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Abstract
The honeycomb iridate Na2IrO3, as a candidate for the Kitaev model, has drawn increasing attention in recent years. 
It is a rare example of a strongly correlated, topologically nontrivial band structure that may have protected 
quantum spin Hall states. The nature of its intriguing insulating phase and magnetic order is still under debate. In 
the present work, we combine low-temperature scanning tunneling microscopy/spectroscopy and density 
functional theory calculations to show that Na2IrO3 exhibits a band gap of 420 meV at 77 K, indicating a novel 
relativistic Mott insulator rather than Slater-like states. In addition, it is demonstrated that the Ir-O-Ir bonds and 
the subtle local density of states variation of Ir atoms induced by spin correlations can be imaged in real space in 
ultra-high resolution utilizing a spin-polarized oxygen-functionalized scanning tunneling microscopy tip. The direct 
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observation of the zigzag Ir-O-Ir bonds at 77 K strongly dictates the zigzag magnetic ordering below TN ≈ 15 K 
because of the strong spin-orbit interactions that lock the lattice and magnetic moments.

Keywords: Iridate, scanning tunneling microscopy, strong-correlated materials, high-resolution imaging, spin-
correlation

INTRODUCTION
The A2IrO3 (A = Na, Li, etc.) honeycomb iridate is among the most debated iridate compounds, with the 
Na2IrO3 being especially interesting. A Kitaev-Heisenberg (KH) magnetic ground state[1-3] and a quantum 
spin liquid (QSL) phase[4-6] have been proposed in this compound. This material is expected to possess a 
topologically nontrivial band structure with protected metallic surface states[7-9]. Specifically, a quantum spin 
Hall (QSH) state has been predicted in the stacked 3D configuration of Na2IrO3

[7,8]. Experimental studies 
have suggested that Na2IrO3 is a relativistic Mott insulator[10-12]. However, another study indicated that it is a 
Slater insulator[13]. The subsequent discovery of the zigzag-type magnetic order[3,4,14] also challenges the KH 
model. So far, numerous modifications of this model have been proposed[15-17], accompanied with extensive 
experimental efforts to adjust the relevant materials to the QSL ground state near the Kitaev limit[18-22]. 
Despite the partial success of the previous investigations, supporting experimental evidence remains lacking 
for the presence of the Kitaev ground state, spin liquid phase and the topologically nontrivial band structure 
in the Na2IrO3 compound. Such contradiction may imply that the band topology of Na2IrO3 is sensitive to 
the details of orbital geometry. Consequently, small variations of the structure or the interaction strength 
could lead to a quantum phase transition, e.g., the change of its topological characteristics[8,23-26]. On the 
other hand, the spin structure in correlated oxides plays an essential role in determining their physical 
properties due to the strong interplay between charge, orbitals and spins of transition metal oxides 
(TMOs)[6]. Consequently, the experimental approach that simultaneously provides information on the 
structures, orbitals and spins of this correlated material is highly desirable.

Scanning tunneling microscopy/spectroscopy (STM/S) are powerful tools with high spatial and energy 
resolutions. In particular, great success has been achieved in their applications in the study of high-Tc 
superconducting cuprates[27]. Despite that, the atomic-resolved STM imaging on the surfaces of complex 
oxides remains very challenging due to the insulating nature of the materials and the strong interactions 
between samples and STM tips[10,28]. Usually, the density of states (DOS) of the oxygen anions and the 
related orbitals of cationic transition metals can hardly be resolved in the topographic STM images. 
Furthermore, spin-polarized STM imaging has been successfully achieved on the surface of magnetic metals 
by antiferromagnetic CrO2 tips[29-31] and spin-polarized magnetic-coated tips[32-35]. Spin-polarized imaging on 
the surfaces of complex oxides has rarely been obtained.

This work reports that ultra-high resolution STM imaging can be achieved on the Na2IrO3 surface using an 
oxygen-functionalized STM tip. A Mott-type gap is observed in the tunneling spectroscopy at a temperature 
far above the transition temperature of the antiferromagnetic order of Na2IrO3, and such a gap has a 
downshift of the Fermi energy at the sites of oxygen vacancies. Orbital geometry of the Ir-O-Ir bonds and 
the subtle local DOS variation of Ir atoms induced by spin correlations are visualized directly in the 
topographic STM images due to the strong spin-orbit coupling (SOC), which provides a direct evidence for 
the zigzag magnetic ordering in this material.



