
Lakhani et al. Complex Eng Syst 2022;2:3
DOI: 10.20517/ces.2021.15

Complex Engineering
Systems

Research Article Open Access

Stability-preserving automatic tuning of PID control
with reinforcement learning
Ayub I. Lakhani, Myisha A. Chowdhury, Qiugang Lu

Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.

Correspondence to: Prof. Qiugang Lu, Department of Chemical Engineering, Texas Tech University, P.O. Box 43121, Lubbock, TX
79409-3121, USA. E-mail: jay.lu@ttu.edu

How to cite this article: Lakhani AI, Chowdhury MA, Lu Q. Stability-preserving automatic tuning of PID control with reinforcement
learning. Complex Eng Syst 2022;2:xx. http://dx.doi.org/10.20517/ces.2021.15

Received: 30 Dec 2021 First Decision: 19 Jan 2022 Revised: 7 Feb 2022 Accepted: 11 Feb 2022 Published: 22 Mar 2022

Academic Editor: Hamid Reza Karimi, Qichun Zhang Copy Editor: Xi-Jun Chen Production Editor: Xi-Jun Chen

Abstract
Proportional-Integral-Derivative (PID) control has been the dominant control strategy in the process industry due
to its simplicity in design and effectiveness in controlling a wide range of processes. However, most traditional PID
tuning methods rely on trial and error for complex processes where insights about the system are limited and may
not yield the optimal PID parameters. To address the issue, this work proposes an automatic PID tuning framework
based on reinforcement learning (RL), particularly the deterministic policy gradient (DPG) method. Different from
existing studies on using RL for PID tuning, in this work, we explicitly consider the closed-loop stability throughout
the RL-based tuning process. In particular, we propose a novel episodic tuning framework that allows for an episodic
closed-loop operation under selected PID parameterswhere the actor and critic networks are updated once at the end
of each episode. To ensure the closed-loop stability during the tuning, we initialize the training with a conservative
but stable baseline PID controller and the resultant reward is used as a benchmark score. A supervisor mechanism is
used to monitor the running reward (e.g., tracking error) at each step in the episode. As soon as the running reward
exceeds the benchmark score, the underlying controller is replaced by the baseline controller as an early correction
to prevent instability. Moreover, we use layer normalization to standardize the input to each layer in actor and critic
networks to overcome the issue of policy saturation at action bounds, to ensure the convergence to the optimum. The
developed methods are validated through setpoint tracking experiments on a second-order plus dead-time system.
Simulation results show that with our scheme, the closed-loop stability can bemaintained throughout RL explorations
and the explored PID parameters by the RL agent converge quickly to the optimum. Moreover, through simulation
verification, the developed RL-based PID tuning method can adapt the PID parameters to changes in the process
model automatically without requiring any knowledge about the underlying operating condition, in contrast to other

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.comengsys.com

https://creativecommons.org/licenses/by/4.0/
www.comengsys.com
a
图章

Page 2 of 21 Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15

adaptive methods such as the gain scheduling control.

Keywords: Reinforcement learning, PID tuning, closed-loop stability, deterministic policy gradient

1. INTRODUCTION
Proportional-Integral-Derivative (PID) controllers have been the dominant type of controller for the process
industry accounting for more than 80% of industrial process control [1]. Such a popularity arises from their
simplicity in the structure for design and effectiveness for controlling practical systems [2,3]. However, some
roadblocks still exist for PID design to enable a higher level of automation and adaptivity for controlling com-
plex processes. First, the control performance of PID strictly relies on the setting of its parameters. Despite the
fact that some empirical guidelines are available for tuning PID control even for complex systems, the resul-
tant PID parameters may not be the optimal values [4]. As reported in [5], most conventional methods use trial
and error to tune PID for complex systems where insights about the system may be limited. Therefore, how
to automate the search of optimal PID parameters becomes an interesting topic [6]. Second, the parameters
of traditional PID controllers generally remain fixed after tuning. As a result, they are mainly applicable for
controlling time-invariant systems. For time-varying systems, as frequently encountered in practice such as
robotics and vehicles, the lack of adaptivity of traditional fixed-parameter PID controllers makes them unable
to maintain high control performance under such scenarios [7].

