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Abstract
As an emerging strategy in antitumor therapy, photodynamic therapy (PDT) has garnered significant attention in 
recent years for the treatment of various malignant tumors. This is due to its low side effects, superior spatial 
selectivity, and maximum preservation of normal tissue function. However, the hypoxic nature of tumors, 
continuous oxygen consumption, and microvascular damage associated with PDT treatment have impeded its 
development. Therefore, the focus of antitumor therapy has shifted towards enhancing the efficacy of PDT by 
addressing tumor hypoxia. The objective of this review is to assess and summarize the recent advancements in 
tumor treatment using synergistic therapy strategies (PDT+X, where X represents photothermal therapy, 
chemodynamic therapy, chemotherapy, immunotherapy, Photoacoustic therapy, etc.) that overcome hypoxia. 
Additionally, this review aims to outline the advantages and disadvantages of various collaborative methods for 
improving tumor hypoxia, while also discussing the challenges that lie ahead for future research.
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INTRODUCTION
Cancer causes millions of deaths every year and thus strongly impacts our society[1-4]. The recent years have 
witnessed the emergence of diverse tumor treatment modalities with different efficacies and limitations, as 
exemplified by surgery, radiotherapy, chemotherapy, endocrine therapy, immunotherapy, and molecular 
targeted therapy[1,5]. Photodynamic therapy (PDT) has become a promising method of cancer treatment, 
offering the benefits of minimal invasiveness, high effectiveness, high selectivity, and low toxicity[6-8]. PDT 
has a track record of application to colon[9], lung[10,11], prostate[12], head and neck[13-15], brain[16], skin[17], 
pancreas[18], and breast[19] cancers.

The general mechanism of PDT involves three primary elements, namely light with a specific wavelength, a 
photosensitizer (PS), and molecular oxygen[20-23]. Presently, most PDT processes occur only when oxygen is 
present[24-26]. Nonetheless, PDT can also occur in hypoxic environments even without oxygen[27]. Upon 
irradiation with specific-wavelength light, PSs generate reactive oxygen species (ROS), which may 
contribute to cell death (e.g., apoptosis, necrosis, autophagy, ferroptosis, pyroptosis, necroptosis, 
parthanatos, and mitotic catastrophe), microvascular system destruction, and immune responses, via two 
(type-I and type-II) routes. Initially, the PS ground state (PS0) absorbs light to afford an unstable and short-
lived excited singlet state (1PS) that can easily return to PS0 by releasing light energy (fluorescence) or 
thermal energy (nonradiative decay). Alternatively, 1PS can experience intersystem crossing to afford a more 
stable and longer-lived triplet state (3PS) that can return to PS0 by releasing light energy (fluorescence/
phosphorescence) or thermal energy. Most importantly, 3PS can react with various substances through type-
I and type-II routes to generate ROS. In the type-I route, 3PS engages in electron transfer with the 
surrounding cellular substrates to form free radicals capable of generating ROS (O2

•-, •OH, and H2O2). In the 
type-II route, 3PS transfers energy to 3O2 and converts it into the highly reactive 1O2. The toxic ROS 
generated from 3PS exert antitumor effects by promoting various biological processes, mainly tumor cell 
killing, tumor vessel damage, and tumor immune reactions [Figure 1][5]. Although type-I and type-II routes 
can occur simultaneously, the latter route is believed to be dominant for clinically proven PSs[28].

Solid tumors are intrinsically prone to rapid proliferation, which inevitably results in hypoxic tumor 
microenvironments (TMEs)[29]. In solid tumors, O2 concentration varies by location, and the deeper the 
solid tumor site, the lower the oxygen concentration[29]. We know that, in the absence of oxygen, type II-
PDT can no longer function to produce ROS for tumor destruction.  Additionally, as tumors progress 
rapidly, continuous oxygen consumption increases tumor hypoxia; therefore, PDT is significantly less 
effective against tumors[25]. Tumor hypoxia is usually classified as chronic or acute. The more prevalent 
chronic hypoxia is caused by the increase in the distance of O2 diffusion from tumor vessels during tumor 
growth[30]. Hypoxia could dramatically decrease the efficacy of PDT, influence the genomic and proteomic 
changes of tumor cells, and result in tumor progression, tumor invasion, and metastasis[31-33]. Moreover, 
hypoxia upregulates the expression of hypoxia-inducible factor 1 (HIF-1), which induces autophagy to 
protect tumor cells and thus results in resistance to PDT[34].

