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Abstract
Drug resistance in tumors constitutes a significant obstacle to tumor therapy. Head and neck squamous cell 
carcinoma (HNSCC) presents a major challenge due to its deep anatomical location, limited space, and complex 
structure. These factors complicate surgical procedures and hinder the effectiveness of chemoradiotherapy, 
leading to poor prognosis and reduced quality of life. However, there is hope in the form of circular RNAs 
(circRNAs), non-coding RNA molecules with a closed-loop structure that exhibits superior stability and resistance 
to degradation compared to linear RNAs. Recent advances in high-throughput sequencing and bioinformatics 
technology revealed that circRNAs participate in tumor proliferation, invasion, migration, and drug resistance. This 
review aims to summarize current research progress on the involvement of circRNAs in drug resistance of HNSCC 
and provide valuable insights for the prevention and mitigation of drug resistance in HNSCC.
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INTRODUCTION
Head and neck squamous cell carcinoma (HNSCC) originates from the epithelial cells in the head and neck 
region, encompassing various subtypes, such as oral squamous cell carcinoma (OSCC), laryngeal squamous 
cell carcinoma (LSCC), nasopharyngeal carcinoma (NPC), and others. HNSCC is the sixth most common 
cancer worldwide, with more than 890,000 new cases diagnosed each year. Despite advances in treatment, 
the five-year survival rate has stagnated at around 65% for decades[1]. Early detection of HNSCC is 
challenging due to its deep anatomic location and complex structure, leading to a frequent diagnosis in the 
middle and late stages of the disease. Consequently, postoperative adjuvant chemotherapy and radiotherapy 
are often necessary[2]. However, drug resistance and radioresistance significantly impact the prognosis of 
patients with advanced HNSCC.

circRNAs are a unique group of non-coding RNAs that form closed loops due to covalent bonds, therefore 
lacking 5’ and 3’ ends[3]. This unique structure makes circRNAs insensitive to ribonucleases such as 
exonucleases, ensuring their stability within cells[4]. Recent advances in high-throughput sequencing and 
computational analysis have unveiled the regulatory roles of circRNAs in gene expression in cancer at both 
pre- and post-transcriptional levels[5]. A better understanding of the association between circRNAs and 
HNSCC will help us to more effectively study and explore new early diagnostic indicators and therapeutic 
targets for HNSCC. This review aims to clarify the role of circRNAs in drug resistance in HNSCC and its 
potential as a diagnostic and therapeutic target.

THE CLINICAL DIAGNOSTIC VALUE OF CIRCRNAS IN HNSCC
circRNAs are abundantly present in cells and play diverse roles in biological processes. Compared to other 
non-coding RNAs (ncRNAs), such as micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), 
circRNAs are more stable in cells due to their closed circular RNA molecular structure. They can function 
as miRNA sponges, interact with RNA-binding proteins, or be translated into peptides to affect downstream 
gene expression. Notably, circRNAs often act as “miRNA sponges” or competitive endogenous RNAs 
(ceRNAs) by containing miRNA binding sites, thereby regulating the function of miRNAs. Additionally, 
circRNAs can interact with proteins, DNA, RNA, or transcription factors to regulate protein function or 
gene transcription[6]. circRNAs can also encode small peptides and participate in cellular biological 
processes[7]. Furthermore, circRNAs can interact with molecules associated with epigenetic modifications[8], 
affecting the regulation of various biological processes including tumor cell proliferation, apoptosis, cell 
differentiation, development and the immune response.