Page 3 of Zhang et al. Microstructures 2024;4:2024039 https://dx.doi.org/10.20517/microstructures.2023.99 11

MATERIALS AND METHODS
STM
The crystals used in this study have the typical sizes of 2 mm × 2 mm × 0.5 mm. Samples were cleaved in situ 
at room temperature (RT) under vacuum with pressure better than 1 × 10-10 torr. The cleaved sample was 
quickly transferred into a Unisoko-1300 commercial STM for measurement at a temperature of 77 K. A 
commercial Pt-Ir tip was prepared by gentle field emission above a clean Au(111) sample. The bias voltage 
was applied on the sample during the STM observations. The STM images were analyzed using WSxM, a 
freeware scanning probe microscopy software based on Microsoft Windows[36].

Calculation
The first-principles density functional theory (DFT) calculations were carried out with the Vienna Ab Initio 
Simulation Package (VASP)[37]. The core and valence electronic interactions were described with the frozen-
core projector augmented-wave (PAW) potentials[38]. The Kohn-Sham single electron states were expanded 
in plane waves with an energy cut-off of kinetic energy of up to 400 eV. The exchange-correlation energy 
was calculated with the Perdew-Burke-Ernzerhof (PBE) of generalized gradient approximation (GGA)[39]. 
The tolerance of 10-4 eV was chosen for energy convergence of electronic calculations. The Na2IrO3 was 
modeled with a (2 × 2) unit cell. The metal STM tip was modeled with a pyramid of Ir(111) in which the 
apex is a single Ir atom. The oxygen-functionalized tip was mimicked by an Ir(111) pyramid with five 
oxygen atoms at the apex. A large vacuum of 25 Å along the direction normal to the surface was employed 
to separate surfaces from their periodic images. The Brillouin zone of reciprocal space was modeled based 
on the Γ centered Monkhorst-Pack scheme, where a 4 × 2 × 1 grid was used in geometry optimizations and 
calculations of electronic properties. STM images were simulated using the revised Chen method 
implemented in the bSKAN code[40].

RESULTS AND DISCUSSION
STM characterization of the sample surface
A representative topographic STM image at positive bias voltage (Vb = +1.5 V) for the cleaved Na2IrO3 
surface is shown in Figure 1A. The honeycomb lattice is clearly resolved. The measured lattice distance is 
about 5.2 Å, close to the distance between nearest neighbor Na atoms in the NaIr2O6 slab (about 5.3 Å)[10,14]. 
It has been reported that the empty-state STM images on oxide surfaces usually visualize the cationic atoms, 
e.g., Sr atoms in ruthenates and Ti atoms in TiO2 (110) surfaces[41,42]. On this surface, sodium atoms buckle 
about 1.59 Å higher than the Ir-O plane in the optimized surface structure of Na2IrO3, as shown in 
Supplementary Figure 1. We, therefore, assign the observed honeycomb lattice to the array of the sodium 
atoms in the exposed NaIr2O6 layer. Each Na atom is surrounded by six edge-shared IrO6 octahedra, as 
indicated by the inset of Figure 1A. The STM observations are consistent with the 1 × 1 arrangement of Na 
atoms in the NaIr2O6 slab, as reported previously[43]. Moreover, two types of defects (α and β) are identified 
at the atomic scale on the surface. As shown in Figure 1B, defect α appears as a dark hole in both the empty 
and filled-states images. Considering that it is located at the sodium position, we assign it to the Na vacancy. 
Defect β is imaged as a bright protrusion at positive biases [Figure 1A] and as a dark pinhole surrounded by 
adjacent bright spots at negative biases [Figure 1B]. We assign it to the oxygen vacancy. Such assignments 
are confirmed by the STM simulations. As shown in Figure 1B, the simulated images for both the proposed 
Na and O vacancies agree well with the STM observations. In addition, the STS spectra [Figure 1C] taken at 
the pristine Na2IrO3 surface (red) and the site of defect β (black) are compared. Both spectra exhibit a fully 
opened band gap near the Fermi level with a gap width of about 420 meV. The dI/dV spectrum of defect β 
has a 0.22 eV downshift of the Fermi energy, implying electron-type doping.