Traditional PID tuning methods can be roughly classified into three categories: heuristic tuning, rule-based
tuning, and optimization-based (or model-based) tuning [8]. Heuristic tuning often relies extensively on trial
and error based on the understanding of the role of each PID parameter. This method is easy to implement,
however, it can be time-consuming and cannot guarantee to reach a robust or optimal solution [8]. Rule-based
tuning establishes simple models (often first-order plus dead-time model) to approximate the process based
on the step test, including methods such as Ziegler-Nichols, Cohen-Coon, Kappa-Tau, and Lambda tuning [9].
These methods are widely used, however, they are sensitive to the discrepancies between the true process and
the approximation model. Optimization-based methods can find the optimal PID parameters given the avail-
ability of an accurate process model along with the desirable engineering specification. However, a sufficiently
accurate model is required for such methods [10], which can be difficult in practice.

Adaptive PID has been proposed in the literature to mitigate the above non-adaptivity issue. These control
strategies can be classified into model-based approaches [11,12], evolution optimization-based approaches [13],
and neural network-based approaches [14]. Model-based approaches assume the presence of an accuratemodel
that can represent the true dynamics exactly to allow for the adaptivity of PID controllers, which does not hold
in practice due to the difficulty in accessing such high-quality models for complex dynamical systems [15].
Evolution optimization-based approach is hard to reach real-time and online adaptation due to the slow com-
putation speed [16]. Adaptive PID based on neural networks employs supervised learning to optimize network
parameters for enabling adaptivity. This is limited by the fact that the teaching signal is hard to acquire [6]. To
this end, more advanced machine learning techniques have been adopted to promote the user-free automatic
tuning and adaptivity of traditional PID controllers.

Among emerging machine learning techniques for further empowering PID control, reinforcement learning
(RL) has shown unique advantages to address the above issues. As a sequential decision-making method,
RL can iteratively optimize an objective, usually black-box, via guided trial-and-error exploration [17]. First,
due to the data-driven nature, automatic tuning of PID parameters can be achieved where expert knowledge
is not needed. Second, RL can learn the optimal strategy in real-time and online by interacting with the
environment. PID tuning is essentially a black-box optimization problem where the relation between tuning

http://dx.doi.org/10.20517/ces.2021.15

Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15 Page 3 of 21

parameters and control performance is unknown. Optimal PID parameters shall be the ones that optimize
the control performance. In light of this observation, RL has been preliminarily employed to facilitate the
PID tuning [18]. Typical model-free RL algorithms can be broadly grouped into value-based methods (e.g., Q-
learning [19], SARSA [20], and temporal difference (TD) learning [17]), and policy-based algorithms (e.g., policy
gradient [21]). Value-based methods learn an action or state value function, from which the optimal policy can
be derived. In contrast, policy-based methods directly learn the optimal policy from the experience, therefore,
they have better convergence and are effective for continuous action space. In particular, the deterministic
policy gradient (DPG)method, proposed by DeepMind [22], receives wide attention due to its sample efficiency
by considering deterministic rather than stochastic policies. As a result, the usage of off-policy actor-critic-
based DPG algorithm has shown attractive prospects for addressing the PID tuning problem [23].