circRNAs possess characteristics such as abundance, ubiquity, conservation, and stable expression in saliva, 
blood, and exosomes[9-11]. Their expression in tissues and organs is stage-specific, making circRNAs highly 
promising biomarkers. It has been widely proposed that circRNAs could serve as biomarkers for early 
diagnosis and prognosis of tumors. The development of high-throughput sequencing technologies has 
facilitated the identification of a growing number of dysregulated circRNAs and their expression patterns 
are closely associated with patient prognosis. For example, circMAN1A2 exhibits high levels of expression 
in NPC cell lines and is also significantly increased in the serum of individuals with NPC, indicating its 
potential as a promising biomarker for the early detection of NPC[12]. Similarly, circMYC expression in 
exosomes can be used to differentiate radiation sensitivity in NPC patients[13], whereas the upregulation of 
circSERPINA3 is correlated with  NPC progression, including lymph node metastasis and unfavorable 
overall survival outcomes[14]. Additionally, high expression of circCRIM1[15] and circ-001387[16] are strongly 
associated with unfavorable prognosis in patients with NPC. These findings support the potential 
application of circRNAs in early diagnosis and prognostic evaluation of NPC.
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As for OSCC, there remains a deficiency in readily available, precise, and non-invasive biomarkers for early 
detection. Saliva samples are not only easy to obtain but also rich in circRNAs in OSCC. Certain circRNAs 
have been observed to exhibit notable upregulation in OSCC cell lines, such as the case of circ-1001242[17] 
and circ-0086414[18]. Furthermore, circ-0001874 and circ-0001971 can be identified in saliva samples from 
individuals with oral cancer and their expression is strongly linked to the malignancy of the tumors[19]. The 
expression levels of these circRNAs are correlated with tumor stage and size and may be used for the 
diagnosis of OSCC.

Regarding LSCC, there have also been reports on circRNAs as clinical diagnostic markers. Kan et al. 
examined the whole circRNA expression in LSCC tissues compared with adjacent non-tumor tissues using 
microarray analysis. They identified 698 circRNAs with differential expressions in LSCC tissues[20]. 
Subsequent quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed the 
highest upregulation of hsa-circRNA-1008555 and downregulation of hsa-circRNA-1044912 in LSCC. The 
expression of hsa-circRNA-1008555 was also significantly elevated in LSCC patients who have neck lymph 
node metastases or are at advanced clinical stages. Conversely, hsa-circRNA-1044912 is significantly 
decreased in LSCC patients with T3-4 stages, neck lymph node metastases, other advanced clinical stages or 
poor differentiation[20]. These data suggest the correlation between circRNAs and the staging and prognosis 
of LSCC. Taken together, the identification of circRNAs has great potential for disease diagnosis and 
prediction of HNSCC.

THE VALUE OF CIRCRNAS IN THE PROGRESSION OF HNSCC
circRNAs play a significant role in regulating proliferation in HNSCC. Various circRNAs have been 
identified to promote or inhibit proliferation by interacting with specific miRNAs and modulating 
downstream target genes. For example, circ-0046263 promotes NPC proliferation by upregulating insulin-
like growth factor binding protein 3 (IGFBP3) expression through miR-133a-5p sponge activity[21]. 
circZNF609[22-24], circTMTC1[25], circTRAF3[26], and Epstein-Barr  virus (EBV)-encoded circRNA 
circRPMS1[27] also promote NPC proliferation through distinct mechanisms. Conversely, circKIAA0368[28], 
circ-0004788[29], circ-0081534[30,31], circITCH[32], circHIPK3[33], and circSETD3[34,35] have been found to inhibit 
NPC proliferation. In OSCC, circHIPK3[36], circDOCK1[37], hsa-circ-0001971, hsa-circ-0001874[38], and hsa-
circ-0011946[39] are overexpressed and stimulate proliferation, whereas hsa-circ-0004491[40], hsa-circ-
0002203[41], hsa-circ-0063772[42], circ-0000140[43], hsa-circ-0007059[44], hsa-circ-0055538[45], and hsa-circ-
0092125[46] are tumor suppressors that inhibit proliferation and promote apoptosis. circ-100290 functions as 
a ceRNA by sequestering miR-29b and miR-378a, regulating cyclin-dependent kinase 6 (CDK6) and glucose 
transporter 1 (GLUT1) expression in OSCC[47,48]. circPKD2 promotes apoptosis and inhibits proliferation 
and invasion in OSCC[49,50]. In LSCC, circ-100290 is significantly elevated and enhances proliferation by 
modulating miR-29a-3p expression[51]. Further studies are needed to elucidate the specific regulatory 
mechanisms of these circRNAs, which could provide potential new targets and therapeutic approaches for 
HNSCC.