So far, much effort has been directed at overcoming the hypoxia-associated limitations of PDT, as outlined 
in several reviews that mainly focus on methods of increasing O2 levels (e.g., via the generation of O2 in 
tumor sites and direct O2 delivery into tumors) or reducing O2 consumption[3,29,35]. Photodynamic therapy 
(PDT) is subject to severe limitations such as limited tissue penetration depth[36], hyperoxygen 
dependence[37,38] and phototoxicity[39,40]. In order to overcome the limitation of PDT, many strategies have 
been proposed, such as the emergence of non-photo-induced photosensitizers, which can effectively 
overcome the limitation of penetration depth and phototoxicity. PDT combined with anoxic therapy can 
increase the oxygen content of tumor microenvironment effectively, thus enhancing the effect of PDT. In 
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Figure 1. Schematic illustration of the photochemical reactions for type I and type II PDT and related antitumor effects.

this review, we concentrate on some strategies that have synergy between different therapies to overcome 
hypoxia. Next, we use examples to illustrate how these strategies work, and in the last, we discuss the 
challenges and future prospects associated with these strategies.

SYNERGETIC THERAPY STRATEGIES
Combination of PDT with photothermal therapy
As a non-oxygen-dependent cancer treatment, photothermal therapy (PTT) has been developed to improve 
antitumor effects via the use of photothermal agents to convert optical energy into thermal energy and thus 
cause irreversible cell damage[25,41-43]. An increase in local temperature (mild heating) was shown to increase 
the tumor blood flow and O2 content[44-46]. Therefore, PTT is a favorable method of overcoming tumor 
hypoxia and enhancing the efficacy of PDT. PTT treatment is known to cause the upregulation of the heat 
shock protein (HSP), which protects tumor cells[47]. Given that PDT-generated ROS were reported to 
downregulate HSP[48], PDT can improve the efficacy of PTT. So far, various materials have been designed for 
synergetic PPT-PDT treatment, including magnetic melanin[49,50], CuS[51,52], Prussian blue nanoparticles[53-57], 
poly(dopamine) (PDA)[58-60], gold nanospheres[61-63], graphene oxides[64-66], BP[67-69], and WS2 nanosheets[70].

Song et al. created a PTT-PDT self-synergetic nanoplatform (RGD-BPNS@SMFN) based on temperature-
dependent CAT-like (Catalase is an enzyme that catalyzes the decomposition of hydrogen peroxide into 
oxygen and water) effects to eliminate tumor[71] [Figure 2A]. This kind of self-synergetic phenomenon was 
found due to the PTT-promoted inherent CAT-like activity which increased the O2 concentration of TME 
and further enhanced PDT efficiency. Photothermal performance is shown in Figure 2B, BPNS@SMFN 
elevated the temperature under irradiation by 808 nm from 25 °C to 45 °C. Meanwhile, photodynamic 
performance is shown in Figure 2C, BPNS@SMFN generated ROS inferiorly to the bare BPNS without 
H2O2, but when added H2O2, ROS production dramatically elevated in BPNS@SMFN treated group. In vitro 
experiments, CCK-8 results showed that in unitary PDT or PTT treatment, BPNS, BPNS@SMFN and RGD-
BPNS@SMFN all presented subtle differences in cytotoxicity. However, RGD-BPNS@SMFN exhibited a 
dramatic decline in cytotoxicity in the PDT-PTT or PTT-PDT treatments, indicating the mutual promotion 
in dual phototherapeutic mode. Moreover, studies also found that the therapeutic order made different cell 
viability; RGD-BPNS@SMFN in PTT-PDT order had a better performance which may result in the effect of 
temperature on PDT efficacy [Figure 2D]. In vivo, BPNS@SMFN with dual phototherapy treatment groups 
inhibited tumors more dramatically than unitary PDT or PTT [Figure 2E and F], indicating the synergetic 
promotion outcomes of phototherapies in vivo.
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Figure 2. (A) The targeted self-synergetic phototherapy process of the nanoplatform as prepared based on the temperature-dependent 
CAT-like behavior; (B) photothermal curves of BPNS, SMFN and BPNS@SMFN dispersion under 808 nm laser irradiation; (C) Time-
dependent absorbance values at 415 nm of the different samples after mixing with DPBF; (D) In vitro cell viabilities of HeLa cells after 
different treatments with nanomaterials as-synthesized; (E) oxygen generation curves of three materials (SMFN, BPNS, BPNS@SMFN) 
at different pH (pH 6.5 and 7.4) over time; (F) the oxygen generation curves of different materials under different treatment mixed with 
fixed H2O2 concentration (500 × 10-3 m) over time tumor volumes variation in different treatment groups with time. Reprinted from 
ref.[71] with permission. **P < 0.01, Copyright 2022, Wiley-VCH.