Treating the PID tuning as an RL problem has been reported in the literature where different RL algorithms
have been employed [4,24]. Actor-critic learning based on a single RBF network is proposed in [16] to enable an
adaptive self-tuning PID control, which is later implemented to wind turbine control [25]. The combination
of fuzzy PID and RL is reported in [1,26]. Applications of RL-based self-tuning PID include soccer robot [27],
multicopter [28], and human-in-the-loop physical assistive control [5]. For process control, reports in [23,29] con-
sider the PID tuning in sample-by-sample and episodic modes, respectively. A sample-efficient deep RL with
episodic policy transfer is proposed for PID tuning in a robotic catheter system in [30]. Despite these rapid
advancements, maintaining the closed-loop stability during RL search has not been thoroughly studied. Note
that the ultimate goal of RL-based PID tuning is to accomplish online and adaptive tuning to maintain high
performance even in the presence of changes in operating conditions. Such expectations require that the at-
tempted PID parameters be located in the stable region to avoid unstable response of the closed-loop process.

The main contribution of this work is to develop a stability-preserving automatic PID tuning approach based
on RL, particularly the DPG algorithm. The majority of the literature in this direction so far has focused on
establishing an adaptive auto-tuning framework with RL approaches. However, how to maintain the closed-
loop stability during the exploration of the PID parameter space by the RL agent has not been well studied.
For instance, as one of the few reports that briefly discuss the stability issue, the authors in [29] use an anti-
windup strategy to force the input to be within the bound so as to maintain the boundedness of the output
in the presence of unstable PID controller during RL search. However, this paper does not directly tackle the
stability issue in a rigorous way. In contrast to existing work, our approach explicitly accounts for the closed-
loop stability issue during RL exploration. For the proposed framework, we use a conservative but stable PID
controller as a baseline. A supervisor mechanism monitors the closed-loop behavior of process variables at
every time step throughout a training episode (i.e., one complete step test). Once the running reward (e.g.,
cumulative tracking error) exceeds a threshold, the employed PID controller will be replaced by the baseline
controller to correct the process variables and prevent instability. In this work, we primarily focus on the
automatic tuning aspect of RL-based PID tuning with stability preservation. In the simulation, we demonstrate
the adaptivity of our method with respect to the changes in the system model throughout the offline episodic
tuning. However, how to fully accomplish the online adaptivity to varying operating conditions with stability
preservation will be tackled in our future work.

This paper is outlined as follows. In Section 2, we introduce the fundamentals about the form of PID control
used in this work and the DPG algorithm that will be adapted in our proposed method. Section 3 is devoted to
the introduction of the proposed episodic RL-based PID auto-tuning method, where the closed-loop stability
can be maintained throughout the RL training. In Section 4, simulation examples are provided to demonstrate
the effectiveness and adaptivity of the proposed techniques. This paper concludes in Section 5.

http://dx.doi.org/10.20517/ces.2021.15

Page 4 of 21 Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15

2.1. PID control
We consider the standard position form of PID control [9]:

𝑢(𝑡) = 𝐾𝑝
[
𝑒(𝑡) + 1

𝜏𝐼

∫ 𝑡

0
𝑒(𝑡)𝑑𝑡 + 𝜏𝐷

𝑑𝑒(𝑡)
𝑑𝑡

]
, (1)

where 𝑒(𝑡) = 𝑟 𝑠𝑝 (𝑡) − 𝑦(𝑡) represents the tracking error between setpoint 𝑟 𝑠𝑝 (𝑡) and controlled variable (CV)
𝑦(𝑡) at time 𝑡, and 𝑢(𝑡) is the manipulated variable (MV). The digital version to implement (1) is shown to be:

𝑢(𝑡𝑛) = 𝐾𝑝
[
𝑒(𝑡𝑛) +

1
𝜏𝐼
𝐼 (𝑡𝑛) + 𝜏𝐷𝐷 (𝑡𝑛)

]
, (2)

where 𝐼 (𝑡𝑛) =
∑𝑛
𝑖=1 𝑒(𝑡𝑖) and 𝐷 (𝑡𝑛) =

𝑒(𝑡𝑛)−𝑒(𝑡𝑛−1)
Δ𝑡 are, respectively, the integrated and differentiated errors. In

this work, we consider the following actuator saturation

𝑠𝑎𝑡 (𝑢) =

𝑢𝑚𝑖𝑛, if 𝑢 < 𝑢𝑚𝑖𝑛,

𝑢, if 𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 ,
𝑢𝑚𝑎𝑥 if 𝑢 > 𝑢𝑚𝑎𝑥 .