microstructures3099-SupplementaryMaterials.pdf
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Figure 1. STM topographic images and the tunneling spectrum of the cleaved Na2IrO3 surface. (A) The representative STM topographic 
image of the RT-cleaved surface of Na2IrO3 (Vb = +1.5 V, It = 20 pA, image size: 30 × 30 nm2). The inset shows the corresponding 
crystalline structure of Na2IrO 3. The Na, O and Ir atoms are represented with blue, red and pink balls, respectively. (B) The upper panel 
shows the highly resolved STM images of two types of surface defects, assigned as Na and O vacancies, respectively. The 
corresponding simulated images of Na and O vacancies are provided in the lower panel, and their bias voltages are Vb = +2.0 and -1.9 V, 
respectively. (C) dI/dV curves measured at the pristine surface and the site of the O vacancy, respectively (T = 77 K). Both spectra 
possess a uniform fully opened gap. The gap width is 420 meV. STS spectra were acquired using a lock-in technique with AC 
modulation of 15 mV.

The tunneling spectra have been acquired over hundreds of times at different locations on the surface, 
producing essentially very similar gap features. It is worth noting that the spectra with a U-shape gap were 
measured at 77 K, far above the transition temperature of the antiferromagnetic order of Na2IrO3 
(TN ≈ 15 K)[2,10]. Therefore, this observation may effectively exclude the possibility of a Slater-like state. 
Consequently, our spectroscopic analysis helps answer one of the long-term debated issues about this 
material, that is, whether Na2IrO3 is a relativistic Mott insulator[10-12] or a Slater insulator[13]. The major 
difference between Mott and Slater insulators depends on the role of magnetic interactions in gap 
formation, where Coulomb and exchange interactions drive gap formation in a Mott-Hubbard insulator, 
Coulomb interactions alone drive gap formation in a Mott insulator, while magnetic ordering drives gap 
formation in a Slater insulator. For example, a Jeff = 1/2 Mott-Hubbard scenario has been suggested for the 
layered 5d TMO, Sr2IrO4 from angle-resolved photoemission spectroscopy (ARPES)[44] and resonant X-ray 
scattering (RXS)[45] measurements. A Slater mechanism has been found in other 5d TMOs such as 
NaOsO3

[46], where the Slater transition is demonstrated unambiguously by showing the coincidence of the 
metal-insulator transition (MIT) and the onset of long-range commensurate magnetic order based on the 
results of neutron and X-ray scattering. The interplay between on-site Coulomb repulsion (U), bandwidth 
(W) and SOC in 5d correlated electronic systems gives rise to a broad spectrum of novel phenomena; e.g., 
MIT may switch from Mott type to Slater type[47]. The observed gap width (420 meV) is reasonable by 
comparing with that obtained by ARPES (340 meV)[11]. According to the previous ARPES results[11], the 
maximum of the first-occupied Ir 5d-t2g band appears at -0.5 eV, agreeing well with the fact that the left 
rising edge of the DOS gap appears near -0.5 V in our dI/dV spectrum [Figure 1C]. The gap of 420 meV 
corresponds to the on-site Coulomb repulsion U between Jeff = 1/2 bands. It is now recognized that the SOC 
is approximately 0.4 eV in the iridates, and rigorously competes with the on-site Coulomb repulsion U 
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(0.4~2.5 eV), which is significantly reduced because of the extended nature of the 5d orbitals[14,44].
Furthermore, after annealing the sample at 573 K for 5 min, we found that about two-thirds of the surface
Na atoms are desorbed and the surface unit cell transforms from 1 × 1 to (    ×     )R30°  [Supplementary
Figure 2]. Accompanying this structural change, the insulating gap reduces from 420 to 300 meV, with a
small shift of the gap feature in the spectra, illustrating the electron doping effect possibly due to the
creation of extra oxygen vacancies during the annealing and the bandwidth broadening induced by electron
doping [Supplementary Figure 3].