Combination of PDT with hypoxia-activated therapy
Given the difficulty of increasing intratumoral oxygen levels and the limitations of monotherapies, several 
strategies have been developed to overcome the hypoxia limitation of PDT and have achieved marginal 
benefits. Hypoxia-activated prodrugs (HAPs), which act only under hypoxic conditions and are 
significantly cytotoxic to hypoxic cells but have little effect on normal cells, hold great promise for the 
enhancement of PDT efficiency[72].

Several studies combined PSs and HAPs into nanoparticles. He et al. chose banoxantrone (AQ4N), which 
can be enzymatically converted into toxic AQ4 under hypoxic conditions, as the HAP, and designed a 
covalent organic framework (COF)-based AQ4N-encapsulating nanoplatform (THPPTK-PEG NPs) 
composed of a PS (tetra(4-hydroxyphenyl)porphine (THPP)) and a 1O2-cleavable thioketal (TK) linker[73]. 
After laser irradiation at 660 nm, THPPTK-PEG NPs generated large amounts of cytotoxic ROS with 
antitumor activity, as the PS consumed large amounts of O2 and then aggravated the hypoxia within the 
tumor. Simultaneously, PDT-generated ROS cleaved the TK linker to disintegrate the COF and selectively 
release AQ4N into the tumor. Both in vivo and In vitro experiments showed that the highest cytotoxicity 
and tumor inhibition efficacy were observed for the THPPTK-PEG + laser group. Furthermore, HIF-1α 
staining revealed that THPPTK-PEG NPs and AQ4N@THPPTK-PEG NPs may aggravate tumor hypoxia 
after laser irradiation, resulting in hypoxia-activated cascade chemotherapy in tumors. Therefore, hypoxia-
activated therapy and PDT have a synergistic effect on anticancer activity.
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Combination of PDT with chemodynamic therapy
chemodynamic therapy (CDT), an oxidation therapy, has attracted much attention due to its ability to 
generate ROS via Fenton-type and Fenton-like reactions[74,75]. Specifically, CDT uses transition metal (e.g., 
Fe, Mn, Cu, Ni, and Co) catalysts to convert H2O2 into cytotoxic •OH and thus inflict significant oxidative 
damage to tumor cells[76-83]. Unlike O2, H2O2 is highly abundant in TMEs, and CDT is therefore not affected 
by hypoxia[84,85] and may be a promising strategy for enhancing PDT antitumor efficacy.

So far, Fe-based materials are the most suitable catalysts for therapeutic applications, generating •OH 
radicals and thus inducing lipid peroxidation (LPO) in tumor cells[86]. Fenton-type reactions can be 
represented as follows[75]:

Fe2+ + H2O2 → Fe3+ + •OH + OH-,

Fe2+ + •OH → Fe2+ + •OOH + H+,

Fe3+ + •OOH → Fe2+ + O2 + H+.

Unlike PDT, which induces apoptosis, Fe-based CDT treatment inflicts iron-dependent LPO-associated 
oxidative damage that induces regulated cell death, which can also be denoted as ferroptosis[86-89]. The 
combination of PDT and ferroptosis has been developed into a promising strategy. Ferroptosis-inducing 
agents can be generally classified as nanoparticle platforms (e.g., inorganic Fe-containing nanoparticles[90] 
and Fe-organic frameworks such as Fe-MOFs[91]) and protein-based nanocarriers (e.g., ferritin[92]). Several 
nanoparticles have shown a significant capability for enhancing antitumor efficacy but exhibited some 
drawbacks related to biocompatibility and tumor-targeting prospects[93].

Wang et al. designed a novel hypoxia-responsive nanoreactor BCFe@SRF for cancer synergistic therapy. 
They encapsulated the covalently crosslinked Ce6, bovine serum albumin (BSA) and ferritin, together with 
sorafenib (SRF) inside a protein [Figure 3A][94]. BSA-Ce6 is a prospecting protein-based PDT material. 
Ferritin acted as ferroptosis inducer, which converted H2O2 into •OH to amplify ROS concentration. SRF 
not only destroyed the oxidative defense system of tumor but also promoted ferroptosis for further 
enhancement. Azobenzene (Azo) was used as a cross-linker in the BCFe@SRF, which can be cleaved under 
hypoxic conditions. Thus, under hypoxic conditions, BCFe@SRF could be degraded to release Ce6 for 
photodynamic therapy and ferritin for chemodynamic therapy [Figure 3B]. After 670 nm light irradiation, 
BC-treated cells exhibited a 47.1% viability under hypoxia compared to 41.0% under normoxia, which 
indicates that hypoxia affects PDT efficiency. Meanwhile, BCFe@SRF treated cells had a 12.4% viability 
under hypoxia compared to 36.0% viability under normoxic conditions, owing to the degradation of Azo-
crosslinked nanosystems which released more Ce6 to enhance therapeutic efficacy [Figure 3C]. Similarly, 
with the CCK-8 assay, the BCFe@SRF + laser + hypoxia group demonstrated the best ability to kill cancer 
cells in the live/dead staining assay [Figure 3D]. To verify the hypothetic mechanism of BCFe@SRF, Fer-1 
was used as an inhibitor for ferroptosis in the vitro experiments. CCK-8 assay showed that the toxicity was 
obviously inhibited after adding Fer-1 [Figure 3E] through inhibited ROS generation [Figure 3F]. In vivo 
performance, compared to single PDT (BC + laser) treated group or ferroptosis group (BCFe@SRF), 
BCFe@SRF + laser group exhibited greater tumor inhibition and reduction [Figure 3G and H].

