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Abstract
Despite significant advances in the understanding of multiple myeloma (MM) biology and the development of 
novel treatment strategies in the last two decades, MM is still an incurable disease. Novel drugs with alternative 
mechanisms of action, such as selective inhibitors of nuclear export (SINE), modulators of the ubiquitin pathway 
[cereblon E3 ligase modulatory drugs (CELMoDs)], and T cell redirecting (TCR) therapy, have led to significant 
improvement in patient outcomes. However, resistance still emerges, posing a major problem for the treatment of 
myeloma patients. This review summarizes current data on treatment with SINE, TCR therapy, and CELMoDs and 
explores their mechanism of resistance. Understanding these resistance mechanisms is critical for developing 
strategies to overcome treatment failure and improve therapeutic outcomes.
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INTRODUCTION
Multiple myeloma (MM) is the second most frequent hematologic malignancy, with an incidence of 
8/100,000 persons in Europe[1]. Despite significant improvement in MM therapy, no treatment so far has 
been able to cure MM patients. The introduction of novel agents such as proteasome inhibitors (PIs), 
immunomodulatory drugs (IMiDs) and cereblon E3 ligase modulatory drugs (CELMoDs), selective 
inhibitors of nuclear export (SINE), monoclonal antibodies (MoAbs), T cell engagers (bispecific antibodies), 
and chimeric antigen receptor (CAR)-T cell therapy has revolutionized MM treatment[2-8]. Nevertheless, 
relapse will inevitably arise, and the emergence of drug resistance represents a significant obstacle to 
achieving durable responses due to the development of multi-resistant disease. In the absence of novel 
agents, triple refractory patients (i.e., patients that have become resistant to a PI, an IMiD and a MoAb) 
have a dismal prognosis with a survival of approximately 4 to 12 months[9,10]. Compounds such as CAR-T 
cells or bispecific antibodies have shown remarkable efficacy both in triple-class exposed MM patients[2-5] 
and in earlier lines of therapy[11,12], with unprecedented rates of responses and progression-free survival 
(PFS) benefits. Still, PFS curves do not plateau, clearly pointing out the pivotal importance of understanding 
the mechanisms of resistance and how to overcome them. Over the past decades, extensive research efforts 
have been made to shed light on the multifaceted nature of drug resistance in MM, revealing a complex 
interplay of tumor cell-intrinsic factors, microenvironmental influences, and treatment-induced 
adaptations.

Microenvironmental factors play a pivotal role in promoting drug resistance[13]. Bone marrow stromal cells 
secrete several cytokines [such as interleukin 6 (IL6), transforming growth factor beta (TGF-β), and insulin-
like growth factor 1 (IGF-1)] that promote plasma cell growth and survival[14,15]. The interaction between 
plasma cells, osteoblasts, and osteoclasts not only fosters plasma cell growth but is also responsible for the 
development of bone disease, one of the most frequent complications of MM patients[16-18]. Despite MM cells 
inducing neo-angiogenesis[19], the bone marrow microenvironment is a hypoxic environment. Hypoxia 
modifies the metabolism of MM cells, and this has been linked to epigenetic deregulation and the 
development of treatment resistance[20-22]. With the development of immunotherapies for the treatment of 
cancer in general, and myeloma in particular, interest in the contribution of the immune microenvironment 
to disease resistance has increased. Changes in the immune system occur early in the development of 
myeloma[23], and the bone marrow niche is an immunosuppressive environment characterized by increased 
activity of myeloid-derived suppressor cells (MDSC). MDSC are supported by IL6 that is secreted by MM 
cells. MDSC not only inhibit T cell function, but are also able to stimulate angiogenesis via vascular 
endothelial growth factor (VEGF) secretion in a feed-forward loop that is beneficial for MM growth and 
survival[24-26].

Despite the advances made in understanding the development of treatment resistance, resistance 
mechanisms to the most recently approved therapies or to therapies in advanced phase clinical trials but not 
yet approved are still poorly explored and understood. Although much research has been performed on 
resistance to IMiDs, the specific mechanisms of resistance to CELMoDs have only been partially elucidated. 
Even more complicated is the situation for SINE, where the mechanisms of resistance are still largely 
unknown. An exception in this respect is T cell redirecting (TCR) therapies, such as bispecific antibodies 
and CAR-T cells, where the extensive research being conducted has identified different potential resistance 
mechanisms[27]. Nevertheless, the underlying reasons why some patients will respond to TCR therapies, and 
some will not, are still not completely understood and no predictive marker has been validated so far to 
identify those patients who will profit the most (or the least) from these therapies.



Page 3 of Schütt et al. Cancer Drug Resist 2024;7:26 https://dx.doi.org/10.20517/cdr.2024.39 27

By synthesizing the latest research findings and clinical insights, this comprehensive review aims to provide 
a thorough exploration of the diverse mechanisms driving drug resistance in MM, focusing on the most 
recent therapies, such as SINE, TCR therapy (bispecific antibodies and CAR-T), and CELMoDs.

SINE
SINE are a class of drugs that work specifically by blocking the export of tumor suppressors, growth-
regulatory proteins and RNA from the nucleus into the cytoplasm, thereby interfering with normal cellular 
functions. Trafficking of RNA, ribosomes, and proteins (such as tumor suppressor proteins, cell cycle 
inhibitors, and transcription regulators) between the nucleus and the cytoplasm is highly important for cell 
function. Alterations in this process, influencing the quantity of protein released into the cytoplasm or 
retained in the nucleus, can be the starting point of different pathological processes, including the 
development of malignancies. The export of RNA and proteins from the nucleus to the cytoplasm is 
regulated by the nuclear pore complex (NCP), together with transport receptor molecules such as exportins. 
Exportins, a ubiquitous protein family, utilize the nuclear export signal (NES) of cargo proteins to facilitate 
their transport out of the nucleus. This makes exportins valuable targets for SINE compounds[28]. One of the 
most studied and targetable exportins is nuclear export protein 1 (XPO1), also known as chromosome 
region maintenance 1 (CRM1)[29]. For the cargo protein to bind to the XPO1, a leucine-rich NES must be 
present and accessible to XPO1 on the cargo[30]. Different modifications in the cargo protein, such as 
phosphorylation, dephosphorylation, acetylation, sumoylation, and ubiquitination, are responsible for the 
accessibility of this NES domain[31,32]. Overexpression of XPO1 has been observed in several cancers, 
including MM, and correlates with shorter event-free survival (EFS) and shorter overall survival (OS)[33-36]. 
XPO1 regulates the nuclear export of mRNA transcripts and of more than 200 proteins, including 
oncogenic proteins and tumor suppressor proteins[37]. Particularly interesting for cancer development is the 
regulation of the transport of p53, APC/β-catenin, FOXO3, BRCA 1/2, IkBa, surviving, c-MYC, and 
BCR::ABL1[38,39]. For example, if p53, a major tumor suppressor protein involved in different cancers, is 
exported outside of the nucleus, it loses its antitumor effects, which are retained when p53 remains in the 
nucleus[40-42]. Similar is the situation for BRCA1, an important driver of breast cancer. Inhibition of XPO1 
induces accumulation of BRCA1 in the nucleus, whereas overexpression of XPO1 has the opposite effect[43]. 
Retention of BCR::ABL1 into the nucleus is able to induce apoptosis, making SINE interesting compounds 
for patients with chronic myeloid leukemia (CML)[38]. Different is the effect of SINE on oncogenes. XPO1 
regulates the nuclear export of mRNA encoding oncoproteins such as MYC. Inhibition of XPO1 
downregulates MYC expression in several tumors and has been suggested as an effective therapeutic 
strategy in double-hit lymphomas[44-48]. SINE compounds, inhibiting XPO1, disrupt nuclear-cytoplasmic 
shuttling, causing the accumulation of proteins and mRNA in the nucleus. This effect ultimately leads to a 
reduction in oncoproteins, the nuclear retention of tumor suppressor proteins, and the induction of 
apoptosis. Topoisomerases can also be affected by XPO1, resulting in reduced efficacy of topoisomerase 
inhibitor drugs such as anthracyclines and etoposide[29]. Topoisomerases are essential for cell division and 
are involved in DNA replication, transcription, and modification of chromatin conformation[49]. Inhibiting 
topoisomerases with, e.g., anthracyclines or etoposide, results in double-strand DNA breaks and cell death. 
For this effect to occur, topoisomerases must be localized in the nucleus. XPO1 exports topoisomerases 
from the nucleus to the cytoplasm[50], and this effect is stronger when myeloma cells are present at high 
density[51]. Inhibiting XPO1 by blocking topoisomerases in the nucleus can re-sensitize myeloma cells to the 
effects of anthracyclines and etoposide[29,52].