(3)

We employ the anti-windup compensation [31] to address the issue that the integral action continues to increase
or decrease if the saturation persists. The presence of windup of the integral action can trigger the nonlinearity
of the controller thatmay lead to instability of the closed-loop system [23]. With the anti-windup compensation,
the integral term does not accumulate once the control action reaches the upper or lower bound. Further, to
avoid the sudden jump of the derivative of the error when the setpoint is adjusted, the derivative kick will be
overcome by using the differentiated output 𝑦(𝑡𝑛−1

Δ
)−
𝑡
𝑦(𝑡𝑛) to replace the differentiated error 𝑒(𝑡𝑛)−

Δ
𝑒
𝑡
(𝑡𝑛−1) .

2.2. Reinforcement learning
2.2.1. Introduction
The standard reinforcement learning contains a learning agent that interacts with an environment. The agent
(e.g., a controller) represents a decision-making mechanism, whereas the environment often represents an
object (e.g., a plant or a process) [32]. The objective of an agent is to find the best policy such that the long-
term cumulative reward (known as return) is optimized by interacting with the environment that is often
characterized by a Markov decision process (MDP) [17]. Specifically, at each time step 𝑘 , the agent observes a
state 𝑠𝑘 ∈ S of the environment and then generates a control action 𝑎𝑘 ∈ A based on the policy. The symbols S
andA denote the state set and action set, respectively. The control action is then deployed to the environment,
where a reward value 𝑟𝑘+1 is assigned to the action at the given state as a performance measure. At the next
time step, the state of the environment transits to 𝑠𝑘+1 which is determined by the previous control action 𝑎𝑘
and the internal dynamic behavior of the environment. After receiving the updated reward 𝑟𝑘+1 and state 𝑠𝑘+1,
the agent adjusts its policy to generate the next control action 𝑎𝑘+1. Such iterations continue indefinitely for a
continuous task or terminate after certain steps for an episodic task. Over iterations, the policy improves to
generate better control actions that can give higher returns. Figure. 1 illustrates the interaction between the
RL agent and the environment.

The agent’s policy is often described by a mapping 𝜋 : S → P(A) where P(A) is the probability measure on
set A. The return starting from time step 𝑘 onward is defined as:

𝑅𝑘 =
∞∑
𝑖=𝑘

𝛾𝑖−𝑘𝑟𝑖 (𝑠𝑖 , 𝑎𝑖), (4)

where 𝛾 ∈ [0, 1] is the discounting factor that puts less weight to the reward far in the future to account for
the uncertainty. For episodic tasks, the sum above will stop at the specified terminal state.

2. PRELIMINARIES

http://dx.doi.org/10.20517/ces.2021.15

Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15 Page 5 of 21

Environment

Agent

A
ct

io
n

 𝑎
𝑘

R
ew

ar
d

 𝑟
𝑘

St
at

e
𝑠 𝑘

𝑠𝑘+1

𝑟𝑘+1

Figure 1. Illustration of the interaction between RL agent and environment.