Zhou et al. suggested that the efficacy of ROS is limited by their short half-life and low diffusion radius and 
speculated that the direct targeting of vital ROS-sensitive organelles such as mitochondria could enhance 
efficacy[95]. To test this hypothesis, the authors developed a multifunctional nanoplatform targeting and 
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Figure 3. (A) Fabrication procedures and antitumor mechanisms of BCFe@SRF nanoreactor for the designed synergistic PDT and 
ferroptosis therapy; (B) TEM images of a BSA-Ce6, BCFe@SRF, and BCFe@SRF degradation product; (C) A CCK-8 cell viability assay of 
hepa 1-6 cells treated with BCFe@SRF (Ce6 concentration: 1 μM) mediated PDT (670 nm light, 50 mW·cm-2, 5 min) in normoxic or 
hypoxia condition; (D) Live/dead staining assay (green: live cells; red: dead cells); (C) CCK-8 cell viability assay; (E) CCK-8 cell viability 
assay; (F) Fluorescence microscopy images of hepa 1-6 cells treated with different formulations and ROS indicator DCFH-DA with or 
without laser irradiation in hypoxic condition; (G) Time-dependent tumor growth curves; (H) average weights of the excited tumors at 
the end of the indicated treatment. Reprinted from ref.[94] with permission. *P < 0.05; ***P < 0.001; ###P < 0.001. Copyright 2022, BMC.

damaging mitochondria through a combination of PDT and Fenton reactions (Fe3O4@Dex/TPP/PpIX/ss-
MPEG)[96]. Fe3O4 decomposed and diffused into the cytoplasm to react with H2O2 and generate O2 and •OH. 
Nondecomposed nanoparticles were localized in mitochondria and then directly generated ROS. 
Furthermore, the Fenton reaction-produced O2 could also be utilized as a raw material for PDT and thus 
increase its efficiency. In this way, Fenton reactions combined with PDT can greatly enhance tumor 
treatment[83,82].

However, the related clinical translation is limited by the insufficient generation of •OH and the low rate of 
Fe-based Fenton reactions[97]. Cu-based Fenton-like reactions have a greater CDT potential than Fe-based 
Fenton reactions because of the adaptability to weakly acidic TMEs, high rate of •OH generation, and 
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greater rate of the former. The redox properties of Cu are strikingly similar to those of Fe, e.g., both Cu+ and 
Cu2+ easily react with H2O2

[83,98-100]:

Cu2+ + H2O2 → Cu+ + HO2
• + OH-,

Cu+ + H2O2 → Cu2+ + •OH + OH-.

The Cu2+/H2O2 Fenton-like system is applicable over a broader pH range than the Fe3+/H2O2 system in view 
of the higher solubility[101]. In addition, Cu2+ complexes are more easily decomposed by •OH than Fe3+ 
complexes, which precludes the deactivation of Fenton reactions[102]. Furthermore, Cu2+ can be reduced by 
GSH to increase the concentration of redox-active species (Cu+) used to generate •OH (Cu2+ + GSH → Cu+ + 
GSSG)[103]. Such characteristics highlight the favorable properties of the Cu2+/H2O2 Fenton-like system for 
enhancing the efficacy of antitumor therapies.