Importantly, SINE can also re-sensitize resistant cells to conventional drugs and PIs[52-55]. In MM, SINE 
compounds not only exert their anticancer effect by acting directly on MM cells, but also interfere with the 
tumor microenvironment. SINE inhibit receptor activator of nuclear factor kappa-Β ligand (RANKL)-
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induced NFκB activity and nuclear factor of activated T cells 1 (NFATc1), regulating osteoclast
differentiation. Blockage of NFκB and NFATc1 results in impaired osteoclast differentiation, suggesting that
SINE might have a role in preventing MM-related bone disease[46].

Selinexor, a specific inhibitor of XPO1, is the first Food and Drug Administration (FDA)-approved
inhibitor of nuclear export and was granted accelerated approval in July 2019. In Europe, it was approved in
January 2021. Approval was based on the data of the STORM trial (NCT02336815), a phase 2b,
international, multicenter, open-label study conducted in the USA and Europe[6]. The trial population was
heavily pretreated, as inclusion criteria demanded that patients had been previously treated with two PIs,
two IMiDs, monoclonal antibodies, and alkylating agents. Additionally, patients had to be progressing
under their last line of therapy. In this difficult-to-treat population, an overall response rate (ORR) [defined
as partial response (PR) or better] was achieved in 26% of patients. Median PFS and OS were 4 and 9
months, respectively[6].

Due to the promising data of selinexor combined with dexamethasone, the phase 1/2 STOMP trial was
started. This trial aims at exploring different combinations and schedules of selinexor and is designed as an
open-label, 12-arm, parallel-group study enrolling both patients with relapsed and/or refractory MM
(RRMM) as well as those with newly diagnosed MM (NDMM). Combinations explored include
pomalidomide, lenalidomide, carfilzomib, bortezomib, and daratumumab. Responses were encouraging in
the PI arms, with an ORR for the selinexor/carfilzomib/dexamethasone (XKd) combination of 78% and an
ORR for the selinexor/bortezomib/dexamethasone (XVd) arm of 63%[56,57]. Interestingly, in the bortezomib
arm, PI-refractory patients showed an ORR of 43%, confirming preclinical data[52,55] that inhibition of XPO1
might re-sensitize MM cells to proteasome inhibition[57]. These data set the basis for the phase 3 Boston trial
(NCT03110562), comparing XVd with Vd. Patients who had received one to three prior anti-MM regimens
were randomized 1:1 to receive XVd or Vd. Treatment was continued until disease progression. The trial
met its primary endpoint, with a statistically significant increase in median PFS. Median PFS was 14 months
in the XVd arm compared with 10 months in the Vd arm [hazard ratio (HR) 0.70; P = 0.0075]. ORR was
76% and 62%, respectively, with 17% of patients in the XVd arm achieving at least a complete response (CR)
vs. 10% in the Vd arm[58]. These data led to the FDA approval of the combination XVd from the second line
of therapy in December 2020 and to the European Medicines Agency (EMA) approval in July 2022.

SINE mechanism of resistance
Despite encouraging trial data, resistance to selinexor does occur, and patients will inevitably relapse. The
mechanism of resistance to selinexor in MM has been poorly explored so far, as the majority of research has
been focused on how selinexor and other SINE inhibitors can reduce resistance to other drugs[52-55]. Looking
at different cancers, it is clear that resistance mechanisms to SINE are pleiotropic and can vary according to
the type of neoplasia.

Mutations of XPO1 seem to play a marginal role in the development of SINE resistance. The in vitro
production of selinexor-resistant fibrosarcoma cell lines did not reveal the emergence of mutations,
suggesting that in fibrosarcoma, resistance to XPO1 inhibition is not due to mutation of the target which
could prevent the binding of the drug[59]. Analysis of primary mediastinal B cell lymphoma cell lines showed
recurrent mutations (E517K and E517G) in the NES-binding groove. However, the presence of E571
mutations did not affect response to selinexor therapy[60]. Mutations of E517 are present in 5% of chronic
lymphocytic leukemia (CLL) patients. The presence of the E571 mutations increased CLL aggressiveness in
in vivo models, but did not affect selinexor binding to XPO1[61], suggesting that mutation of the target, by
not altering the binding of SINE to XPO1, has a marginal role in SINE resistance. The only mutation so far
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that has been able to induce resistance to SINE is C528S, a mutation engineered in the lab to specifically 
affect selinexor binding site[62]. Heterozygous C528S is sufficient to induce selinexor resistance, indicating 
that a single mutation of cysteine528 can cause resistance to selinexor[63].

Gene expression profiling of sensitive and resistant fibrosarcoma cell lines showed genetic changes in the 
same direction after treatment with the SINE compound KPT-185. These data suggest that resistance to 
SINE compounds is likely not to be caused by a single resistance mechanism, but rather by a reduced 
sensitivity to the overall XPO1 inhibition, although mechanism leading to this reduced sensitivity remain 
elusive[59].

Further analysis of the resistance mechanism has therefore focused on altered pathways. Upregulation of the 
NFκB pathway was observed in SINE-resistant fibrosarcoma cell lines. The importance of upregulation of 
NFκB in resistance to SINE compounds was also confirmed in osteosarcoma cell lines, providing a rationale 
for combining SINE with PIs to overcome resistance[64]. This is particularly important, as PIs form the 
backbone of many MM therapies.

In ovarian cancers, increase of the neuregulin 1 (NRG1)/Erb-B2 receptor tyrosine kinase 3 (ERBB3) 
pathway has been found to contribute to SINE resistance. Expression of NRG1 and ERBB3, as well as NRG1 
secretion, were increased in SINE-resistant ovarian cancer cells. Downregulation of ERBB3 restored SINE 
sensitivity, while cells cultivated in the presence of exogenous NRG1 showed reduced sensitivity to 
KPT-185[65].

In CML cell lines, resistance to SINE has been postulated to be linked to reduced ferroptosis. A single-cell 
dynamic transcriptomic analysis of the CML cell line K562 (parental and selinexor-resistant) found that 
ferroptosis-inhibitory molecules FTH1 and SLC7A11 were increased in selinexor-resistant K562 cells. This 
increased expression correlated with increased drug resistance. On the other hand, the expression of 
HMGB1 and MTDH, two ferroptosis-driving molecules, was decreased in resistant cell lines. Supporting 
these data, the ferroptosis inducer RSL3 was able to restore cell sensitivity to selinexor (also known as 
KPT-330)[66].

In MM, the first efforts to identify the mechanism of resistance or response to selinexor were performed in 
the STORM trial. RNA sequencing of 32 patients revealed overexpression of E2F1 to be significantly related 
to a PFS shorter than 120 days. E2F1 is part of a family of transcription factors that regulate cell cycle 
progression, and its export from the nucleus to the cytoplasm is regulated by XPO1. The authors postulated 
that overexpression of E2F1 may result in downstream gene programming that confers a proliferative 
advantage in myeloma cells, and that E2F1 overexpression can be used as a marker of selinexor 
resistance[67]. Additionally, in patients enrolled in the STORM trial, a signature of four proteins (IRF3, 
ARL2BP, ZBTB17, and ATRX) was found to discriminate responders from non-responders[6]. A major 
limitation of this signature, however, is that it was developed only in 35 patients and validated in 12 patients. 
To further unravel the mechanism of selinexor resistance, Lagana et al. analyzed the transcriptome of 54 
patients treated in the STORM trial using a machine learning approach. They identified three groups of 
patients with different PFS; patients with the poorest prognosis were characterized by upregulation of 
melanoma antigen family A (MAGE-A)[68]. MAGE-A is aberrantly expressed in MM, and can foster 
resistance through the downregulation of Bcl-2 interacting mediator of cell death (BIM) and p21Cip1[69,70]. 
MAGE-A-depleted MM cell lines NCI-H929 and RPMI8226 increased their sensitivity to selinexor 
compared to patients in whom MAGE-A was not depleted, confirming the role of MAGE-A in selinexor 
resistance[68].
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Recently, the same group refined their model on 256 selinexor-treated MM patients, identifying a three-
gene signature capable of predicting response to selinexor. Upregulation of WNT10A, DUSP1, and ETCV7 
correlated with longer PFS and a deeper response in patients treated in the Boston trial as well as in those 
treated with selinexor outside clinical trials. Despite showing a linear association with PFS, the signature did 
not reach statistical significance in patients treated in the STORM trial. Interestingly, the signature was not 
predictive of survival in MM patients who did not receive selinexor, but retained its predictive value in 
patients with glioblastoma treated with selinexor therapy (trend toward improved PFS and significantly 
higher rate of PR or better for patients with a higher signature expression)[71]. These data suggest that this 
signature is not disease-specific but is associated with sensitivity or resistance to selinexor independently of 
cancer type.