Furthermore, various circRNAs have been identified to promote or inhibit invasion and metastasis of 
HNSCC by regulating different molecular pathways. For example, circCTDP1[52], circARHGAP12[53],  
circRNF13[54], circ-0000215[55], circSETD3[35], and circCAMSAP1[56] enhance NPC invasion and metastasis, 
whereas circCCNB[57], hsa-circ-0000345[58] and circTGFBR2[59] inhibit the migration and invasion of NPC. 
The overexpression of circPVT1 in NPC significantly promotes NPC migration and invasion, showing a 
positive correlation with the disease progression and TNM stages of NPC[60]. circRILPL1 is highly expressed 
in NPC and promotes NPC proliferation and metastasis through binding to Rho-associated coiled-coil 
containing protein kinase 1 (ROCK1) and importin7 (IPO7) to activate the Hippo-YAP signaling 
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pathway[61]. In OSCC, circ-0000140[43] and circ-100290[47] promote migration and invasion, whereas circ-
0001971[19,62,63] regulates various biological processes. In LSCC, circSHKBP1[64], circ-103862[65], circ-
0036722[66], and circBFAR[67] promote proliferation and invasion, whereas circPARD3[68] and circeMTCL1[69] 
play a role in invasion and migration. Furthermore, several other circRNAs, including circ-0005033[70], circ-
0044520[71], and circ-0023028[72], have also been implicated in the regulation of LSCC proliferation, invasion, 
and migration. These circRNAs interact with specific miRNAs and downstream target genes to modulate 
the metastatic potential of HNSCC. Further studies are necessary to deepen our understanding of the 
regulatory mechanisms of these circRNAs and identify potential therapeutic targets for interventions in 
HNSCC metastasis [Table 1].

ROLE OF CIRCRNAS IN RADIOTHERAPY, CHEMOTHERAPY, AND IMMUNOTHERAPY OF 
HNSCC
circRNAs are associated with radioresistance in HNSCC
Radiotherapy resistance is a significant challenge in the treatment of HNSCC and is closely related to 
patient prognosis. circRNAs are involved in this process. For example, overexpression of circ-000543 in 
radioinsensitive NPC contributes to the development of radioresistance. This circRNA functions by binding 
to miR-9, thereby upregulating platelet-derived growth factor receptor B (PDGFRB) expression[73].

In addition, circRNAs can also modulate genes involved in the DNA damage response and repair. For 
example, the expression of circATRNL1 significantly decreased after radiation exposure, which may lead to 
radiation resistance in tumor cells by inhibiting apoptosis and cell cycle arrest in OSCC. Therefore, 
increasing the expression of circATRNL1 may help improve the sensitivity of OSCC to radiotherapy, 
thereby enhancing its effectiveness[74]. In general, circRNAs affect the responsiveness of tumors to 
radiotherapy by regulating apoptosis pathways and DNA damage response and repair pathways post-
radiation. Thus, identifying targets for radiosensitization and reversing radioresistance of HNSCC is of great 
interest.