In a study by Li et al., Cu2+-mediated protein self-assembly (C-m-ABs) was developed by integrating copper 
with photosensitizer (ICG)[104]. Under light irradiation, C-m-Abs activates Photo-Fenton-like reaction to 
generate large ROS through the reduction of Cu2+ and ICG simultaneously [Figure 4A]. As shown in 
Figure 4B, ROS generation capacity was measured using 1,3-diphenylisobenzofuran, which is used as a ROS 
probe. Compared to the control group, DPBF suffered significant degradation after the addition of copper 
agents, and it should be noted that C-m-Abs + GSH treated group exhibited the fastest degradation rate of 
DFBF. In vitro cell-killing experiments showed that C-m-Abs exhibited excellent cytotoxicity [Figure 4C-E]; 
furthermore, C-m-Abs presented significantly higher cytotoxicity than free DOX with a PH of 5.0, 
suggesting that the lower PH, the more release of DOX from C-m-Abs. Figure 4D showed that compared to 
the free ICG, C-m-Abs (no DOX) induced more cytotoxicity under different irradiations. Moreover, C-m-
Abs+ laser induced more cytotoxicity than DOX + ICG [Figure 4E]. In vitro experiments showed that C-m-
Abs treated groups inhibited tumors more than control and DOX groups [Figure 4F and G].

In addition to ROS generation, Cu-based Fenton-like reactions may be accompanied by the oxidation of the 
diamagnetic Cu+ to the paramagnetic Cu2+ by H2O2, which may be used to develop in situ-generated MRI 
contrast agents for tumor imaging and diagnosis. Liu et al. reported a nanomaterial for multimodal 
imaging-guided synergetic therapy (CDT + PTT) acting as a highly efficient CDT agent, photothermal 
conversion agent (PTT), and self-generated MRI contrast agent[105]. Considering all these properties of 
Fenton and Fenton-like agents, we believe that future works will promote the development of photo- and 
chemodynamic therapies.

Combination of PDT with chemotherapy
Chemotherapeutics can improve the sensitivity of tumor cells to ROS, while ROS can enhance the uptake of 
chemotherapeutics by tumor cells; the combination of PDT with chemotherapy has become one of the most 
common cancer treatments[106,107]. Given that many PS components are chemotherapeutics, as mentioned 
above, this approach is not discussed separately herein.

Combination of PDT with immunotherapy
With the use of immune checkpoint inhibitors (ICI), cytokines that stimulate lymphocytes, and CAR-T 
cells, immunotherapy has transformed cancer treatment[108-115]. However, only 10%-30% of patients gain 
benefits from ICIs, possibly because of the “cold tumor” phenomenon, which refers to the lack of tumor-
infiltrating T-cells and immunosuppressive TMEs[116,117]. Immunogenic cell death (ICD) is currently viewed 
as a promising strategy for activating the immune TME to enhance the efficacy of immunotherapy. ICD 
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Figure 4. (A) C-m-ABs displays Photo-Fenton-like activity in the schematic illustration; (B) An 8-min reaction time was used to deplete 
DPBF after undergoing different treatments; (C) The viability of MGC-803 cells was analyzed using C-m-ABs containing different levels 
of DOX at pH 7.4 or 5.0 for 12 h; (D) Cell viability of MGC-803 cells treated with C-m-ABs (no DOX) and ICG under laser irradiation 
(1.0 W cm-2 or 1.4 W cm-2); (E) To test MGC-803 cell viability, C-m-ABs and DOX + ICG were employed, respectively, under laser 
irradiation (1.0 W cm-2 or 1.4 W cm-2); (F) Visual images of excised tumor at 15 day after treated with DOX, DOX + ICG + laser 
(1.4 W cm-2), C-m-ABs, C-m-Abs + laser (1.0 W cm-2) (PDT group), and C-m-ABs+laser (1.4 W cm-2, PDT/PTT group); (G) Curves of 
relative tumor volume fluctuation over time. Reprinted from ref.[104] with permission. Copyright 2019, Wiley-VCH.

releases tumor-specific antigens and DAMPs to elicit antigen-specific immune reactions[118-120]. Pyroptosis, 
an ICD-causing PDT, holds great promise for augmenting tumor immunogenicity to overcome tumor 
immune suppression[121]. Therefore, the synergistic effects of PDT and immunotherapy have attracted much 
attention in view of the capability of this combination to convert immunosuppression into immunogenic 
TMEs and thus intensify the efficacy of both PDT and immunotherapy[122-124]. Wan et al. focused on RGX-
104, an optimal liver-X nuclear hormone receptor (LXRβ) agonist to eliminate myeloid-derived suppressor 
cell (MDSC)-caused immunosuppressive activity[125]. The authors copackaged RGX-104 and a PS (Ce6) and 
designed a pH-responsive size-transformable nanoparticle delivery system (MRC NPs)[126]. RGX-104 
reduced MDSCs to propel antitumor immunity, while Ce6 induced pyroptosis to increase tumor 
immunogenicity and generated ROS in tumor sites. Most recently, X-ray-induced PDT was combined with 
immunotherapy in cancer treatment with very good outcomes[124].