Using single-cell RNA sequencing on 21 patients treated with selinexor combination in the XPORT-MM-
028 trial, Cohen et al. showed upregulation of XPOT and KPNB1 in selinexor refractory patients. XPOT is a 
tRNA transport, and KPNB1 codifies for a nucleocytoplasmic transporter. Aligning with this, among the 
upregulated pathways in selinexor-refractory patients, they found mRNA splicing and capping as well as 
nucleocytoplasmic transport. These data suggest that alternative nuclear export pathways are another 
potential mechanism that can circumvent reduced nuclear transport mediated by XPO1 inhibition[72].

Recently, heterogeneous nuclear ribonucleoprotein U (HNRNPU) has been found to regulate response to 
selinexor[73]. HNRNPU is a component of hnRNP complexes. hnRNPs are nuclear RNA-binging proteins 
that form complexes with RNA polymerase II transcripts. hnRNPs are involved in RNA metabolism, 
ranging from RNA transcription and pre-mRNA processing in the nucleus to translation and turnover of 
cytoplasmatic mRNA[74]. HNRNPU and XPO1 are strongly co-expressed in MM cells. HNRNPU affects 
XPO1-mediated nuclear export of ribosome subunits by affecting the localization of LTV1 and NMD3, two 
proteins involved in ribosome complex exportation from the nucleus to the cytosol. In cases with low 
HNRNPU, LTV1 and NMD3 are retained in the nucleus, reducing ribosome activity in the cytosol. This is 
important as ribosome nucleo-cytoplasmic transportation is linked to selinexor sensitivity[75]. HNRNPU also 
binds to the mRNA of MDM2 and RAN, altering their translation activity. Knockdown of HNRNPU 
increased selinexor sensitivity both in vitro and in vivo. The importance of HNRNPU in mediating selinexor 
resistance was confirmed by the fact that patients with a low HNRNPU expression had a better response to 
selinexor[73].

Further work has identified overexpression of ABCC4 as a marker of response to selinexor, whereas 
reduced levels are associated with decreased response to selinexor[76]. Opposite to pathways inducing 
selinexor resistance, mechanisms inducing selinexor sensitivity have also been described. The knockdown of 
eIF4A was able to sensitize MM cells to selinexor, suggesting that a combination of selinexor with inhibitors 
of eIF4A could overcome treatment resistance[77].

Another study found enrichment for genes involved in upregulated interferon signaling in patients 
responding to selinexor in combination with bortezomib and dexamethasone[71]. As interferon has been 
shown to modulate response to XPO1 inhibition[78], it can be postulated that upregulation of interferon-
mediated apoptotic signaling might prime cells to selinexor therapy.

Figure 1 illustrates the main mechanisms of resistance to SINE.

TCR THERAPY
One of the greatest improvements in MM therapy has been made with the introduction of TCR therapy. 
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Figure 1. Schematic representation of the main mechanism of resistance to SINE compounds. Increased expression of NRG1 and ERBB3 
contributes to SINE resistance by increasing cell survival, migration, and proliferation. Increased expression of MAGE-A reduces 
apoptosis, fostering resistance to SINE. Downregulation of WNT10A, DUSP1, and ETCV7 reduces SINE effectiveness. Reduction in 
ferroptosis also contributes to SINE resistance. Increased expression of HNRNPU, by modulating ribosome activity, increases resistance 
to SINE. For detailed explanations of SINE mechanisms of resistance, see the main text. SINE: Selective inhibitors of nuclear export; 
NRG1: neuroregulin 1; ERBB3: Erb-B2 receptor tyrosine kinase 3; MAGE-A: melanoma antigen family A; HNRNPU: heterogeneous 
nuclear ribonucleoprotein U; IkBa: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; NFκB: nuclear 
factor kappa-B; XPO1: exportin 1; hnRNPU: heterogeneous nuclear ribonucleprotein U; Pol II: RNA polymerase II; BIM: Bcl-2 interacting 
mediator of cell death.

The main effect of TCR therapy, such as bispecific antibodies or CAR-T cells, is to activate the host T cells
to be able to specifically recognize and kill tumor cells. Bispecific antibodies such as teclistamab,
elranatamab and talquetamab and the CAR-T cell products idecabtagene vicleucel (ide-cel) and
ciltacabtagene autoleucel (cilta-cel) have dramatically changed the prognosis of triple-class refractory
myeloma patients[2-5,8]. Bispecific antibodies bring the host’s T cell in contact with the malignant plasma cells
by binding a surface antigen of choice on the plasma cells [typically B cell maturation antigen (BCMA) or G
protein-coupled receptor family C group 5 member D (GPRC5D)] and the T cell receptor of the T cells.
Through this binding, T cells are activated and can induce myeloma cell killing[79,80]. Most bispecific
antibodies used in the clinic nowadays contain an Fc region, which prolongs the half-life of the antibody,
reducing the need for frequent dosing. CAR-T cells are T cells that have been modified ex vivo to contain a
CAR that can be activated on T cells by direct antigen contact without the need for major histocompatibility
complex (MHC) class I molecules. This receptor consists of different parts: extracellularly, there is a binding
domain for the antigen of interest, typically derived from a monoclonal antibody, where the heavy and light
chains are linked to form a single chain variable fragment (scFv). The scFv is linked to a spacer (an Ig-like
domain) and a transmembrane domain. In the new generation of CAR-Ts, the transmembrane domain is
followed by one or two costimulatory domains, with the function of promoting CAR-T cell proliferation
and survival. Finally, the intracellular moiety, containing the CD3ζ signaling chain of the T cell receptor, is
responsible for T cell activation. This chimeric antigen produced in vitro is inserted ex vivo in patient T
cells, which become able to recognize and kill myeloma cells even in the absence of MHC class I. The
patient’s own CAR-T cells are then reinfused in the host after a lymphodepleting chemotherapy[81]. The use
of bispecific antibodies and CAR-T cells in MM has been able to modify the course of the disease. Historical
data on daratumumab refractory patients attested an OS of less than 1 year[9], confirmed by the prospective
observational LocoMMotion trial, which reported a PFS of 4.6 months (95%CI: 3.9-5.6) and an OS of 12.4
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months (95%CI: 10.3-NE) in triple-class exposed patients[10]. In contrast, treatment with bispecific antibodies
resulted in a PFS ranging from 12 to more than 15 months[2,3,8], while treatment with CAR-T cells can lead to
even better results with a PFS longer than 2 years[4,82].

The first bispecific antibody to be approved was teclistamab. Teclistamab is a bispecific antibody that targets
BCMA and was approved in August 2022 by EMA and in October 2022 by the FDA. Approval was based on
the data on the MajesTEC-1 trial (NCT03145181), a phase 1/2 clinical trial for RRMM patients. The
MajesTEC-1 trial enrolled patients who had undergone a median of 5 prior lines of therapy, with 76%
classified as triple-class refractory. ORR was 63% and 39% of the patients achieved a CR or better; the
median PFS was 11 months[3].

The second approved bispecific antibody against BCMA is elranatamab. Elranatamb was approved in
August 2023 by the FDA and in December 2023 by EMA. Authorization was based on data from cohort A
of the phase 2 MagnetisMM-3 study (NCT04649359). The trial population was similar to the one enrolled in
the MajesTEC-1 trial (median lines of prior therapy was 5), although a higher percentage of patients (97%)
was triple-class refractory. The ORR was 61%, with 35% of patients achieving a CR or better. Fifteen-month
rates for PFS and OS were 51% and 57%, respectively[8].