circRNAs are associated with immune evasion in HNSCC
circRNAs can regulate the malignant progression of head and neck cancer through mechanisms such as 
immune evasion[75]. This mechanism refers to the escape of tumor cells from the immune system attack 
through different mechanisms, thus promoting tumor proliferation and invasion. Immune evasion 
mechanisms include inhibiting the activity of immune cells, changing tumor cell surface molecules to avoid 
being recognized by the immune system, and producing immunosuppressive factors, among others. By 
studying the mechanism of immune evasion, researchers found that the process can be regulated to achieve 
therapeutic effects such as inhibiting tumor proliferation and invasion. Immunotherapy has been widely 
used in HNSCC. Immune checkpoint inhibitors, in particular, are a common form of immunotherapy[76]. 
These drugs enhance the ability of immune cells to attack tumors by blocking the inhibitory signals between 
tumor cells and immune cells. In addition, personalized immunotherapy is also used in HNSCC. This 
therapy analyzes the patient’s tumor tissue or blood samples, identifies the tumor-specific antigens, and uses 
those antigens to activate the patient’s own immune system to attack and kill the tumor cells[77].

An example of a circRNA associated with immune evasion in HNSCC is circBART2.2, encoded by EBV, 
which can promote programmed death-ligand 1 (PD-L1) expression by activating the innate immune 
signaling pathway, leading to immune escape in NPC[78]. In addition, circCDR1as can regulate the immune 
escape process of OSCC by regulating the expression of miR-7[79]. Similarly, has-circ-0069313 participates in 
the immune escape of OSCC by modulating the expression of miR-325-3p and subsequently affecting 
forkhead box P3 (FOXP3)[80]. These circRNAs may influence the immune escape ability of LSCC by 
modulating immune-related genes.
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Table 1. circRNAs associated with proliferation, invasion, and metastasis in HNSCC

circRNA Expression Functions Targets                      Tumor  Ref.

circITCH Downregulation Proliferation;metastasis; invasion miR-214 [32]

circRNF13 Downregulation Proliferation;metastasis SUMO2 [54]

circCCNB1 Downregulation Metastasis; invasion Nuclear factor 90 [57]

hsa-circ-0000345 Downregulation Proliferation; metastasis; invasion miR-513a-3p [58]

circTGFBR2 Downregulation Proliferation; metastasis miR-107 [59]

circ-0046263 Upregulation Proliferation; metastasis miR-133a-5p [21]

circZNF609 Upregulation Proliferation; metastasis; invasion; 
angiogenesis

miR-188; miR-150-5p; miR-145 [22-24]

circTRAF3 Upregulation Proliferation; metastasis miR-203a-3p [26]

circRPMS1 Upregulation Proliferation; invasion; EMT miR-203; miR-31; miR-451 [27]

circKIAA0368 Upregulation Proliferation; metastasis; invasion; EMT miR-6838p-5p [28]

circ-0004788 Upregulation Proliferation; metastasis; invasion; 
angiogenesis

miR-515-5p [29]

circ-0081534 Upregulation Proliferation; migration; invasion; EMT miR-874-3p; miR-508-5p [30,31]

circCTDP1 Upregulation Proliferation; metastasis; invasion; 
apoptosis

miR-320b [52]

circARHGAP12 Upregulation Metastasis; invasion EZR; TPM3; RhoA [53]

circSETD3 Upregulation Metastasis; invasion; proliferation miR-615-5; miR-1538; miR-147a [34,35]

circ-0000215 Upregulation Proliferation; metastasis miR-512-5p [55]

circCAMSAP1 Upregulation Proliferation; metastasis SERPINH1 [56]

circTMTC1 Upregulation Proliferation; migration; invasion; EMT; 
apoptosis

miR-495 [25]

circHIPK3 Upregulation Proliferation; metastasis; invasion miR-4288 [33]

circRILPL1 Upregulation Proliferation; metastasis ROCK1; IPO7 [61]

circPVT1 Upregulation Metastasis; invasion E3 ubiquiting ligase β-TrCP

NPC

[60]

circ-0000140 Downregulation Proliferation; metastasis; invasion miR-182-5p [43]

hsacirc0001971/hsa-circ-
0001874

Upregulation        Proliferation; apoptosis                               miR-194; miR-204; miR-186/
miR-296