Combination of PDT with photoacoustic therapy
Photoacoustic therapy (PAT) is relatively different from other tumor therapies, as it inflicts mechanical 
damage to tumor cells using photoacoustic shockwaves without considering phototoxicity and 
resistance[127]. The oxygen-independent nature of PAT increases its chances of overcoming hypoxia during 
PDT[128]. Zhang et al. developed a new photoacoustic/dynamic therapeutic (PADT) agent based on a new PS 
(Gd(III)-phthalocyanine, GdPc)[129], showing that it can simultaneously generate acoustic cavitation for 
photophysical damage and 1O2 for photochemical damage upon pulse-wave (PW) laser irradiation. In vitro 
experiments, after irradiation at 680 nm (0.3 W cm-2), GdPcP-pretreated cells displayed direct mechanical 
damage and large 1O2 contents. In other In vitro experiments, the activity of HepG2 cells in the PADT group 
significantly decreased (to 53.5% of the original) under hypoxic conditions, while that in the PDT group 
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Figure 5. (A) ROS were detected by RNO-ID using Cu-Cy aqueous solution (0.2 mg/mL) irradiated with different MWs of different 
power for 5 min. (B) Cu-Cy aqueous solution (0.2 mg/mL) irradiated with MW at 20 W for different times was detected by the RNO-
ID method. (C) A comparison of SOSG fluorescence intensity with different Cu-Cy concentrations after MW irradiation. (D) A 
live/dead staining image of HCT15 cells treated with Cu-Cy and MW irradiation (20 W, 3 min). (E) MW-induced colony formation in 
HCT15 cells. (F) A calculation was made to determine the average number of clones. (G) Experiment images showing each group’s 
results using the xenograft model. (H) Tumor mass changes. (I) Tumor volume changes. (J) An illustration of how Cu-Cy-mediated 
dynamic microwave therapy (MWDT) induces ferroptosis in colorectal cancer cells. (K) Western blot assay of GPX4 expression. (L) 
FCM assay of cellular LPO with BODIPY-C11 probe detection. (M) FCM analysis of relative fluorescence intensity of HCT15 stained with 
the C11 BODIPY probe. Scale bar: 50 μm; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Reprinted from ref.[131] with permission. 
Copyright 2022, Elsevier.
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decreased only to 80.3%. Under in vivo hypoxic conditions, subcutaneous tumor models showed 
significantly stronger tumor inhibition in the PADT group compared to the PDT group after 18 days of 
different treatment regimens. This study suggested that the PW irradiation of GdPc resulted in 
mitochondrial damage and programmed cell death due to the strong acoustic effect and the high quantum 
yield of 1O2.

PDT with microwave radiation
Microwaves can propagate through all types of tissues and stimulate photocatalysis in order to produce ROS 
oxygen-independently by plasmonic effects caused by microwave radiation[130]. PDT induced by microwaves 
is an excellent replacement for PDT based on type I[131]. The effect of MW is to dilate the blood vessels, 
increase blood flow velocity, and, in turn, increase oxygen content while activating photosensitizers in the 
body[132]. For instance, Copper-cystamine (Cu-Cy), a new type of photosensitizer researched and invented 
by Chen’s team[133], can be activated by UV[134], microwave[100,135], ultrasound[136] and X-Ray[137-142] and generate 
large amounts of singlet oxygen for killing tumor cells[100]. As microwave radiation is utilized with Cu-Cy 
nanoparticles at the tumor site, this will create 1O2

[130]. This form of therapy may also be used with other 
chemicals such as Iodine or Chloride[143]. These methods may provide other options in decreasing tumor 
size depending on the location.

