driven valence oscillation[21] and dynamic active sites 
(phase transformation[22], metal-ligand distortion/displacement[23], etc.), propelling the fundamental 
understanding to new heights. We refer the reader to excellent reviews on the utilization of various in-situ 
electrolyte cells[24], which represent an important technical aspect of the applicability of X-ray techniques 
and accurate data acquisition under working conditions. Achieving satisfactory signal-to-noise ratios in 
XAFS spectra often necessitates the use of high catalyst loadings, which, in turn, introduce significant 
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Figure 2. Hard XAS/XES for electrocatalysts characterization. (A and C) representative energy level diagrams depict the origin of the 
spectral features. The XAS involves the excitation of core-level electron to the unoccupied states or into the continuum, serving as a 
probe of the unoccupied orbitals of chemical species and local atomic structure. In contrast, the XES monitors the decay of core holes 
(fluorescent X-rays associated with electron from higher-lying orbitals decay to fill the core hole) and, therefore, probes the occupied 
valence states in an atom-specific projection; (B) in-situ Co K-edge XANES study on CoNC and CoNOC during oxygen reduction 
reaction operation. Comparative study reveals the stable and rigid in-plane embedded Co1Nx moiety and the flexible edge-hosted Co1N2 
sites. The observed changes in the XANES spectra are primarily dictated by potential-driven structure evolution, whereas the adsorption 
of oxygenated intermediates exerts only a negligible effect. These figures are quoted with permission from Hu et al[27]; (D) comparison 
of in-situ Kβ mainline XES spectra recorded on DW21 catalyst in N2-saturated 0.5 M H2SO4 at OCV and 0.2 V vs. RHE, along with 
corresponding fit results. The inset shows a magnified view of the Kβ’ region; (E) the time course of applied bias in the in situ XES 
measurements, whereby each potential hold lasted 10 min; (F) Average spin states at each corresponding potential. These figures in 
(D-F) are quoted with permission from Saveleva et al.[31]; (G) valence-to-core XES of various chromium-based compounds exhibiting 
sensitivity of the Kβ’’ feature to the light atom identity (upper); Intensity and energy of Valence-to-core XES correlates to protonation 
state of ligands in manganese dimers (below). These figures are quoted with permission from Cutsail et al.[33]; (H) valence-to-core X-ray 
emission spectra of Pt foil (left) and Pt3Ni (right) collected at the Pt L3-edge. The energy difference between the resonant inelastic 
scattering (RIXS, blue dash line) and the elastic scatting (ES, green dash line) is labeled for each sample, with the full width at half 
maximum of the inelastic peaks summarized in (I). These figures are quoted with permission from Chen et al.[34]. XAFS: X-ray absorption 
fine structure; XANES: X-ray absorption near-edge structure; XES: X-ray emission spectroscopy; OCV: open circuit; RHE: reversible 
hydrogen electrode; XAS: X-ray absorption.
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limitations in terms of ion and mass transport[25]. In light of this, the author suggests an appropriate catalyst 
layer thickness while also adopting the common practice of multiple scans to improve data acquisition. 
Moreover, the author would like to reiterate that the behavior of reactive species on surfaces can hardly be 
captured by conventional XAFS measurements owing to their extremely short lifespan within the timescale. 
This argument is solidly supported by recent publications on prototypical single-atomic Co-N-C 
electrocatalysts[26,27]. The comparative in-situ Co K-edge X-ray absorption near-edge structure (XANES) 
spectra of CoNC (in-plane embedded Co sites) and CoNOC (edge-hosted cobalt sites) unequivocally reveal 
that the spectral change during ORR operation is primarily dictated by potential-driven structure evolution, 
whereas the adsorption of oxygenated intermediates exerts only a negligible effect [Figure 2B]. As far as we 
are concerned, the issue on a holistic view of the reaction process can be best addressed by the correlative 
infrared/Raman spectroscopy[28,29], which offers complementary information to XAFS study.

Commissioning third/fourth-generation synchrotrons demonstrate unique opportunities to advanced 
spatial and energy-resolved spectroscopic techniques. Heterogeneous electrocatalysts are inherently non-
uniform, where the nanoscale variations in atomic structure, composition, and accessibility do impact their 
reactivity. We highlight recent insights into site-specific reactivity in electrocatalysis by conducting high 
spatial-resolved studies instead of ensemble-averaged measurements. Remarkably, Mefford et al. resort to 
operando scanning transmission X-ray microscopy (STXM) to disentangle the sequential dehydrogenation 
process from β-Co(OH)2 to β-CoOOH through the single platelet particle during the oxygen evolution 
reaction operation[30]. To date, the compositional encyclopedia of electrocatalysts mostly encompasses the 
transition metal-based systems. Direct probing of metal d-states is of immense significance and has long 
been plagued by either forbidden dipole electronic transition or core-hole lifetime broadening of 
conventional XANES. In contrast, X-ray emission spectroscopy (XES) emerges as a promising alternative to 
provide complementary information with respect to the electron structure (local charge- and spin-density) 
and local environment of the emitting species via monitoring the intensity of a fluorescence line associated 
with a specified excited state decay process using a narrow energy resolution [Figure 2C]. A notable 
application of this method is demonstrated by Saveleva et al. through operando Kβ1,3 XES, where they 
provide compelling evidence of the decrease in the average spin state of iron atoms during ORR 
[Figure 2D-F][31]. Additionally, the spinoff valence-to-core (VtC) emission lines, corresponding to 
de-excitation from occupied valence states to the nascent core-hole, offer particular insight into the frontier 
orbital populations within a molecular orbitals picture[32]. In this context, its sensitivity to ligand identity 
(i.e., C, N, O, or F) and protonation state (O2-, OH-, or H2O) is of great interest[33] [Figure 2G]. Chen et al. 
experimentally identified the shift of Pt d-band centroid away from the Fermi level upon Ni alloying, based 
on the energy difference between the resonant inelastic scattering and the elastic scatting[34] 
[Figure 2H and I]. Currently, the metal-enzyme systems are most frequently investigated[35,36], and the 
characterization on artificial electrocatalysts has not kept pace. Nevertheless, it is foreseeable that the new-
emerging precision synthesis would soon fuel a race towards the scope extension. Last but not least, the 
increased brightness of synchrotron sources comes with the potential risk of damaging the samples under 
X-ray beam irradiation. To examine the radiation damage, it is advisable to record and compare the spectra 
under various experimental conditions, such as different photon fluxes, beamsizes, and sampling times. To 
mitigate the damage effects, common practices may include time-resolved techniques, such as quick-XAFS 
(QXAFS) and energy-dispersive XAFS/XES for data recording.

OUTLOOK
Modern electrochemical cells are increasingly dependent on the membrane electrode assembly-based 
electrodes, which no longer stick to the ubiquitous solid-liquid interface in the past. Instead, there is a 
growing demand for deep insight into the new-emerging solid/polymer/gas interface. Synchrotron-based 
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X-ray spectroscopies are expected to be progressive and continue to inspire scientists for interdisciplinary 
research today as they did in the early 20th century.
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