Talquetamab is a bispecific antibody directed against GPRC5D. It was approved in August 2023 by the FDA
and EMA based on the data of the phase 1/2 MonumenTAL-1 trial (NCT03399799). Patients enrolled in the
trial received two different schedules of talquetamab, 405 µg/kg every week or 800 µg/kg every other week.
Patients had a median of 6 prior lines of therapy and 75% were triple-class refractory. ORR was 70% in the
405 µg group and 64% in the 800 µg cohort. In both groups, 23% of patients achieved at least a CR. The
median duration of response was 10 and 8 months in the 405 and 800 µg groups, respectively[2].

Although CAR-T cells targeting GPRC5D are being developed and tested in clinical trials, at present, only
CAR-T cells targeting BCMA have been approved in MM. The first CAR-T cell product to be available
outside clinical trials was ide-cel, which was approved in March 2021 by the FDA and August 2021 by EMA.
Approval was based on the data of the KarMMa trial (NCT03361748), a phase 1/2 trial investigating a single
dose of ide-cel in RRMM patients. Patients enrolled in the trial had received a median of 6 prior lines of
therapy and 84% were triple refractory. ORR was 73%, with 33% of patients achieving at least a CR. Of these,
79% were MRD-negative. Median progression-free survival was 9 months[5]. In a subsequent phase 3 clinical
trial (NCT03651128), ide-cel confirmed its benefit upon the standard of care in triple-class exposed patients
who had received 2 to 4 previous lines of therapy. Patients who did not respond to standard-of-care
treatment were allowed to cross over to the ide-cel arm. With a median follow-up of 30 months, median
PFS was 14 months with ide-cel vs. 4 months for standard of care (HR 0.49, 95%CI: 0.38-0.63). Adjusting for
the crossover, OS was also improved in patients who received ide-cel (HR 0.72, 95%CI: 0.49-1.01)[11,83].

Even more promising are the results for the second approved CAR-T cell product, cilta-cel. Cilta-cel was
approved in February 2022 by the FDA and in May 2022 by the EMA based on the data of the phase 1/2
Cartitude-1 trial (NCT03548207). Patients enrolled in the Cartitude-1 trial had received a median of 6 prior
lines of therapy and 88% were triple-class refractory. With a follow-up of more than 27 months, median PFS
and OS were not reached. PFS rates were 55% at 27 months. At the same time point, OS rates were 70%[4,82].
Similarly to what was seen for ide-cel, the promising data of phase 1/2 were confirmed in the phase 3
Cartitude-4 trial (NCT04181827). Cartitude-4 enrolled lenalidomide refractory patients who had received 1
to 3 prior lines of therapy. Patients were randomized between cilta-cel and standard of care. Median PFS
was not reached in the cilta-cel group and was 12 months in the standard of care group (HR 0.26, 95%CI:
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0.18-0.38)[12]. Recently, updated data were presented to the FDA during the oncologic drugs advisory
committee held on March 15th, 2024. During the audition, an OS of 79% at 2 years was reported, with an
HR of 0.57 vs. standard of care (https://www.fda.gov/media/176988/download).

Despite these encouraging results, PFS curves still do not show a plateau, indicating that most patients will
relapse even after TCR therapy.

TCR therapy mechanism of resistance
Resistance to CAR-T cell therapy and bispecific antibodies can develop through various mechanisms,
involving alterations both in the MM cells and in the tumor microenvironment.

Antigen escape, characterized by downregulation or complete loss of the expression of the target antigens,
enables MM cells to evade recognition and elimination by CAR-T cells or bispecific antibodies.

Resistance due to antigen loss does not affect the different compounds in equal measure, and it is highly
dependent on the target antigen. Despite having been reported, loss of BCMA expression is uncommon at
the time of progression[5,84,85]. BCMA is encoded by the TNFRSF17 gene, which is found on chromosome
16p. In 2021, two groups independently reported biallelic BCMA loss as a mechanism driving CAR-T cell
resistance[86,87]. Using single-cell genomics, Samur et al. identified a clone with a biallelic loss of BCMA
acquired by deletion of one allele and a mutation that created an early stop codon on the second allele in
one patient relapsing 9 months after BCMA CAR-T cell therapy[86]. The Würzburg group, on the other
hand, reported a patient with homozygous deletion of BCMA at the time of progression after BCMA
CAR-T cell therapy[87]. Interestingly, the authors also found heterozygous BCMA loss or monosomy of
chromosome 16 in 28 of 33 patients who had not been treated with BCMA-targeted therapy[87]. This finding
has obvious repercussions for clinical practice, as these patients might be more likely to develop
homozygous antigen loss following BCMA-targeted therapy. Recently, a different mechanism of BCMA
antigen escape was reported, namely a functional epitope loss. Functional epitope loss occurs when
mutations or in-frame deletions in the extracellular domain of BCMA occur. These mutations, being non-
truncating, do not change the surface expression of BCMA, but affect the binding affinity and, therefore, the
efficacy of anti-BCMA-targeted therapies[27]. Interestingly, not all TCR therapies are affected in the same
way by these extracellular domain mutations, with some compounds still retaining binding capacity and
efficacy. For example, Lee et al. showed that the presence of the mutation R27P in the extracellular domain
of BCMA conferred in vitro resistance to the BCMA bispecific antibodies teclistamab and elranatamab, but
not to the bispecific antibody alnuctamab or CAR-T cells[27]. This suggests that not only the presence of a
BCMA mutation, but also the type of mutation will become relevant when assessing patients at relapse for
further therapies.

Differently from BCMA, reduction or loss of GPRC5D expression seems to be a common mechanism of
resistance. GPRC5D can be lost due to biallelic deletions or single copy number loss[27]. GPRC5D loss was
reported in all six cases progressing after anti-GPRC5D CAR-T therapy[88]. Four additional patients
relapsing after anti-GPRC5D bispecific antibodies had GPRC5D biallelic loss at the time of relapse. In two
of these cases, the loss of GPRC5D was due to convergent evolution with different subclones losing
GPRC5D through mutually exclusive events[27], confirming the pivotal role of intra-clonal heterogeneity in
the development of treatment resistance[89]. Interestingly, modulation of cereblon with CELMoDs has been
suggested to prevent relapse driven by GPRC5D-negative MM cells[90].

https://www.fda.gov/media/176988/download
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Trogocytosis, i.e., the transfer of the target antigen from the tumor cell surface to the CAR-T cells, may also 
contribute to resistance, on one side, reducing antigen expression on the target cell, and on the other hand, 
leading to CAR T cell fratricide and thus reducing the activity of CAR-T cells[91].

Tumor load has also been suggested to impact response to TCR therapy, both of CAR-T cells and bispecific 
antibodies. A high tumor load, leading to chronic antigen exposure, may result in T cell exhaustion, 
impairing antitumor activity[92-94].

Continuous exposure to the antigen, induced by therapy with bispecific antibodies, also induces T cell 
exhaustion[95], reducing the efficacy of bispecific antibodies, but also the efficacy of CAR-T cell therapy if T 
cells are collected immediately after therapy with bispecific antibodies. Clinical trials confirmed that 
response to BCMA CAR-T cells after BCMA-targeted therapy is reduced, compared to BCMA naïve 
patients. Patients with the worst response and survival were those who had been treated with bispecific 
antibodies before CAR-T cell therapy[96]. This is likely due to the apheresis of exhausted T cells, which 
results in less active CAR-T cells after transfection.

An increase in soluble BCMA might also play a role in the development of resistance, specifically resistance 
to bispecific antibodies[97,98]. The mechanisms of these increased resistances are still not completely 
understood. Possible mechanisms can be the trapping of bispecific antibodies in serum, due to their binding 
to soluble BCMA, but also an enhancement of gamma-secretase activity, resulting in downregulation of 
surface BCMA[97,98].

Important in the development of resistance to TCR therapy is the immunosuppressive tumor 
microenvironment. An immunosuppressive microenvironment can hinder the activity of CAR-T cells and 
bispecific antibodies. Factors such as an increased expression of inhibitory checkpoint molecules (e.g., 
PD-L1), the presence of immunosuppressive cells (e.g., regulatory T cells, myeloid-derived suppressor cells), 
and the secretion of immunosuppressive cytokines (e.g., TGF-β, IL-10) can impair the function of CAR-T 
cells and diminish the efficacy of bispecific antibodies[99,100]. A correlative study of the MonumenTAL1 trial 
identified lower T cell counts, higher frequency of Treg, and higher expression of inhibitory markers such as 
lymphocyte activating 3 (LAG-3) and TIM-3 on CD8+ T cells of patients not responding to talquetamab[101]. 
Recently, Friedrich et al. showed that the preexisting T cell landscape is pivotal in determining the response 
to bispecific antibodies. Patients not responding to bispecific antibodies had a higher proportion of 
exhausted-like CD8+ clones before the start of therapy compared to responding patients. They could also 
show that bispecific antibodies can also lead to the differentiation and priming of naïve T cells via MHC 
class I, increasing the number of T cells that can effectively kill MM cells. According to their hypothesis, the 
presence of MHC class I increases cell recognition and T cell stimulation besides the activation provided by 
the engagement of the target antigen. The loss of MHC class I can, therefore, be an additional mechanism of 
resistance to bispecific antibodies, mediating immune escape beyond antigen loss[102].

