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ABSTRACT

The use of alternative therapeutic approaches in advanced carcinogenesis is a growing investigative base. One such cancer, 
primary liver cancer, is one of the most commonly occurring cancers worldwide and often presents in late stage disease 
consequently preventing traditional curative modalities. As a result, hepatocellular carcinoma (HCC), representing the majority 
of primary liver cancer, is the third most common cause of cancer-related deaths globally. Survival rates are linked to stage 
of presentation as well as concomitant cirrhosis limiting the 5-year survival in these patients to < 20%. Alternative strategies 
are in dire need as patients in this cohort have limited palliative options. Currently, sorafenib is the only approved systemic 
therapy; however, it has a limited survival advantage and low effi cacy prompting the empirical need for further evaluation. 
Understanding of cancer therapy has led to an enhanced focus on the Notch pathway as a potential target for advanced 
HCC. Notch signaling is a critical component of development and cell fate and has been linked to various modalities including 
liver regeneration and as a key driver in carcinogenesis. In this review, we will provide a review of the current status of the 
Notch signaling in liver cancer and of Notch as an alternative potential strategy for advanced HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a significant health concern 
representing the sixth most common cancer globally.[1] Over 
the past 20 years, HCC has become one of the most frequent 
occurring tumors worldwide with the incidence in the United 
States steadily increasing.[2-5] In addition, coupled with an 
increase in the incidence, HCC mortality has also increased 
substantially. Currently, it is the third most common cause 
of cancer-related deaths throughout the world.

Approximately one-third of patients are amendable to 
curative therapy through the use of localized radiofrequency 
ablation or resection.[6,7] Moderate stage disease indicative of 
multifocal intrahepatic carcinogenesis has led to alternative 
approaches such as trans-arterial chemoembolization (TACE). 
TACE has provided a relatively efficacious avenue for patients 
in this category.[7-10] Patients progressing to or presenting 
as late stage disease have limited treatment options. 
Approximately, 70% of patients will initially or eventually 
present at this late stage. Consequently, this leads to a 5-year 
survival in patients with HCC of < 20%.[11] In addition, HCC is 
characteristically coupled with concomitant cirrhosis, further 
exacerbating disease morbidity and mortality.[12] Therefore, 
there is an urgent and critical need to expand alternative 
and effective approaches to these patients in advanced, 
nonresectable disease. This need for additional therapy and 
the evolving understanding of molecular pathways has led 
to a concentrated focus on therapeutic molecular targeting 
in many organ-specific cancers as well as HCC.
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Several signaling pathways are of interest due to their 
specific oncogenic and/or tumor suppressor characteristics. 
For instance, the ras/raf pathway provides the only current 
approved therapeutic approach in advanced HCC through 
the use of sorafenib.[13,14] Other traditional pathways 
such as PI3k/Akt/mammalian target of rapamycin,[15-17] 
Wnt/-catenin,[18] as well as Notch signaling[19-21] have been 
investigated. Further delineation into the manipulation of 
these pathways is critical for future alternative strategies 
for HCC. One of these pathways of interest is Notch 
signaling. As a functionally conserved pathway, it is involved 
in the regulation of several cellular properties including 
differentiation, proliferation, homeostasis and survival. 
First studied in Drosophila, Notch was linked to neural 
development. Future studies were able to identify the 
homology between species as well as accurately describe the 
Notch transmembrane receptor and provide evidence in its 
role as cellular regulator of differentiation, proliferation, and 
survival.[22-28] Continued work in the field of Notch signaling 
would inevitably showcase its role in a myriad of cellular 
processes centered on the development.