According to Zhou’s study, through Cu-Cy nanoparticle-mediated microwave dynamic therapy, ferroptosis 
can be induced as a cancer treatment option[131]. They used RNO-ID and SOSG to verify that ROS could be 
produced after MW irradiation of Cu-Cy, and the results showed that singlet oxygen increased with the 
increase of MW irradiation time and Cu-Cy concentration [Figure 5A-C]. In vitro experiments, Human 
CRC cells HCT15 can be inhibited by Cu-Cy nanoparticles activated with MW. Cu-Cy at 40 μg/mL almost 
killed all cells after microwave activation [Figure 5D]. Significant inhibition of cell colony formation was 
observed in Figure 5E and F when MW-activated Cu-Cy nanoparticles were compared to other groups. 
In vivo experiments, compared to control group or MW group, Cu-Cy group, the Cu-Cy +MW group 
obviously inhibited the tumor mass and tumor growth [Figure 5G-I]. At the same time, by inducing 
ferroptotic death with microwave PDT using Cu-Cy nanoparticles, Zhou found that microwave PDT can 
effectively destroy colorectal cells [Figure 5J]. As seen in Figure 5K, Western blot assay showed that GPX4 
in HCT15 treated with MWDT was underexpressed compared to other groups (Blank, MW alone or Cu-Cy 
alone group). However, when ferroptosis inhibitor Fer-1 was added, this change was reversed. Ferroptosis 
was generally considered to be characterized by lipid peroxidation (LPO) inside cells[144]. C11-BODIPY 
fluorescent probe measurements showed that when HCT15 cells were treated with Cu-Cy + MW, the LPO 
was higher than when cells were treated with MW alone or Cu-Cy alone [Figure 5L and M]. As a result, 
human CRC cells were shown to undergo ferroptosis via MW-activated Cu-Cy.

More sensitizers have been discovered in recent years, such as graphitic-phase carbon nitride (g-C3N4) 
quantum dots (QDs)[145], AIEgens (TPEPy-I and TPEPy-PF6)[146] and TiO2

[147] nanoparticles. Researchers 
found that it can activate and produce ROS under MW irradiation, killing tumor cells. MWPDT produces 
singlet oxygen and increases the oxygen content of the tumor microenvironment, providing a new 
therapeutic method for tumor treatment. X-ray has been widely used in clinical cancer theranostics, because 
of its strong penetration ability[148]. X-ray can activate photosensitizers and produce reactive ROS. Existing 
studies have found that radiokinetic therapy (RDT) is an oxygen-dependent dynamic therapy, so it is not 
elaborated in this article.

PDT with radiotherapy
Radiotherapy (RT) is an important mode of tumor therapy[149], which mainly uses radiation to damage the 
DNA of tumor cells to cause cell death, and can also produce ROS to cause cell apoptosis and enhance the 
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Figure 6. (A) The mechanism of W18O49@EP under NIR and X-ray. (B) The production of ROS within cells after various treatments. (C) 
A comparison of cell death following different treatments. Red: dead cells; green: living cells. (D) Hypoxia and intracellular ROS levels 
after different treatments. (E) Red fluorescence marks HIF-1 expression in cells after different treatments. (F) The expression of Ki67 in 
cells after different treatments is marked by red fluorescence. (G) Cell survival after different treatments. (H) Tumor-bearing mice’s 
body weight after different treatments. (I) Volumes of tumors in mice treated differently. Reprinted from ref.[160] with permission. 
Copyright 2022, frontiers.
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therapeutic effect of radiation therapy[150]. The effect of PDT on the killing of tumor cells is dependent on 
ROS[5]. In tumor microenvironments, ROS production is reduced by hypoxia, which was effectively 
overcome by RT produced ROS at the tumor site, thus enhancing the tumor therapeutic effect of 
PDT[137,151-159].

A novel W18O49 nanoparticle with photothermal effect and RT sensitization was synthesized by Wang et al., 
which can produce ROS in the presence of X-ray[160]. The anthracene endoperoxide derivative compound 
(abbreviated as EP) can generate ROS when exposed to the NIR. The ROS generated above will strengthen 
the effect of ROS on inducing apoptosis. So, they covalently connect W18O49 and EP to become W18O49@EP 
to achieve the purpose of combining PDT and RT [Figure 6A]. They used fluorescent probe H2DCFDA to 
assess the ability to generate ROS and found that the combination of EP and W18O49 NPs resulted in a large 
amount of ROS being produced [Figure 6B]. Their In vitro experiments found that almost all cells died after 
RT and PDT (W18O49@EP + Laser + X-ray), significantly improving the killing effect of the tumor compared 
to the control group. At the same time, the anoxia state of tumor cells was observed after the anoxia 
induction factor was labeled. The results showed that the anoxia state of the W18O49@EP + Laser + X-ray 
group was significantly improved. Ki67 index results also showed that the W18O49@EP + Laser + X-ray group 
effectively inhibited cell proliferation. The ROS removal experiment proved that W18O49@EPNPs can 
produce ROS, thus improving the efficacy of RT combined with PDT [Figure 6C-G]. Compared with the 
group, the tumors in the W18O49@EP + Laser + X-ray group basically disappeared after 2 w treatment, 
achieving a good therapeutic effect [Figure 6H and I]. Their results demonstrate that W18O49@EP releases 
ROS under near-infrared light (NIR) to achieve effective PDT without inducing hypoxia.