Figure 2 illustrates the main mechanisms of resistance to bispecific antibodies and CAR-T cells.

CEREBLON MODULATING AGENTS (CELMODS)
CELMoDs are a new class of agents that work by binding to the regulatory protein cereblon (CRBN). CRBN 
is a component of the Cul4A/DDB1/Roc1 (Cul4ACRBN) E3 ubiquitin ligase. E3 ubiquitin ligase is responsible 
for polyubiquitination and subsequent degradation of substrate proteins. CELMoDs, by binding to CRBN, 
modulate the function of the E3 ligase complex and can trigger the ubiquitination and subsequent 
degradation of proteins important for MM cell survival, such as Ikaros and Aiolos[103]. Chemically, 
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Figure 2. Schematic representation of the main mechanisms of resistance to TCR therapy. Mutation or downregulation of the target 
antigen led to resistance due to failed recognition of the myeloma cells from the T cells. High tumor burden and high levels of soluble 
antigen can reduce the efficacy of bispecific antibodies by trapping them before they can reach the target cell. Shedding of the antigen 
from the target cell to the effectory cell can cause trogocytosis, leading to fratricide of the T cells. Immune exhaustion and an 
immunosuppressive microenvironment also contribute to disease resistance. For detailed explanations of T cell redirecting therapy 
mechanisms of resistance, see the main text. TCR: T cell redirecting; MHC I: Major histocompatibility complex class I.

CELMoDs are still not approved for routine clinical use, however, due to the above-described intriguing
mechanism of action and possible synergies, a wide range of studies investigating these compounds in
different settings are ongoing. For example, the phase 1/2 study CC-220-MM-001 (NCT02773030)
investigates different combinations of iberdomide. The results from the cohort of iberdomide and
dexamethasone have recently been published[7]. This cohort enrolled heavily pretreated RRMM patients,
including a high proportion of triple refractory patients (refractory to an IMiD, a PI, and an anti CD38
monoclonal antibody) after at least three lines of therapy. Iberdomide showed an ORR of 32%, with 10% of
the patients achieving at least a very good partial response (VGPR). PFS and OS were 3 and 11 months,
respectively. Importantly, the rate of grade 3 or higher non-hematological side effects was relatively low,
with the major toxicity of iberdomide being hematological[7].

CELMoDs and IMiDs share similar structures, with glutarimide rings that bind to the CRBN pocket and 
isoindolinone rings that are responsible for the interaction of CRBN with its substrates. Despite these 
similarities, CELMoDs structures are more complex than those of IMiDs: to enhance the interaction with 
CRBN or substrates, CELMoDs also contain additional phenyl and morpholino moieties[104,105]. This more 
complex structure leads to a higher potency of CELMoDs compared to IMiDs, with a 10-20-fold higher 
affinity to CRBN and more effective degradation of Ikaros and Aiolos[106,107]. Additionally, CELMoDs, as well 
as IMiDs, can stimulate the patient immune system, activating it against myeloma cells. The CELMoDs 
iberdomide induces depletion of B cells, increases interleukin-2 and interferon-γ production, and can 
stimulate the activity of T cells and the proliferation of natural killer (NK) cells[108,109]. Treatment with 
iberdomide enhances innate and adaptive immune responses by increasing effector T and NK cells[110]. This 
stimulation of the immune system makes CELMoDs attractive compounds for combination therapy with 
other immunomodulatory compounds such as monoclonal antibodies or T cell engagers. Preclinical data 
showed that iberdomide can enhance daratumumab-mediated cytotoxicity via upregulation of both 
complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity[111].
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Treatment with the CELMoDs iberdomide seems to be able to rescue, at least in part, resistance to other
compounds. The combination of iberdomide, daratumumab, and dexamethasone showed an ORR of 35%
in 19 patients, of whom 63% were daratumumab-refractory and 58% quad-class refractory[112].

The favorable safety profile of iberdomide prompted its investigation in the maintenance setting. The
EMN26 trial (NCT04564703) is a phase 2 study evaluating different doses of iberdomide (0.75, 1.0, 1.3 mg)
in the maintenance setting. Early data on the first 69 evaluable patients showed a deepening of the responses
after 6 cycles of maintenance therapy. Improvement of response was seen in more than 40% of patients and
the PFS at 6 months was above 90%[113]. As seen in the previous paragraph, resistance to TCR therapy,
including resistance to BCMA-targeted therapy does occur. Iberdomide has also shown its effectiveness in
patients previously exposed to BCMA-targeted therapy. A subanalysis of the CC-220-MM-001 trial
evaluated 38 patients who received iberdomide after having been exposed to BCMA-targeted therapy,
showing an ORR of 37% (including 29% at least a VGPR) and a median PFS of 2.4 months[114].

The second CELMoDs being currently investigated in the clinic is mezigdomide. The CC-92480-MM-001
(NCT03374085) trial is an ongoing phase 1/2 trial evaluating mezigdomide alone or in combination with
dexamethasone in triple-class refractory myeloma patients that have received at least three prior lines of
therapy. Preliminary data of the first 101 patients reported an ORR of 40%, with 23% of patients achieving at
least a VGPR. The median PFS was 4.6 months. The presence of plasmocytomas or pretreatment with
BCMA-targeted therapy did not seem to affect the response rate[115]. The CC-92480-MM-002
(NCT03989414) evaluates mezigdomide with different treatment combinations in RRMM. In patients with
2 to 4 prior lines of therapy, the combination of mezigdomide with daratumumab and dexamethasone
showed an ORR of 75%, with 37% of at least a VGPR. In the combination with elotuzumab, ORR was 36%
and 56% for patients receiving 0.3 mg and 0.6 mg of mezidgomide, respectively[116].

CELMoDs mechanism of resistance
As they share the same target, resistance mechanisms to CELMoDs are similar to those reported for IMiDs.
Resistance mechanisms of IMiDs have been widely investigated, and reviewed in[117]. Here, we focus on the
mechanisms that are more specific to resistance to the newer CELMoDs, while also touching upon
resistance mechanisms related to IMiDs. One of the major mechanisms of IMiDs/CELMoD resistance is
alterations in the CRBN pathways, such as decreased CRNB expression or mutations in the CRBN gene. A
recent CRISPR-Cas9 resistance screen against 170 relapse-specific mutations showed that mutations
functionally linked to lenalidomide resistance are restricted to those linked to the cereblon E3 ligase
complex[118]. The importance of genetic alterations of CRBN in the development of resistance to IMiDs/
CELMoDs is confirmed by the fact that the rate of alterations increases to up to 30% in relapse patients,
while these are very rarely found in newly diagnosed patients[119,120]. Interestingly, not all mutations or
genetic alterations seem to have the same effect for the different IMiDs/CELMoDs. A recent functional
investigation of 12 missense mutations occurring in CRBN showed that mutations in the tri-tryptophan
binding pocket or close to the neo-substrate binding area completely abrogated the effects of IMiDs and
CELMoDs. On the other hand, mutations in the Lon protease-like domain did not seem to affect IMiDs and
CELMoDs sensitivity. Interestingly, some of the mutations conferring resistance to lenalidomide and
pomalidomide were still sensitive (at least in part) to iberdomide and mezigdomide, likely due to the
different chemical structures of CELMoDs. The authors postulated that, due to the different structures,
CELMoDs might be able to overcome some CRBN structural changes conferred by specific mutations[121]. A
small analysis of five patients treated with mezigdomide in the CC-92480-MM-001 trial (NCT03374085)
identified 3p26 loss (encoding for the CRBN gene) in both patients who relapsed and those who were
primary progressive. While patients who responded and later relapsed had a monoallelic loss of 3p26, the
two primary refractory patients had a biallelic loss of 3p26 or a monoallelic loss with the presence of a
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R309H mutation in the CRBN DDB1 binding domain. Subsequent experiments in vitro confirmed that the 
presence of R309H was able to confer resistance to mezigdomide[122].