NOTCH SIGNALING

The Notch signaling pathway consists of Notch receptors, 
ligands, negative and positive modifiers, and transcription 
factors. In mammals, these efficient modules have several 
members and the interplay between these molecules is not 
yet fully understood, but its role in several processes is being 
teased out including regulation of metabolism, inflammation, 
liver regeneration and repair.[29] Notch signaling is important 
from other conserved signaling pathways because its role in 
the mechanism of signal transduction is crucial. Compare to 
other intercellular signaling pathways such as Wnt, Hedgehog, 
and transforming growth factor-, Notch is distinctive in 
several traits. First, the signaling of Notch is unique. It is 
comprised of both canonical and noncanonical signaling. The 
traditional canonical pathway occurs in a juxtacrine process 
that is unique to Notch. Cell-to-cell interaction is required 
for subsequent signaling. A transmitter cell releases one 
of the five major Notch ligands (Jagged 1, 2, and Delta-like 
1, 3, 4) and binds to one of the four transmembrane Notch 
receptors (Notch 1-4) on the associate cell. Signaling is 
through several cleavage steps. The Notch receptor is cleaved 
by furin-like convertases in the trans-Golgi network, which 
results in two subunits of the mature/functional receptor. 
The extracellular Notch receptor subunit consists of a 
ligand-binding domain that is composed of epidermal growth 
factor-like repeats.[30] In addition, mammalian Notch-1, -2 
and -3 receptors contain cytokine response regions and 
transcriptional activation domains.[30] Successful binding 
of the ligand to the representative receptor triggers a 

cleavage cascade of the Notch intracellular domain (NICD) via 
-secretase with NICD translocated to the nucleus.[31] NICD 
then binds with the RBP-J family activating the complex 
as well as recruiting co-activator MAML1 that initiates 
transcription of Notch downstream targets including hairy 
enhancer of split, hairy enhancer of split with YRPW motif 
families, p21, and Sox-9.[32-36] Deactivation of the Notch signal 
is rapidly induced by phosphorylation and degradation. NICD 
is phosphorylated within the PEST domain by the CDK8 
kinase and targeted for proteasomal degradation by E3 
ubiquitin ligases that include Sel10/Fbw7.[37,38] Transcription 
activation of the ternary complex is disassembled and reset 
for the next round of signaling. With no second messenger to 
amplify its signal, deactivation is acute and tightly regulated.

Noncanonical Notch signaling involves a multiple of parallel 
pathways as cross-talk between these pathways dominates 
the influence of Notch through paracrine regulation.[31,39] 
One particular, well documented, example is the signaling of 
Notch and the Wnt/-catenin pathways. Both pathways can 
act in synergistic concert through traditional Notch signaling 
or opposing interactions.[40] Conversely, antagonistic signaling 
is through noncanonical effects. A second crucial aspect 
particular to Notch signaling is the counteracting effects. 
Notch signals involve either the promotion or suppression of 
cell proliferation, cell death, and activation of differentiation 
programs. This happens in cells throughout development of 
the organism and during the maintenance of self-renewing 
adult tissues. Therefore, gain or loss of Notch signaling 
mechanisms has been directly linked to multiple human 
disorders. Even more conflicting in nature, opposing actions 
of Notch has been linked to similar disease processes in the 
liver.[41,42]

NOTCH SIGNALING IN THE LIVER

The role of Notch signaling in the liver remained relatively 
unknown until the discovery and investigation of Alagille 
syndrome (AGS). As an autosomal dominant disease, AGS 
is characterized by ductopenia and cholestasis. Diminished 
development of intrahepatic bile ducts is the hallmark of 
AGS. Through genetic testing, near the turn of the century, 
it was demonstrated that mutations in the Jagged 1 gene 
and to a lesser extent Notch-2 led to AGS.[43-46] Therefore, it 
evidenced the role of Notch signaling in hepatogenesis, more 
specifically hepatic duct morphogenesis. Further research 
into the role of Notch in liver development focused on liver 
regeneration following injury. During injury and subsequent 
liver regeneration (i.e., partial liver resection) hepatocyte and 
cholangiocyte proliferative properties are often inhibited; 
therefore, precursor hepatic progenitor cells (HPCs) are 
activated in response to massive liver injury.[47-49] HPCs 
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can differentiate or give rise to hepatocytes as well as 
cholangiocytes through Notch activation thus further 
strengthening the role of Notch in hepatogenesis and 
morphogenesis.[50-52] During repair and regeneration and 
at the height of concentrated HPC involvement, several 
pathways are activated to assist in morphogenesis including 
the Notch pathway. In addition, activation of the Notch 
pathway (specifically Notch-1 and -2 isoforms) is in concert 
with parallel pathways during regeneration.[40,53,54] These 
critical and emerging studies linking Notch activation to 
intrahepatic morphogenesis was a fundamental building 
block to the transition to reviewing the role of Notch in 
carcinogenesis.