DFT calculated PDOS and simulated STM images
The electronic structure of Na2IrO3 was revealed by DFT calculations. The optimized surface structure of
Na2IrO3 is shown in Supplementary Figure 3. The relaxed structural parameters, such as the O-Ir-O bond
lengths and the bond angles, agree well with previous X-ray diffraction measurements[10,14], implying that the
surface IrO6 octahedra are essentially the same as in the bulk except that surface Na atoms buckle 1.59 Å out
of the Ir-O plane. The projected DOS (PDOS) for each species of atoms calculated by considering the SOC
is shown in Figure 2A. As seen, the total DOS is mostly contributed by the iridium and oxygen atoms.
According to previous theoretical[9] and experimental[11] discussions, the Ir 5d states are split into t2g and eg

orbital states by the crystal field. As the SOC has been considered, the t2g band further splits into Jeff = 1/2
doublet and Jeff = 3/2 quartet bands. With the Jeff = 3/2 band filled and having one remaining electron, the
system is effectively reduced to a half-filled Jeff = 1/2 single band system (schematic shown in Inset of
Figure 2A). The Jeff = 1/2 spin-orbit integrated states form a narrow band so that even small U opens a Mott
gap, making it a Jeff = 1/2 Mott insulator. A prominent gap of about 0.4 eV width is clearly visible in the
calculated DOS, agreeing well with both our STS measurement [Figure 1C] and the previously reported
ARPES data[11]. It is worth noting that our calculations are consistent with those reported previously[7],
where the DOS peaks correspond to the Ir 5d-t2g (Jeff = 3/2 and Jeff = 1/2) bands, respectively. The simulated
STM images for the pristine honeycomb lattice of Na2IrO3 surface are shown in Figure 2B. An excellent
agreement can be seen between the theoretical calculations and experimental observations
[Figure 2B and C] at both positive and negative bias voltages. In the optimized slab model, the top layer of
sodium atoms moves up by about 1.59 Å from their bulk crystal positions [Supplementary Figure 3] upon
structural relaxation, and they are shown as bright spots at positive and dark holes at negative bias voltages.

Functionalizing the STM tip with surface oxygen
To obtain the subtle details of the lattice and orbital geometry of the Ir-O bonds, we functionalize the
metallic STM tip by transferring surface oxygen atoms to the forefront of the STM tip (the details of the tip
preparation can be found in Supplementary Figure 4). When imaging the Na2IrO3 surface with O-decorated
tips, we observe ultrahigh spatial resolution imaging initially, as shown in Figure 3A. The zoomed image
[Figure 3B] indicates that each Na atom is imaged as a protrusion with a hexagonal outline instead of a
circle. The hexagonal outline comprises six dark hole terminals and six less-dark side connections. The
distance between adjacent dark holes is 3.1 Å, very close to the Ir-O-Ir bond length (3.17 Å)
[Supplementary Figure 3], implying that the observed hexagonal dark outlines are the Ir-O-Ir bonds.
Further approaching the tip to the surface leads to an even sharper orbital width [Figure 3C], suggesting an
extremely high-resolution of the imaging by the O-decorated tip and the localization of Ir 5d orbitals. Such
resolution enhancement with reduced tip-surface distances can be induced by the movement of oxygen
atoms on the apex of the metal tip, resembling the chemical bond imaging by CO-decorated AFM tip[48,49],
where the CO molecule can be dragged back and forth during the scanning.

Visualization of the anisotropic Ir-O-Ir spin lattices
Surprisingly, the functionality of such an O-decorated tip is not limited to obtaining the ultrahigh spatial
resolution. It also allows us to visualize the Ir-O-Ir bonds and the subtle difference between the orbitals
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Figure 2. DFT calculated PDOS and the simulated STM images of the pristine Na2IrO3 surface. (A) The calculated PDOS of the top Na 
layer (red, 1st-Na), the second O layer (black, 2nd-O) and the Ir (blue, 3rd-Ir) in the third layer, respectively. The inset shows the 
schematic crystal field splitting of the 5d level in the half-filling case with Jeff = 1/2. (B) The simulated empty (+2.0 eV) and filled 
(-2.0 eV) state STM images using an Ir(111) tip. The superimposed Na, O and Ir atoms are represented with blue, red and pink balls, 
respectively. (C) Experimental STM images acquired at +2.0 V (left) and -2.0 V (right), respectively. The unit cells of the honeycomb 
lattice of the Na2IrO3 surface are indicated with cyan hexagons.