Additional mechanisms of decreased CRBN expression/function can be related to epigenetic regulation[123], 
and combining epigenetic drugs with IMiDs/CELMoDs can be a promising strategy to overcome 
resistance[124].

A recent mass spectrometry analysis of IMiDs- and CELMoDs-resistant cell lines showed common changes 
in protein components of the lipid synthesis pathway and identified SCD and MBTPS1 as potential 
vulnerabilities in iberdomide-resistant cell lines[125]. Inhibition of MBTPS1 increased iberdomide sensitivity 
in iberdomide-resistant NCI-H929 cells, although this effect could not be replicated in the iberdomide-
resistant MM1.S cell line[125], indicating that mechanisms of resistance to CELMoDs might vary across 
different cells.

Additional mechanisms involved in resistance to IMiDs/CELMoDs include alteration of CRBN pathway 
proteins such as Ikaros, Aiolos, IRF4, and Cullin 4B (CUL4B). In fact, mutations in these genes have been 
found in circa 10% of IMiD-resistant patients[126]. The immune system also plays a role in resistance to 
IMiDs and CELMoD. Relapse during lenalidomide maintenance can be associated with an increase in 
immune exhaustion markers after transplantation[127,128]. Deep immune profiling on IMiD-resistant patients 
has shown an expansion of exhausted effector T cell populations, and LAG-3, a marker of T cell exhaustion, 
has been associated with a reduced PFS[129,130]. Although the more potent CELMoDs seem to partially 
overcome the negative effect of an exhausted immune microenvironment, a defective or exhausted immune 
system might contribute to the development of resistance to CELMoDs, similar to what is seen in IMiDs[130].

Figure 3 illustrates the main mechanism of resistance to CELMoDs.

COMBINATION THERAPY AND STRATEGIES TO OVERCOME DISEASE RESISTANCE
To overcome or prevent disease resistance, different combination strategies have been used or are currently
being assessed within clinical trials. As stated in the section above, the majority of current evidence is
focused on how SINE could prevent the development of treatment resistance or on how treatment with
SINE could restore sensitivity to other drugs[29,52-55]. Recently, a phase II trial showed that treatment with
selinexor in combination with carfilzomib, daratumumab, or pomalidomide can partially restore sensitivity
to these drugs. In the 18 evaluable patients (of the 20 enrolled), ORR was 33% with a PFS of 5.98 months.
These data are very promising, considering that the trial enrolled patients who had progressed under
carfilzomib, pomalidomide, or daratumumab-containing regimen, and that the only change was the switch
of the companion drug to selinexor[131]. On the other hand, combination therapies could reduce the
development of resistance to SINE. The already cited phase 1/2 STOMP (NCT02343042) evaluates 12
different combinations of selinexor with standard-of-care backbones. Besides the already reported data on
the combinations of selinexor and carfilzomib and selinexor and bortezomib (see paragraph SINE), data on
the combinations of selinexor with daratumumab and selinexor with pomalidomide have also been
reported [Table 1]. The combination of selinexor with daratumumab (XDd) had an ORR of 69%, with a 
median PFS of 12.5 months. These results are very interesting, considering that all the patients 
enrolled had been previously exposed to PIs and IMiDs and 74% were PI- and IMiD-refractory. Only 
two patients had been previously exposed to daratumumab and were refractory. Both these patients did 
not respond to the XDd combination[132].
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Figure 3. Schematic representation of the main mechanism of resistance to CELMoD therapy. Mutations of cereblon or one of the other 
components of the CUL4ACRBN E3 ubiquitin ligase are the main mechanisms of resistance to CELMoDs. Additionally, mutations and 
alterations in downstream proteins of the CRBN pathway also reduce the efficacy of CELMoDs. Altered fatty acid metabolism and 
epigenetic regulation increase resistance to CELMoDs. An immunosuppressive microenvironment has been linked to reduced PFS in 
patients receiving IMiDs and CELMoDs. For detailed explanations of mechanisms of resistance to CELMoDs, see the main text. 
CELMoD: Cereblon E3 ligase modulatory drug; CUL4A: Cullin 4; CRBN: cereblon; PFS: progression-free survival; IMiDs: 
immunomodulatory drugs; DDB1: DNA damage-binding protein 1, ROC1: ring box 1; IRF4: interferon regulatory factor 4.

The combination of selinexor and pomalidomide was tested with two different doses of selinexor, 60 mg 
weekly and 40 mg weekly. The ORR was 65% (selinexor dose of 60 mg weekly) and 42% (selinexor 40 mg 
weekly). The median PFS was longer in the 40 mg arm than in the 60 mg arm (18.4 months vs. 9.5
months, respectively). Despite the small number of patients, the data show two important considerations:
the first one is that ORR remained high in patients previously exposed to anti-CD38 MoAbs (ORR 64%),
and all three patients refractory to pomalidomide responded to the XPd combination. These data suggest
that the combination of selinexor with pomalidomide can restore sensitivity to IMiDs and overcome
resistance to anti-CD38 MoAbs. The second important point made by the study was that the rate of
gastrointestinal adverse events of all grades decreased from 70% to 32% when the selinexor dosage was
reduced from 60 to 40 mg weekly, with no impact on PFS[133,134].

Currently, the European Myeloma Network is conducting a trial (EMN29, NCT05028348) aimed at
comparing the safety and efficacy of XPd (with selinexor 40 mg weekly) vs. the combination of elotuzumab,
pomalidomide, and dexamethasone. The study is currently recruiting, and results are eagerly awaited. A
summary of trials on selinexor combinations can be found in Table 1.

Different strategies have been suggested and are currently being explored to overcome resistance to
bispecific antibodies and CAR-T cells. Besides the already-mentioned promising combination strategies
with CELMoDs[90], dual CAR-T cells are currently being developed. The possibility of targetting two
antigens simultaneously would increase efficacy and reduce development of resistance[135-137]. Other
strategies to prevent the development of resistance to CAR-T cells are preventing CAR-T cell exhaustion by
optimizing CAR-T cell structure, utilizing naive or central memory T cells, or by inhibiting exhaustion-
related signals such as BATF, TGF-β, PD-1, and PI3K by using tyrosine kinase inhibitors such as
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Table 1. Ongoing clinical trials of combination strategies with SINE, TCR therapy, and CELMoDs to overcome treatment resistance*

Trial NCT Phase Type of 
patients

N. 
patients

Doses (if different 
from standard 
approved dose)

ORR PFS Major toxicities grade  3 Ref.

Selinexor

XKd NCT02343042 Ib/II RRMM 32 100 mg QW 78.1% 15 mo Neutropenia 6%, thrombocytopenia 25%, 
anemia 19%, nausea (6%), fatigue (9%)

[56]

XVd NCT02343042 Ib/II RRMM 42 80-100 mg QW / 60-
80 BIW

63% 9 mo Neutropenia 24%, anemia 12%, 
thrombocytopenia 45%, diarrhea 7%, 
fatigue 14%

[57]

XDd NCT02343042 I/IIb RRMM 34 100 mg QW / 60 mg 
BIW

69% 12.5 mo Neutropenia 27%, thrombocytopenia 
47%, anemia 32%, nausea 9%, fatigue 
18%

[132]

XPd NCT02343042 Ib/II RRMM 20/19 60 mg QW / 40 mg 
QW

65%/42% 10 mo / 18 
mo

Neutropenia 60%/58%, 
thrombocytopenia 25%/11%, anemia 
25%/5%, nausea all grades 70%/26%, 
fatigue 15%/5%

[133,134]

XVd vs. Vd NCT03110562 III RRMM 195 100 mg dose on days 1, 
8, 15, 22, and 29 of each 
5-week cycle

76% NA Neutropenia 9%, thrombocytopenia 39%, 
anemia 16%, fatigue 13%, nausea 8%, 
diarrhoea 6%

[58]

XKd, XPd, XDd NCT04661137 II RRMM refractory 
to K, Pom or D

20 80 mg in K arm, 60 mg 
in Pom arm, 100 mg in D 
arm

33% 6 mo Neutropenia 25%, thrombocytopenia 15%, 
pneumonia 10%

[131]