NOTCH IN CARCINOGENESIS

As the expanding role of Notch signaling in the development of 
organogenesis continued, the role of Notch in carcinogenesis 
was ongoing. Notch-1 identification as an oncogene 
was first discovered through investigation into T-cell 
acute lymphoblastic leukemia (T-ALL). T-ALL gain of 
function mutations in Notch-1 led to overexpression and 
constitutive activation of Notch-1 receptor and thus enhanced 
proliferation.[55] In addition, the oncogenic ability of Notch 
was also exhibited in colorectal cancer.[56] According to 
Ambros, most Notch-mediated processes require a transient 
pulse of activity that in some cases lasts only as long as a 
fraction of the cell cycle degradation of the NICD.[57] This is 
of particular interest as Notch transduction has a 1:1 ratio of 
input to output without the presence of second messengers. 
Therefore, constitutive activation will provide constant 
transduction and thus aberrant proliferation. In addition 
to mutations in Notch-1 signaling leading to oncogenic 
enhancement, alterations in Notch-1 signaling also has led 
to changes in angiogenesis.[58]

The enhanced discoveries of the Notch signaling pathway 
lead to further advancement in additional solid tumors. 
Robinson et al.[59] studied the overexpression of Notch-1 
and -2 fusion proteins in benign breast epithelial cells. 
Subsequent constitutive expression resulted in altered 
growth characteristics while the inhibition of Notch signaling 
reduced the growth of the Notch gene fusion-expressing 
breast cancer xenografts. Zender et al.[60] showed that 
overexpression of the Notch signaling pathway modulates 
the dysregulation of the oncogene cyclin E, resulting 
in the development of cholangiocellular carcinoma. In 
addition, inhibition of Notch activity blocks tumor cell 
proliferation and induces apoptosis in cholangiocellular 
carcinoma.[60] A retrospective analysis in oral squamous cell 
carcinoma (OSCC) showed that the Notch pathway was 
defective in 66% of patients and the studies of mechanism 

showed that the functional Notch-1 signaling inhibited 
proliferation of OSCC cell lines.[61]

Notch-1 dysregulation is not the only isoform involved in 
carcinogenesis. Studies have demonstrated that up regulation 
of the Notch-3 isoform was required for induction of 
p21 expression in senescent cells.[62] Inactivation of Notch-3 
by -secretase inhibitor (GSI) or short interference RNA (siRNA) 
decreased cell proliferation and induced apoptosis in the 
chemoresistant ovarian cancer cells.[63] Finally, Lu et al.[64] have 
showed that the Notch-3 was positively correlated with Jagged-1 
at the mRNA and protein levels. Therefore, they concluded that 
Notch-3 and Jagged-1 may play an important role in the initiation 
and proliferation of human nonfunctioning adenomas.[64]

Despite these early indications of Notch as a potential 
target for cancer therapy, the reality of Notch signaling in 
carcinogenesis remains opaque. Although there is growing 
evidence as to Notch acting as an oncogenic process, other 
cancers exhibit Notch’s role as a tumor suppressor in nature. 
For instance, in neuroendocrine tumors, Notch-1 acts as a 
tumor suppressor with overexpression leading to a reduction 
in cellular proliferation and growth.[26,65-67] Furthermore, 
despite thorough studies involving either the activation 
or inhibition of the Notch pathway in the modulation 
of carcinogenesis, there is limited data surrounding the 
expression of Notch receptors and their link with cancer. 
Additionally, noncanonical pathway activation of Notch 
further confuses and complicates the underlying roles of this 
pathway during times of aberrant cellular growth.

TARGETING NOTCH IN HEPATOCELLULAR CARCINOMA

Despite promising results of Notch mediation in multiple 
organ-specific cancers, there is limited and conflicting data 
on Notch signaling in HCC. In several studies, Notch-1 acts as 
a tumor suppressor.[41,68] On the other hand, there is evidence 
that Notch is oncogenic in nature.[69-71] As time passes, growing 
evidence may indicate that although individual HCC signatures 
may include Notch as a tumor suppressor, the majority of HCC 
Notch mediation is through overexpression and oncogenic 
activation. For instance, Villanueva et al.[72] revealed that the 
conditional expression of NICD1 in a mouse model led to 
HCC in all test subjects within the 1st year. Biopsied tumors 
represented varying stages in the mice test group. Moreover, 
overexpression of Notch-1 was closely linked to insulin-like 
growth factor 2 and Sox-9 expression levels and interestingly, 
the NICD1 conditionally active mice genetic signature was 
evidenced in a subset of human patients with HCC.[72] Further 
studies have shifted the tide toward Notch acting as an 
oncogene in liver carcinogenesis. Sox-9, a downstream target 
of Notch signaling cascade, is linked to cellular proliferation 
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and carries a worse prognosis. Overexpression of Sox-9 leads 
to a transition to HPC-type activity and consequently less 
differentiated cell types.[73]