Figure 3. Enhanced spatial resolution by an O-decorated STM tip. (A) STM image of the Na2IrO3 surface taken with an O-decorated tip 
(Vb = -1.8 V, It = 20 pA, image size: 20 × 20 nm2). (B) Zoomed STM image from the region marked by black rectangle in (A). The 
superimposed Na, O and Ir atoms are represented with blue, red and pink balls, respectively. By measuring the line profiles, the distance 
between the nearest-neighboring Na atoms is 5.2 Å, and the length of Ir-O-Ir bonds is 3.1 Å. (C) Ultra-highly resolved image for the 
same area taken with Vb = -1.6 V.

directly. The Na2IrO3 lattice is known to be a near-perfect hexagonal, isotropic lattice. This fact has been 
evidenced by both our DFT optimized surface structure [Figure 3], the STM topographic image with 
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normal Ir tip [Figure 1A] and the X-ray diffraction experiments[10,14], giving almost identical Ir-O-Ir lengths 
and bonding angles. However, at the surface regions far from the oxygen vacancies, the imaging with 
O-decorated tips leads to an unexpected anisotropic, zigzag pattern at a narrow energy window 
(-1.6 to -1.2 eV), as shown in Supplementary Figure 5. Figure 4A presents the coexistence of the hexagonal 
Na lattice and the zigzag patterns measured at -1.6 V, thus rule out the influence of the tip shape effect. The 
zoomed image [Figure 4B] indicates that the dark holes are the Na atoms, and the zigzag pattern 
corresponds to the Ir-O-Ir bonds. To reveal the nature of the anisotropic Ir-O-Ir lattice, we measured the 
height profiles [Figure 4C] along X, Y and Z directions between the nearest neighbor Ir atoms, respectively. 
Interestingly, the profile along the Z direction is prominently different from that along the X and Y 
directions. Such anisotropy cannot be simply attributed to the structural difference.

It is well known that the charges, orbitals and spins are strongly correlated and entangled in TMO materials. 
The observed anisotropic Ir-O-Ir orbitals may stem from either novel charge-ordered states or spin 
distribution due to the strong spin-orbit interactions. Since no novel charge-ordered states were proposed 
or observed in previous theoretical/experimental works, we attribute such anisotropic orbitals to the spin 
distribution on this surface. The spin-polarized distributions of electronic states of the Na2IrO3 surface are 
shown in Figure 5A. Considering that the electronic states on the Na atoms are negligibly small, the top 
layer Na atoms are removed for better visualization [Figure 5A]. As demonstrated, the spin-up states (green 
contours) are mostly localized on the Ir and O atoms, while the spin-down states (yellow contours) are 
distributed at the Ir-O bonds. The key information given here is that the distribution of spin-up and spin-
down states on this surface is intrinsically separated in the real space. Figure 5B shows the energy 
dependence of spin-polarized DOS (sDOS) for the spin-up and spin-down states (left panel) and the 
difference between the DOS of the two states (right panel) on the top layer of Ir and O atoms. It is clearly 
seen that the occupied spin-down states are more profound than the spin-up states in the energy ranges of 
-0.5 to 0.0 eV and -1.8 to -1.4 eV, while the spin-up states are more prominent in the energy ranges of -1.4 
to -0.5 eV. Such characteristics suggest that the spin-up and spin-down states on this surface can be 
discriminated at different energy scales. As shown in Figure 4B and C, the main difference between the line 
profiles along the X, Y and Z directions is the contrast of the central O atom of Ir-O-Ir bonds. Along the Z 
direction, the contrast of the central O atom is much weaker than that along the X and Y directions, 
suggesting a different spin-up state intensity localized at O atoms. In order to visualize the surface spin 
density, the predominant condition is that the states of the STM tip should be spin polarized. We 
constructed an O-decorated Ir tip from the DFT calculations, as shown in Figure 5C. The details of the tip 
model and the computational methods are described in the Supplementary Materials. Figure 5D shows that 
the sDOS of the O-functionalized tip apex exhibits spin polarization near the Fermi level. As a result, the 
surface spin texture mostly localized at Ir-O-Ir bonds can be resolved by the oxygen-functionalized tip. It is 
worth noting that the above calculations of surface sDOS did not consider a specific spin structure.