Some other photosensitizers, such as AVPt@HP@MNPs[161]and AuNCs-ICG nanozymes[162], have been 
found to have the characteristics of catalase, catalyzing the decomposition of hydrogen peroxide into 
oxygen in tumors, effectively solving the problem of hypoxia in the tumor microenvironment, and 
significantly improving the efficacy of PDT combined with RT. At the same time, AuNCs-ICG nanozymes 
will gather in large numbers in the tumor area and absorb X-ray, thus increasing the radiation dose in the 
tumor area and improving the efficacy of radiotherapy.

Summary
PDT is an important treatment for cancer because it is efficient, selective, minimally invasive, and has low 
toxicity. It damages tumor cells, vessels, and immune responses by creating ROS using energy transfer to 
oxygen. However, solid tumors often lack oxygen, making them difficult to treat with PDT. We discovered 
two main ways to generate ROS with PDT: the type-I process and the type-II process. We also identified 
several synergistic therapy strategies, such as combining PDT with PTT, hypoxia-activated therapy, CDT, 
immunotherapy, PAT, chemotherapy, Microwave Radiation, and Radiotherapy. The advantages and 
disadvantages of these strategies are summarized in Table 1. However, deep PDT as a clinical tool is still 
being explored and evaluated. Computer-aided drug design and target drug delivery techniques are being 
used to develop more effective photosensitizers for PDT. Additionally, developing PDT materials that can 
induce multiple tumor cell death modalities simultaneously would improve treatment effectiveness and 
prevent resistance. Combining type-I PDT with other treatments using multifunctional nanomedicine may 
be an efficient way to achieve multi-mode collaborative therapy.
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Table 1. The comparison of the strategies to relieve tumor hypoxia

Strategy Advantages Disadvantages

Synergetic therapy

Combined PDT with 
photothermal therapy 
(PTT)

(1) In one sense, increasing local temperature (mild heating) increases 
tumor blood flow and O2 content, but at the same time, ROS generated 
by PDT can downregulate heat shock protein (HSP) expression

(1) Light penetration of tissues is limited; 
(2) This strategy needs to provide compelling 
efficacy and safety benefits

Combined PDT with 
hypoxia-activated 
therapy

(1) Hypoxia-activated prodrugs (HAP), which act only under hypoxic 
conditions and have significant cytotoxicity in hypoxia cells but little 
effect on normal cells

(1) It is difficult for this strategy to retain and 
penetrate due to increased interstitial fluid 
pressure and a dense extracellular matrix

Combined PDT with 
chemodynamic therapy 
(CDT)

(1) CDT utilizes Fenton or Fenton-like reactions, with transition metals 
as catalysts, to convert H2O2 to •OH to destroy tumor cells. In contrast 
with the O2, H2O2 is highly abundant in TME, so that CDT is not 
affected by hypoxia; 
(2) In addition to triggering by the endogenous chemical energy, CDT 
can modulate the hypoxia and immunosuppressive TME

(1) There are still some concerns about the 
biocompatibility, tumor-targeting capacity of 
current studies; 
(2) The therapeutic performance was still far 
from satisfactory

Combined PDT with 
immunotherapy

(1) The synergistic effects of PDT and immunotherapy attracted more 
attention due to their capability to convert immunosuppression into 
immunogenic TME to intensify both PDT and immunotherapy efficacy

(1) The biodegradability of inorganic 
nanomaterials and polymer-based 
nanomedicines is typically poor, severely 
limiting their clinical application 
(2) Combination cancer therapies need more 
advanced nanomedicines to boost 
effectiveness and safety

Combined PDT with 
photoacoustic therapy 
(PAT)

(1) Photoacoustic therapy (PAT) can cause the target tumor cells 
directly mechanical damage via the photoacoustic shockwave without 
considering the phototoxicity and resistance

(1) Some materials are toxic and have shallow 
penetration, which restrict their clinical 
application

PDT with Microwave 
Radiation

(1) Microwave Radiation can dilate the blood vessels, increase blood 
flow velocity, and, in turn, increase oxygen content while activating 
photosensitizers and producing ROS in the body 
(2) Microwave Radiation has a strong penetration depth compared to 
ultraviolet light, and can be used for the treatment of deep tumors

(1) Research on MDT and EDT is still in its 
infancy

PDT with Radiotherapy (1) Radiotherapy (RT) is an important mode of tumor therapy, which 
mainly uses radiation to damage the DNA of tumor cells to cause cell 
death, and can also produce ROS to cause cell apoptosis and enhance 
the therapeutic effect of radiation therapy 
(2) The penetration force of Radiotherapy is stronger than ultraviolet 
light, microwave

(1) The disadvantages of radiotherapy, such 
as side effects
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