As we advance our understanding of the Notch signaling 
pathway, initial studies including several early phase I clinical 
trials are underway in various stepwise components within 
the pathway. Given the intricacy of the canonical Notch 
pathway, it comes as no surprise that there are multiple 
avenues to target Notch signaling [Figure 1]. Targeting either 
the ligands and/or the receptors, inhibiting cleavage of the 
active NICD, and preventing transcription of downstream 
targets are the major targeted aims in Notch mediation. 
In this review, we will briefly discuss the most common 
techniques aimed at inhibiting Notch signaling.

The most studied area is inhibition of GSI and the subsequent 
release of NICD. In fact, GSI examination is not inclusive to 
HCC. Rather, the extensive research of Notch signaling in 
neural development has led to GSI application for Alzheimer’s 
disease.[74] There has been countless preclinical and phase 
I clinical trials examining the efficacy and effectiveness of 
GSI mediation in many cancer types.[75-77] Unfortunately, 
to date, there is no phase I evidence of the role of GSIs in 

HCC. Moreover, given the pan-inhibition nature of GSIs, the 
toxicity profiles are relatively disconcerting given the off 
target effects, especially intestinal adverse effects specifically 
through down regulation of Notch-1 and -2 isoforms.[29]

As a result of the nonspecific inhibition of GSIs, alternative 
strategies should be considered. One particular area of 
increasing interest is the use of monoclonal antibodies 
and decoys at both the ligand and receptor sites. Antibody 
and decoy (competitive antagonist) application has a more 
specific efficacy, thus limiting the dose-escalated toxicities 
and potentially providing a concentrated result. There are 
multiple monoclonal antibodies currently being tested in 
preclinical studies. Notch-1 receptor antibodies have shown 
promising results.[78,79] Both Notch-2 and Notch-3 antibodies 
have transitioned to phase I clinical trials.[79,80] In addition 
to Notch receptor blockade, antibodies against Notch 
signaling ligands have been investigated. Delta-like ligand 
four antibodies have shown interesting results from multiple 
avenues.[58,81,82] Similarly, decoys provide excellent Notch 
inhibition and act as a competitive antagonist either at the 
Notch receptor or the ligand binding sites. Notch-1 decoys 
have been studied as well as Jagged-1 ligand decoys.[83,84] 
Finally, prevention of NICD-mediated transcription is a novel 
process to modulate carcinogenesis. Peptides that block 
the transcription of NICD provide interesting applications 
to Notch signal inhibition.[75] In addition to this review 
of potential Notch mediation through the alteration of 
multiple events, Espinoza and Miele[75] recently compiled 
a comprehensive table and analysis including a majority 
of current preclinical and clinical studies using a myriad of 
Notch inhibitors that further details the current effectiveness 
of Notch alteration.

Traditional mechanisms of Notch inhibition have and will 
continue to be thoroughly investigated; however, there is 
growing interest in targeted gene inhibition, more specifically 
in the context of Notch signaling. Historically,   AGS and 
the mechanism of hepatogenesis were further delineated 
through Notch-2 gene manipulation; therefore, an approach 
to targeting specific genes within the Notch pathway may 
provide additional support in lieu of traditional Notch 
inhibitors. There are several approaches to gene silencing, 
two of which are frequently used and include using a 
small hairpin RNA or short hairpin RNA (shRNA) or siRNA. 
Mao et al.[85] reported that the shRNA mediated knock-down 
of Notch-1 inhibited the breast cancer cell line MCF-7’s 
proliferation and induced cell apoptosis through multiple 
mechanistic actions. One in particular, the down regulation 
of the anti-apoptotic protein nuclear factor-kappa B, proved 
effective and enhanced the anti-tumorigenic effect when 
combined with traditional chemotherapeutic agents such 