[38]

circPKD2 Downregulation Proliferation; metastasis; invasion miR-204-3p [49,50]

hsa-circ-0002203 Downregulation Proliferation; metastasis; invasion; 
apoptosis

/ [41]

hsa-circ-0004491 Downregulation Metastasis; invasion / [40]

hsa-circ-0007059 Downregulation Proliferation; metastasis; invasion AKT/mTOR [44]

hsa-circ-0055538 Downregulation Proliferation p53/Bcl-2/caspase [45]

hsa-circ-0063772 Downregulation Proliferation; metastasis; invasion / [42]

hsa-circ-0092125 Downregulation Proliferation; metastasis; invasion / [46]

circ-100290 Upregulation Proliferation; glycolysis miR-29b; miR-378a [47,48]

circDOCK1 Upregulation Proliferation miR-196a-5p [37]

circHIPK3 Upregulation Proliferation; metastasis; invasion; EMT; 
apoptosis

miR-124; miR-381-3p; miR-637 [36]

hsa-circ-0001971 Upregulation Proliferation; apoptosis miR-186; miR-107 [19,62,
63]

hsa-circ-0011946 Upregulation Proliferation; metastasis; invasion miR3383p

OSCC

[39]

circPARD3 Downregulation Proliferation / [68]

circ-0036722 Downregulation Proliferation miR-1248 [66]

circ-100290 Upregulation Proliferation miR-29a-3p [51]

circSHKBP1 Upregulation Proliferation; invasion miRNA-766-5p [64]

circ-0005033 Upregulation Proliferation; metastasis; invasion miR-107 [70]

circ-0044520 Upregulation Proliferation; metastasis; invasion miR-338-3p [71]

circ-0023028 Upregulation Proliferation; metastasis miR-486-3p [72]

circ-103862 Upregulation Proliferation; invasion miR-493-5p [65]

LSCC
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circBFAR Upregulation Proliferation; invasion miRNA-31-5p [67]

cireMTCL1 Upregulation Proliferation; metastasis; invasion CIQBP [69]

circRNAs: Circular RNAs; HNSCC: head and neck squamous cell carcinoma; EMT: Epithelial-Mesenchymal Transition; NPC: nasopharyngeal 
carcinoma; OSCC: oral squamous cell carcinoma; LSCC: laryngeal squamous cell carcinoma.

circRNAs are associated with drug resistance in HNSCC
Chemotherapy is one of the most effective treatments for advanced HNSCC. Currently, the commonly used 
first-line chemotherapy drugs include platinum drugs, 5-fluorouracil, imidazoles and taxanes. Platinum 
drugs such as cisplatin and carboplatin inhibit the growth and division of cancer cells by interfering with 
DNA replication and repair processes. The drug 5-fluorouracil (5-FU) is an antimetabolite drug that blocks 
the growth and division of cancer cells by inhibiting DNA and RNA synthesis[81]. Imidazoles, such as 
methotrexate, also inhibit the growth and division of cancer cells by blocking DNA and RNA synthesis[82]. 
Taxanes, such as paclitaxel and docetaxel, block the division and spread of cancer cells by interfering with 
microtubule polymerization[83]. Overall, research on chemotherapy for HNSCC is progressing with the hope 
of finding more effective treatments to improve the patients’ survival rate and quality of life. However, a 
significant number of HNSCC patients exhibit chemotherapy resistance, posing a major challenge to 
effective treatment.

The emergence of multidrug resistance in tumor cells is the main reason for chemotherapy failure[84,85]. With 
the extensive investigation of circRNA biological function, increasing evidence suggests that certain 
circRNAs are significantly upregulated in drug-resistant HNSCC tissues. Furthermore, circRNAs are closely 
associated with some signaling pathways that are involved in drug resistance of HNSCC, such as PI3K/AKT, 
MAPK, NF-κB, and Wnt/β-catenin signaling pathways[86]. These circRNAs can act as "sponges" for miRNAs 
by containing multiple miRNA binding sites, thereby adsorbing and inhibiting miRNA activity and 
subsequently regulating downstream pathways that affect tumor sensitivity to drugs. Additionally, circRNAs 
can influence tumor drug resistance, either by directly binding to proteins or through the regulation of 
cellular autophagy[75] [Figure 1].