XPd vs. EloPd (EMN29) NCT05028348 III RRMM Planned 
222

40 mg QW Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Teclistamab

TecDR (MajesTEC2) NCT04722146 I RRMM 32 0.72 mg/kg / 1.5 mg/kg 100%/81% NA Neutropenia 69%, anemia 43%, infections 
29%, CRS 0%, ICANS 0%

[144]

TecTal (± Dara) 
(RedirecTT-1)

NCT04586426 Ib/II RRMM 63 
(Planned 
208)

84% (73% in 
EMM)

NA Neutropenia 75%, anemia 43%, infections 
53%, CRS 3%, ICANS 1pt

[145,146]

TecDara (TRIMM-2) NCT04108195 I RRMM 37 78% NA Neutropenia 50%, thrombocytopienia 
28%, anemia 28%, infections 28%, CRS 
0%, ICANS 0%

[154]

MajesTEC2 other cohorts 
(TecPomDara; TecDVR; 
TecLen; Tec + Nirogacestat)

NCT04722146 I RRMM Planned 
140

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

TRIMM-2 other cohort 
TecPomDara

NCT04108195 Ib RRMM Planned 
289

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024
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Limited duration teclistamab NCT05932680 II RRMM Planned 
75

Teclistamab 
discontinuation after 6 
to 9 months for pts > 
VGPR

Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Tec + PD-1 inhibitor 
(TRIMM-3)

NCT05338775 I RRMM Planned 
152

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

TecDara vs. DPd or DVd 
(MajesTEC3)

NCT05083169 III RRMM Planned 
587

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

TecDRd vs. TecDVRd 
(Majestec5, GMMG-
HD10/DSMM-XX)

NCT05695508 II NDMM Planned 
70

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

TecDR vs. DRd (MajesTEC7) NCT05552222 III Elderly NDMM Planned 
1590

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

TecLen or TecDara 
(IFM2021-01)

NCT05572229 II Elderly NDMM Planned 
74

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Talquetamab

TalPom (MonumenTAL2) NCT05050097 I RRMM 35 Pom 2 mg from cycle 2 87% 6-months 
PFS 93%

Neutropenia 49%, thrombocytopenia 
20%, anemia 26%, CRS 3%, infections 
23%, dysgeusia 77% (all grades), nail and 
skin 66% (all grades)

[155]

TalDara (TRIMM-2) NCT04108195 I RRMM 65 78% 19.4 mo Neutropenia 26%, CRS 0%, infections 
25%, dysgeusia 75% (all grades), nail and 
skin 55% (all grades)

[156]

MonumenTAL2 other cohorts 
(TalK, TalKD, TalLen, TalDR)

NCT05050097 I RRMM Planned 
182

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

TalDara ± Pom vd DPd 
(MonumenTAL3)

NCT04108195 III RRMM Planned 
290

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

TalPom or TecTal vs. EloPd or 
VPd (MonumenTAL6)

NCT06208150 III RRMM Planned 
795

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

TRIMM-2 other cohort 
TalPomDara

NCT04108195 Ib RRMM Planned 
289

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Tal + PD-1 inhibitor 
(TRIMM-3)

NCT05338775 I RRMM Planned 
152

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024
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1590 ongoing accessed 27 May 
2024

Elranatamab

Elra + nirogacestat, ElraRd 
(MagnetisMM4)

NCT05090566 I/II RRMM Planned 
105

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Elra vs. ElraDara vs. DPd 
(MagnetisMM5)

NCT05020236 III RRMM Planned 
762

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

ElraDaraLen vs. DRd 
(MagnetisMM6)

NCT05623020 III Elderly NDMM Planned 
966

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

ElraKd, Elra + maplirpacept 
(MagnetisMM20)

NCT05675449 I RRMM Planned 14 Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Iberdomide

IberKd NCT05199311 I/II Transplant eligible 
NDMM

13 Iber 1.0, 1.3, 1.6 mg 100% NA Neutropenia 8%, maculopapular rash 8% [157]

IberDd NCT02773030 I/II RRMM 43 Iber 1.0, 1.3, 1.6 mg 46% DOR NR Neutropenia 67%, thrombocytopenia 13%, 
anemia 21%, infections 15%

[158]

IberVd NCT02773030 I/II RRMM 25 Iber 1.0, 1.3, 1.6 mg 56% DOR 36 
weeks

Neutropenia 28%, thrombocytopenia 
24%, anemia 12%, infections 20%

[152]

IberKd NCT02773030 I/II RRMM 9 Iber 1.1, 1.3 mg 56% NA Neutropenia 33%, thrombocytopenia 11%, 
infections 33%, fatigue 11%

[152]

IberVd NCT02773030 I/II NDMM 18 Iber 1.6 mg 89% NA Neutropenia 18%, thrombocytopenia NA, 
anemia NA, infections 19%, PNP 12%

[159]

IberVd ± Isa NCT05272826 II Elderly NDMM Planned 
75

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

IberDVd NCT05392946 I/II NDMM Planned 
18

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

IberDd NCT05527340 II Elderly NDMM Planned 
140

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

IberCd NCT04392037 II RRMM 60 Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

IberIxad (I2D IFM2021_03) NCT04998786 II Elderly first 
relapse

80 Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Planned Trial Clinicaltrial.gov, TalDR vs. DRd (MajeTEC7) NCT05552222 III Elderly NDMM Trial ongoing Trial ongoing Trial ongoing
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ongoing accessed 27 May 
2024

IberElod NCT05560399 I RRMM 6 Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Iber + elranatamab 
(MagnetisMM-30)

NCT06215118 I RRMM 100 Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Iber + cevostamab NCT05583617 I/II RRMM 200§ Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Iber + GPRC5D-targeted 
CAR-T cell therapy BMS-
986393

NCT06121843 I RRMM 11 Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Mezigdomide

MeziVd I/II RRMM 77 Mezi 0.3, 0.6, 1.0 mg 75%/84%/91% DOR 10.9 
months / 
NR / NR

Neutropenia 59%, thrombocytopenia 
27%, anemia 6%, infections 33%, PNP 5%

[160]

MeziKd I/II RRMM 27 Mezi 0.3, 0.6, 1.0 mg 85% DOR 12.3 
mo

Neutropenia 41%, thrombocytopenia 19%, 
anemia 15%, infections 30%

[160]

MeziDd I/II RRMM 57 Mezi 0.3, 0.6 mg 75% NA Neutropenia 54%, thrombocytopenia 7%, 
anemia 11%, infections 20%

[116]

MeziElod I/II RRMM 20 Mezi 0.3, 0.6 mg 45% NA NA [116]

MeziIxad NCT06050512 I/II RRMM Planned 
34

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

MeziElod NCT05981209 I RRMM after anti-
CD38 and anti-
BCMA therapies

Planned 
27

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Mezi post IdeCel NCT06048250 I RRMM Planned 
15

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Mezi + alnuctamab NCT06163898 I/II RRMM Planned 
156

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

Mezi + GPRC5D-targeted 
CAR-T cell therapy BMS-
986393

NCT06121843 I RRMM Planned 
111

Trial ongoing Trial ongoing Trial 
ongoing

Trial ongoing Clinicaltrial.gov, 
accessed 27 May 
2024

*Maintenance studies have not been included; where the main partner of the therapy is a bispecific antibody, only already approved bispecific antibodies have been included. §Including lenalidomide arm. SINE: 
Selective inhibitors of nuclear export; TCR: T cell redirecting; CELMoDs: cereblon E3 ligase modulatory drugs; ORR: overall response rate; PFS: progression-free survival; XKd: selinexor, carfilzomid, dexamethasone; 
RRMM: relapsed and/or refractory multiple myeloma; QW: once a week; mo: months; XVd: selinexor, bortezomib, dexamethasone; BIW: twice a week; XDd: selinexor, daratumumab, dexamethasone; XPd: selinexor, 