Figure 1: Canonical Notch signaling pathway and potential sites of inhibition. 
The Notch pathway is primed through cell-to-cell interaction distinguishing it 
from other regulatory pathways. Following ligand secretion from a transmitting 
cell, the ligand binds to one of the four Notch receptors on the receiver cell. 
Ligand-receptor binding facilitates the cleavage of the intracellular component 
of the transmembrane receptor via -secretase. Successful cleavage activates 
the Notch intracellular component domain (NICD) which translocates to the 
nucleus where is regulated a host of transcription factors. Given the intricacy of 
the pathway, there are multiple key regulatory steps poised for targeted therapy. 
First, monoclonal antibody and decoy administration at both the Notch ligand and 
receptor is in preliminary, preclinical investigation. Second, -secretase inhibitors 
are the most studied target within the pathway; however, there is limited data 
within hepatocellular carcinoma. Finally, inactivating transcriptional peptides are 
a novel trend focused on inhibiting the canonical transcription mediated by NICD
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as paclitaxel. Finally, Mao et al.[85] were able to translate 
this to an in vivo study evidencing that genetic knockout of 
Notch-1 abrogated tumor xenograft growth. Zhao et al.[86] 
reported that the knockdown of Notch-1 by RNA interference 
suppressed Akt activation, reduced glioma cell growth rate 
and induce cell apoptosis.

Notch-1 deletion has also been studied in HCC. Sun and 
colleagues investigated that knockout of Notch-1 inhibited 
cell proliferation and significantly suppressed tumor 
formation of L02/HBx cells in a BALB/c nude mouse model 
in vivo through activation of apoptotic caspase cascades. In 
addition, they observed that this blockade arrest the cell cycle 
in the G0/G1 phase through the down regulation of cyclin D1, 
CDK4, E2F1 and the up regulation of p21.[87] Wang et al.[88] 
suggested that the inhibition of Notch1 by shRNA significantly 
suppressed the growth of HBx transformed human hepatic 
cells through G0/G1 cell cycle arrest and apoptosis. The 
mechanism, they suggested, may be linked to the promoted 
expression of P16 and decreased expression of Bcl-2.[88]

Finally, the investigation into microRNAs as a potential 
strategy is growing in interest. MicroRNAs are small 
regulators of both post-translational and post-transcriptional 
markers. They are often at the center of abrogation in many 
cancer types.[89,90] Given their stability, they are potential 
candidates for use in combination studies. For instance, 
there is increasing data on the use of microRNAs sensitizing 
HCC to traditional chemotherapy.[91,92] In addition, genetic 
profiling of microRNAs in patients with HCC will assist as an 
alternative and supportive strategy in terms of disease-free 
progression and overall survival. For example, microRNA-224 
expression is associated with a better prognosis and further 
evaluation into this subtype is currently ongoing.[93,94]

Despite the plethora of early investigations into Notch 
inhibition, there are concerns that need to be addressed 
moving forward. First, there are relatively limited studies 
advancing in HCC research. As of this publication, there are 
no clinical trials utilizing Notch inhibition as an alternative 
strategy for HCC. In addition, in other solid tumor studies, no 
trial has advanced past phase I. Perhaps we are in the early 
stages of development, but given the stagnant advancement 
additional approaches should be addressed.

TRANSITION TO THE FUTURE

The exciting and staggering concept of Notch signaling is that 
it is still in the infantile stages of development. The majority 
of evolution in the understanding of this pathway has come 
within the last 20-30 years. Within that time, there have been 

novel and potentially ground-breaking investigations into 
the role of Notch not only in HCC, but other cancer types. In 
addition, the study of Notch mediation has radiated toward 
different fields of medicine with the intent of delineating 
the roles of isoform-specific NICD. Additionally, the role of 
cellular homeostasis has interpretive results in a myriad of 
clinical and basic science indications and perhaps Notch 
will be at the forefront of these studies. However, the role 
of Notch in carcinogenesis, albeit, counterintuitive, is both 
exciting and complex. The early results prove modulation 
of this pathway could aid in the care of advanced, resistant, 
and aggressive cancer types. These Notch-based strategies 
will continue to be evaluated and will also be combined with 
other pathway mitigation to reduce toxicity profiles, as well as 
the chemoresistance. Combination with approved and current 
strategies will further the understanding and commitment 
to providing alternative and efficacious treatment options 
to patients with HCC.
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