circRNAs and chemoresistance in nasopharyngeal carcinoma
Specific circRNAs have been reported to play a role in metastasis and resistance to chemotherapy in NPC. 
For instance, circCRIM1 is abundantly expressed in NPC tissues with high metastasis and can enhance 
forkhead box Q1 (FOXQ1) expression by targeting miR-422a. This, in turn, promotes NPC metastasis and 
confers resistance to docetaxel chemotherapy[87]. circ-0008450 is upregulated in NPC tissues and promotes 
resistance to cisplatin by targeting the miR-338-3p/Smad5 axis[88]. circIPO7 is upregulated in NPC tissues 
and binds to Y-box binding protein1 (YBX1) in the cytoplasm, promoting its phosphorylation at serine102 
(p-YBX1S102) by the kinase AKT. This leads to the nuclear translocation of YBX1 and activation of genes 
such as fibroblast growth factor receptor 1 (FGFR1), tenascin-C (TNC) and neurotrophic tyrosine kinase 
receptor 1 (NTRK1), thereby promoting resistance to cisplatin in NPC[89]. Another example is circ-0067717, 
which is upregulated in paclitaxel-resistant NPC. This circRNA serves as a scaffold of tripartite motif 
containing 41 (TRIM41) protein, which is a ubiquitin E3 ligase. TRIM41 induces p53 ubiquitination and 
degradation, which results in reduced levels of p53 protein, ultimately promoting resistance to paclitaxel in 
NPC[90]. circPARD3 promotes cisplatin resistance of NPC side population cells. This effect is mediated 
through the miR-579-3p/SIRT1/SSRP1 axis[91]. circ-0028007 derived from the NUAK1 gene is upregulated in 
poorly differentiated NPC cell lines and its silencing enhances the responsiveness of NPC to 
paclitaxel/cisplatin[92]. circNRIP1 is upregulated in the serum of chemotherapy-resistant NPC cells, and 
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Figure 1. circRNAs are closely associated with signaling pathways involved in drug resistance of HNSCC. circRNAs: Circular RNAs; 
HNSCC: head and neck squamous cell carcinoma.

functions as a sponge of miR-515-5p, leading to miR-515-5p inhibition and interleukin 25 (IL-25) 
upregulation. This mechanism promotes chemotherapy resistance in NPC by enhancing the expression of 
IL-25, which can be directly targeted by miR-515-5p[93]. circSETD3 is upregulated in NPC and is related to 
cisplatin resistance in this carcinoma. Knockdown of circSETD3 can inhibit NPC proliferation, enhance 
cisplatin sensitivity, and increase the apoptosis rate. circSETD3, a sponge for miR-147a, promotes activation 
of the AKT/mTOR pathway. circSETD3 promotes NPC proliferation and cisplatin resistance by 
manipulating miR-147a[34].