Schematically, the zigzag pattern and the anisotropy of the Ir-O-Ir bonds could originate from the 
antiferromagnetic spin ordering of Jeff = 1/2 electrons. Zigzag-type magnetic order was first proposed[3,15,17] 
and confirmed experimentally[4,14,50] as the most likely ground state for Na2IrO3. Magnetic and heat-capacity 
measurements[10] also suggest that short-range magnetic order develops within the NaIr2O6 layers in Na2IrO3 
at a temperature well above TN. In the scheme of zigzag-type magnetic order, each Ir atom has two nearest-
neighbor Ir atoms with parallel Jeff = 1/2 spin and one Ir atom with antiparallel spin. The hopping terms 
between extended Ir 5d orbitals include an indirect hopping through the oxygen 2p orbital (tpd), and two 
kinds of direct hopping between neighboring Ir atoms (tdd1 and tdd2)[8]. When an electron hops from Ir atom i 
to atom j, the effective transfer integral is given by , where θij is the angle between the 
two spins. Therefore,  is the maximum for parallel spins and is zero for antiparallel spins. As shown in 
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Figure 4. The visualization of the anisotropic Ir-O-Ir lattices at negative biases. (A) The STM image of the Na2IrO3 surface taken with an 
O-decorated tip. The regions highlighted by yellow curves exhibit the zigzag pattern (Vb = -1.6 V, It = 20 pA, image size: 20 × 20 nm2). 
(B) Highly resolved STM image zoomed from the region marked with a red rectangle in (A). The superimposed Na, O and Ir atoms are 
represented with blue, red and pink balls, respectively. Ir atoms show differences in contrast, which we label as IrA and IrB, respectively. 
(C) Height profiles of the IrA-O-IrB bonds along the nearest-neighbor directions of X, Y and Z.

Figure 5. (A) The spin-polarized charge density distribution of a Na2IrO3 surface. The top layer of Na is removed for better visualization. 
The spin-up states (localized at the Ir and O atoms) and the spin-down states (localized in between the Ir and O atoms) are 
represented with green and yellow contours, respectively. The Na, Ir and O atoms are shown as blue, pink and red circles, respectively. 
(B) The difference of spin-up and spin-down states of the top Ir and O layers. (C) The top (left) and the side view (right) of the oxygen-
decorated Ir tip model. (D) The spin-polarized DOS of the oxygen atom at the apex of the Ir-O tip. (E) Spin-polarized STM simulation 
imaged with the O-decorated Ir(111) tip (Vb = -1.6 V).

Figure 4C, the spins are antiparallel along the Z direction and are parallel along the X and Y directions, 
leading to the hopping term along the Z direction being smaller than that along the X and Y directions. 
Thus, the observed zigzag pattern in Figure 4B reflects the short-range zigzag spin order and the strong 
spin-orbit interactions that lock the lattice and magnetic moments. By considering the spin polarization of 
the oxygen-functionalized STM tip and the zigzag AFM spin ordering of the surface, our simulated STM 
image [Figure 5E] indeed leads to a zigzag pattern of Ir-O-Ir lattice, agreeing with the experimental 
observation [Figure 4B].
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CONCLUSIONS
In summary, a 420 meV Mott insulating gap is identified on the surface of Na2IrO3 crystal. Ultra-high 
resolution STM images are achieved by functionalizing the STM tip with surface oxygen atoms. A zigzag-
like topology of the Ir-O-Ir lattices is directly visualized, and the anisotropic Ir-O bonds along different 
lattice orientations are revealed within a narrow energy window. The direct observation of a zigzag Ir-O-Ir 
lattice at 77 K dictates the zigzag magnetic order below TN ≈ 15 K because of the strong spin-orbit 
interactions. Our results provide a novel approach to investigate the interactions between the lattices, charge 
and spin degrees of freedom of strongly correlated oxides.
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