Trial Clinicaltrial.gov, IberDKd NCT05896228 II RRMM 30 Trial ongoing Trial ongoing Trial ongoing
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pomalidomide, dexamethasone; Vd: bortezomib, dexamethasone; K: carfilzomib; Pom: pomalidomide; D: daratumumab; EloPd: elotuzumab, pomalidomide, dexamethasone; TecDR: teclistamab, lenalidomide, 
daratumumab; NA: not assessed; CRS: cytokine release syndrome; ICANS: immune effector cell-associated neurotoxicity syndrome; TecTal: teclistamab, talquetamab; EMM: extramedullary myeloma; TecDara: 
teclistamab, daratumumab; TecPomDara: teclistamamb, pomalidomide, daratumumab; TecDVR: teclistamab, daratumumab, bortezomib, lenalidomide; TecLen: teclistamab, lenalidomide; Tec: teclistamab; VGPR: 
very good partial response; DPd: daratumumab, pomalidomide, dexamethasone; DVd: daratumumab, bortezomib, dexamethasone; DRd: daratumumab, lenalidomide, dexamethasone; NDMM: newly diagnosed 
multiple myeloma; TalPom: talquetamab, pomalidomide; TalK: talquetamab, carfilzomib; TalKD: talquetamab, carfilzomib, daratumumab; TalLen: talquetamad, lenalidomide; TalDR: talquetamad, daratumumab, 
lenalidomide; TalDara: talquetamab, daratumumab; DPd: daratumumab, pomalidomide, dexamethasone; VPd: bortezomib, pomalidomide, dexamethasone; TalPomDara: talquetamab, pomalidomide, daratumumab; 
Tal: talquetamab; Elra: elranatamb; ElraRd: elranatamab, lenalidomide, dexamethasone; ElraDaraLen: elranatamab, lenalidomide, dexamethasone; IberKd: iberdomide, carfilzomib, dexamethasone; IberDd: 
iberdomide, daratumumab, dexamethasone; DOR: duration of response; NR: not reached; IberVd: iberdomide, bortezomib, dexamethasone; Isa: isatuximab; IberDVd: iberdomide, daratumumab, bortezomib, 
dexamethasone; IberDd: iberdomide, daratumumab, dexamethasonse; IberCd: iberdomide, cyclophosphamide, dexamethasone; IberIxad: iberdomide, ixazomib, dexamethasone; IberDKd: iberdomide, daratumumab, 
carfilzomib, dexamethasonse; IberElod: iberdomide, elotuzumab, dexamethasone; Iber: iberdomide; MeziVd: mezigdomide, bortezomib, dexamethasone; MeziKd: mezigdomide, carfilzomib, dexamethasone; MeziDd: 
mezigdomide, daratumumab, dexamethasone; MeziElod: mezigdomide, elotuzumab, dexamethasone; MeziIxad: mezigdomide, ixazomib, dexamethasone.

dasatinib[138-140]. Interestingly, histone deacetylase inhibitors such as panobinostat seem to downregulate exhaustion-related genes, and could also have a role in 
reducing or preventing CAR-T cell exhaustion[141]. To reduce the impact of immune exhaustion, current investigations are also exploring therapy-free interval 
or fixed duration therapy for bispecific antibodies or the early collection of T cells for the later production of CAR-T cells[142,143]. A trial currently being 
conducted at the University of Pennsylvania (LimiTec, NCT05932680) is testing the hypothesis that limited-duration teclistamab (stopped after 6 to 9 cycles in 
patients achieving at least a VGPR) is non-inferior to the standard continuous administration of teclistamab in RRMM patients. The rationale of the trial is 
that a limited duration of teclistamab will prevent T cell exhaustion, preserving the efficacy of TCR therapy even in patients relapsing after these therapies. 
Other strategies to prevent T cell exhaustion are to combine bispecific antibodies with PD1 inhibitors, such as in the ongoing TRIMM-3 (NCT05338775) trial. 
Immunomodulatory drugs such as pomalidomide and lenalidomide, can potentiate T cell activation. Several trials (NCT05572229, NCT04108195, 
NCT05552222, NCT05695508) are evaluating the combination of bispecific antibodies with IMiDs, although particular attention must be paid to the 
development of infections. In the MajesTEC2 trial (NCT04722146), evaluating the combination of teclistamab, lenalidomide, and daratumumab in elderly 
newly diagnosed myeloma patients, despite a very promising ORR (all 13 patients evaluated responded to the treatment), the rate of infections was 75%[144]. 
This is an important point, as the quest to avoid or revert treatment resistance should not be at the price of increased toxicities. An alternative strategy to 
prevent T cell exhaustion could be the combination of TCR therapy with cytotoxic agents such as cyclophosphamide[94].

Besides T cell exhaustion, antigen loss is another factor that can induce resistance to TCR therapy. If for CAR-T cells, dual CAR-Ts are being developed[135-137], 
then for bispecific antibodies, a promising strategy is to combine two antibodies. Preliminary results of the RedirecTT-1 trial (NCT04586426), combining 
teclistamab and talquetamab, showed very promising results, with an ORR of 84% in all patients. Importantly, ORR was 73% in the 26 patients with 
extramedullary myeloma, suggesting that the combination of two bispecific antibodies is effective in this difficult-to-treat population[145,146]. Additional 
strategies to overcome antigen loss could be the development of trispecific antibodies that target two antigens on the plasma cells. An example could be JNJ-
79635322, a trispecific antibody that targets CD3 on T cells and BCMA and GPRC5D on plasma cells. JNJ-79635322 showed preclinical efficacy, and a phase I 
clinical trial is currently ongoing (NCT05652335)[147]. Additional strategies could be the development of antibodies with a higher affinity to full-length BCMA 
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and not sBCMA, increasing the concentration of bispecific antibodies in patients with high baseline sBCMA 
levels, and enhancing the density of BCMA molecules on myeloma cells by using gamma-secretase 
inhibitors[148]. Major trials evaluating combination therapy for bispecific antibodies are summarized in 
Table 1.

Different combination approaches combining CELMoDs with MoAbs and PIs are currently in phase II and 
III clinical trials and are summarized in Table 1. As seen with other classes of drugs, combination therapies, 
by affecting myeloma cells in different ways, might reduce the chance of the development of resistance. 
Preclinical data showing increased apoptosis when mezigomide was combined with PIs or daratumumab 
support these clinical trials[149-151]. As discussed in the previous section and in the previous paragraph [see 
paragraph CEREBLON MODULATING AGENTS (CELMODS)], due to the immunomodulatory 
properties of CELMoDs, an attractive combination is the one with bispecific antibodies. Indeed, in vitro and 
in vivo, the combination of iberdomide and mezigdomide with the anti-BCMA bispecific antibody 
alnuctamab or with the anti-GPRC5D forimtamig enhanced antitumor activity and tumor regression[90,152]. 
Iberdomide has also shown an enhancement in CAR-T cell activation and cytokine production, making 
CELMoDs an interesting maintenance therapy post CAR-T cell treatment to prevent the emergence of 
treatment resistance[153]. Trials on the combination of CELMoDs with PI and MoAb are ongoing, and early 
results are already available [Table 1]. Additionally, trials testing the combination of CELMoDs and 
bispecific antibodies and CAR-T cells are currently ongoing, although efficacy and safety data are still 
pending. Ongoing and planned trials with CELMoDs combinations are summarized in Table 1.

CONCLUSION
Novel therapies are changing the prognosis of MM. SINE, TCR therapies, and CELMoDs have shown
remarkable efficacy; however, the emergence of resistance poses a significant challenge.

Mechanisms of resistance to SINE, TCR therapies, and CELMoDs are intricate and complex, involving both
intrinsic and extrinsic mechanisms. From genetic alterations to dysregulated signaling pathways, to the
development of an immunosuppressive microenvironment, multiple factors contribute to the development
of resistance. A deeper understanding of these mechanisms is pivotal in the quest toward myeloma cure.

Exploring novel therapeutic approaches such as combination therapies and targeted interventions against
specific resistance mechanisms is of primary importance to overcome treatment-emergent disease
refractoriness. Efforts in this respect are already ongoing, and trials that combine CELMoDs with TCR
therapies seem particularly promising. Additionally, the development of predictive biomarkers, such as gene
signatures or immune profiling, holds promise in overcoming resistance and improving patient outcomes.
Advancements in technology, such as high-throughput screening and computational modeling, can provide
invaluable tools for identifying new targets and optimizing treatment regimens. Besides being highly
effective, these novel drugs do show adverse events that are somehow different from those reported with
other therapies. Examples are the gastrointestinal toxicity of SINE, the neurologic side effects of CAR-T
cells, and the high risk of infection seen with bispecific antibodies. As these therapies move to the earlier
lines of therapies, these side effects will have to be balanced against the efficacy and the risk of resistance
development. Selecting the patients that will profit the most from each therapy, for example evaluating
patients’ specific immune profile or the tumor dependency on p53 and protein trafficking, will be pivotal
in paving the road toward a truly personalized medicine, where each patient or group of patients will receive
a drug combination more suitable for their characteristics.
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