circRNAs and chemoresistance of laryngeal squamous cell carcinoma
circRNAs affect the chemotherapy resistance of LSCC. For example, circPGM1 interacts with miR-376a as a 
ceRNA to regulate the drug resistance of LSCC. The autophagy-related protein 2A (ATG2A) is a key 
effector of circPGAM1/miR-376a axis-mediated resistance. Overexpression of ATG2A significantly inhibits 
miR-376a on cisplatin resistance in LSCC. circPGAM1 functions as a miR-376a sponge, promoting the 
expression of ATG2A and subsequently enhancing autophagy, leading to cisplatin resistance in LSCC[94]. 
Gao et al. observed a significant association between elevated circPARD3 expression and tumor stages and 
cervical lymph node metastasis of LSCC patients[68]. Moreover, high circPARD3 caused significantly shorter 
overall survival of LSCC patients. circPARD3 functions as a miRNA-145-5p sponge, upregulating the 
expression of protein kinase C iota (PRKCI) and further activating the AKT/mTOR signaling axis, 
promoting the proliferation, migration, invasion and chemotherapy resistance of LSCC[68]. Yi et al. observed 
elevated expression of circ-0004507 in LSCC and noted a positive correlation between its expression and 
tumor stage, differentiation degree, and lymph node metastasis rate[95]. circ-0004507 was highly expressed in 
the cancer tissues of chemotherapy-resistant patients. Through its role as a miR-873 sponge, circ-0004507 
downregulates the expression of miR-873, thereby reducing the sensitivity of laryngeal cancer to cisplatin 
chemotherapy[95]. Additionally, Gong et al. showed that circ-0005033 was highly expressed in laryngeal 
cancer tissues, compared with normal laryngeal epithelial tissues, and circ-0005033 functions as a ceRNA 
for miR-107 in LSCC[70]. High expression of circ-0005033 downregulates miRNA-107 expression, promoting 
insulin-like growth factor-1 receptor (IGF1R) expression and subsequently enhancing the proliferation, 
invasion, migration, and cisplatin resistance of LSCC[70].
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Table 2. circRNAs involvement in chemotherapy resistance of HNSCC

circRNA Tumor Expression Functions Targets Ref.

circCRIM1 Upregulation Promote metastasis of NPC and resistance to docetaxel chemotherapy miR-422a [87]

circ-0008450 Upregulation Promotes NPC cisplatin resistance miR-338-3p [88]

circIPO7 Upregulation Promotes NPC cells to resist DNA damage triggered by cisplatin YBX1 [89]

circ-0067717 Upregulation Promote taxol resistance in NPC TRIM41; p53 [90]

circPARD3 Upregulation Promote the dryness and cisplatin resistance of NPC miR-579-3p [91]

circ-0028007 Upregulation Decreased sensitivity of NPC to paclitaxel/cisplatin \ [92]

circNRIP1 Upregulation Promote NPC drug resistance miR-515-5p [93]

circSETD3

NPC

Upregulation Promotes NPC cisplatin resistance miR-147a [34]

circPGM1 \ Promote cisplatin resistance in LSCC cells miR-376a [94]

circPARD3 Upregulation Promote the proliferation, migration, invasion and chemotherapy resistance of LSCC miR-145-5p [68]

circ-0004507 Upregulation Reduce the sensitivity of LSCC to cisplatin chemotherapy miR-873 [95]

circ-0005033

LSCC

Upregulation Promote proliferation, invasion, migration and cisplatin resistance of LSCC miR-107 [70]

circ-ILF2 Upregulation Promote OSCC of cisplatin resistance cell carcinoma miR-1252 [96]

circAP1M2 Upregulation Promotes autophagy associated cisplatin resistance in OSCC miR-1249-3p [97]

circ-0109291 Upregulation Promote the proliferation and cisplatin resistance of intracavitary squamous cell 
cells

miR-188-3p [98]

circANKS1B Upregulation Promote the growth and drug resistance of intracavitary squamous cell carcinoma TGF-β1 [99]

circPKD2

OSCC

Upregulation Promoting cisplatin sensitivity in OSCC miR-646 [49]

circRNAs: Circular RNAs; HNSCC: head and neck squamous cell carcinoma; NPC: nasopharyngeal carcinoma; LSCC: laryngeal squamous cell 
carcinoma; OSCC: oral squamous cell carcinoma.

circRNAs and chemoresistance in oralsquamous cell carcinoma
Some circRNAs show significant differential expression between chemotherapy-resistant OSCC patients 
and corresponding normal tissues. Wu et al. discovered that circILF2 is overexpressed in cisplatin-resistant 
OSCC cells[96]. As a miRNA sponge for miR-1252, circ-ILF2 inhibits miR-1252 expression. miR-1252 
regulates the expression of Krüppel-like factor 8 (KLF8), which functions on proliferation, drug resistance, 
and inflammation of OSCC, thereby promoting cisplatin resistance[96]. The researchers identified 
circAP1M2 (hsa-circ-0049282) as a miR-1249-3p sponge, inhibiting autophagy-related protein 9A (9A) 
expression. circAP1M2 activates autophagy associated with ATG9A, thereby promoting cisplatin resistance 
in OSCC[97]. circ-0109291 is also overexpressed in cisplatin-resistant OSCC and promotes proliferation and 
cisplatin resistance of OSCC cells through the miR-188-3p/ABCB1 axis[98]. The circRNA circANKS1B (circ-
0007294), originating from exons 5 to 8 of the ANKS1B gene, is positively associated with the expression of 
transforming growth factor-β1 (TGF-β1) in OSCC tissues. circANKS1B facilitates the growth and resistance 
of OSCC by stimulating the TGF-β signaling pathway in oral cancer cells[99]. circPKD2 is significantly 
upregulated in cisplatin-treated OSCC and acts as a miR-646 sponge in OSCC cells. By inhibiting miR-646, 
circPKD2 promotes the expression of autophagy-related protein 13 (ATG13), leading to the accumulation 
of autophagic vesicles in cisplatin-treated OSCC cells and enhancing sensitivity to cisplatin[49] [Table 2].

In conclusion, circRNAs have emerged as promising biomarkers for various cancers, including NPC, 
OSCC, and LSCC. Their dysregulation affects the development and progression of these malignancies. By 
further investigating the functional roles and underlying mechanisms of circRNAs in these cancers, we can 
potentially discover new diagnostic and therapeutic targets. Therefore, circRNAs have significant potential 
for enhancing the management and prognosis of patients with NPC, OSCC, and LSCC. Further research in 
this area is necessary to fully comprehend circRNAs’ clinical implications and therapeutic uses in these 
specific cancer types.
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PERSPECTIVES
Overall, circRNA has great potential for clinical application in HNSCC. Firstly, circRNA can serve as a 
potential biomarker for HNSCC[51,72]. Detecting the expression level of circRNA can aid in the early 
diagnosis of HNSCC, evaluating the prognosis of patients and guiding the selection of individualized 
treatment options. Secondly, circRNA can be used as a predictor of drug resistance in HNSCC[68]. By 
examining the expression level of circRNA, patients’ sensitivity to chemotherapeutic agents can be 
predicted, thus guiding the choice of individualized treatment options[9,18]. Further investigation of the 
mechanism of circRNA in drug resistance in HNSCC could provide important clues for discovering novel 
therapeutic targets.

However, current research on circRNA is still in its early stages. Most studies focus on phenotype 
observation and molecular regulation, with many studies on circRNA mechanisms remaining at the level of 
comparative expression profile construction following high-throughput sequencing. Although 
bioinformatics analysis methods have been used to predict the biological functions and signaling pathways 
of many circRNAs, comprehensive studies on the mechanisms of multiple signaling pathways are still 
lacking, especially in clinical applications. To further improve the effectiveness of tumor treatment, new 
targets and molecular biomarkers need to be discovered and identified. Additionally, the mechanisms 
underlying the occurrence and development of HNSCC have not been fully clarified and the sample size of 
clinical correlation research is small, limiting its translational value.

Although current research on circRNAs and their functions has uncovered only the tip of the iceberg, 
advances in research methods and technologies will eventually unveil the full scope of their significance. 
circRNAs will become increasingly important in the diagnosis and treatment of HNSCC. As research 
progresses, more chemoresistance regimens for HNSCC will be developed and applied clinically. The 
connection between circRNAs and HNSCC treatment will become more prominent. At that time, circRNAs 
may become effective diagnostic and prognostic biomarkers for HNSCC and potentially serve as new targets 
for treatment[100].
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