The state value function 𝑉𝜋 : S→ R defines the expected return at a given state if the policy follows 𝜋, i.e.,

𝑉𝜋 (𝑠𝑘) = E𝜋 [𝑅𝑘 |𝑠 = 𝑠𝑘] . (5)

Similarly, the action-value function 𝑄𝜋 : S × A → R represents the expected return if one starts with 𝑠𝑘 and
takes action 𝑎𝑘 , according to the policy 𝜋, expressed as

𝑄𝜋 (𝑠𝑘 , 𝑎𝑘) = E𝜋 [𝑅𝑘 |𝑠 = 𝑠𝑘 , 𝑎 = 𝑎𝑘] . (6)

With the Markov property, the recursive relation (Bellman expectation equation) between the 𝑄 values at two
consecutive time steps is shown to be:

𝑄𝜋 (𝑠𝑘 , 𝑎𝑘) = E𝑠𝑘+1∼𝑝(·|𝑠𝑘 ,𝑎𝑘)
[
𝑟𝑘 (𝑠𝑘 , 𝑎𝑘) + 𝛾E𝑎𝑘+1∼𝜋(·|𝑠𝑘+1) (𝑄𝜋 (𝑠𝑘+1, 𝑎𝑘+1))

]
, (7)

where 𝑝(·|𝑠𝑘 , 𝑎𝑘) is the transition probability between consecutive states of the environment given 𝑠𝑘 and 𝑎𝑘 ,
and 𝜋(·|𝑠𝑘) is the control policy. The RL problem can be formulated as finding the optimal policy 𝜋∗ such that
the associated state and action value functions outperform those from the other policies across all states and
actions. Under the optimal policy, the Bellman optimality equation is formulated as

𝑄∗(𝑠𝑘 , 𝑎𝑘) = E𝑠𝑘+1∼𝑝(·|𝑠𝑘 ,𝑎𝑘)
[
𝑟𝑘 (𝑠𝑘 , 𝑎𝑘) + 𝛾max

𝑎′∈A
𝑄∗(𝑠𝑘+1, 𝑎′)

]
. (8)

The advantage of using𝑄 value functions is that once𝑄∗ is obtained, the corresponding optimal policy 𝜋∗ can
be easily recovered as

𝜋∗(𝑎 |𝑠𝑘) = arg max
𝑎∈A

𝑄∗(𝑠𝑘 , 𝑎). (9)

Value-based methods have been well developed to solve the Bellman expectation or optimality equations.
Among these methods, Q-learning has been the most widely used due to its off-policy nature and ability
to discover the global optimum [19,33]. Q-learning solves the Bellman optimality equation (8) via temporal
difference (TD):

𝑄(𝑠𝑘 , 𝑎𝑘) ← 𝑄(𝑠𝑘 , 𝑎𝑘) + 𝛼𝛿, (10)

where 𝛿 = 𝑟 (𝑠𝑘 , 𝑎𝑘) + 𝛾max𝑎′∈A𝑄(𝑠𝑘+1, 𝑎′) −𝑄(𝑠𝑘 , 𝑎𝑘) is the TD error. TD method is model-free (in contrast
to model-based methods such as dynamic programming) and does not require the complete trajectory of an
episode. Therefore, the TDmethod is widely used for continuous tasks without a terminal state. Despite these
advantages, value-based methods often assume that states and actions are discrete and the value functions
can be stored in a table to sweep through. However, many practical problems, including process control,
have continuous states and actions. Therefore, policy-based methods and functional approximators (FAs) are
developed to address these issues, as described below.

To generalize Q-learning to continuous state and action spaces, neural networks have been extensively used as
FAs to represent 𝑄 values. In particular, a neural network 𝑄(𝑠𝑘 , 𝑎𝑘 , 𝑤), parameterized by 𝑤, is often used to

http://dx.doi.org/10.20517/ces.2021.15

Page 6 of 21 Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15

approximate 𝑄(𝑠𝑘 , 𝑎𝑘). In other words, the objective is to choose the optimal 𝑤 to minimize

𝐽 (𝑤) = E𝜋 [𝑄(𝑠𝑘 , 𝑎𝑘) −𝑄(𝑠𝑘 , 𝑎𝑘 , 𝑤)]2. (11)

Note that the objective above is a supervised learning problem with 𝑄(𝑠𝑘 , 𝑎𝑘) being the target whose value is
unknown during Q-learning. Therefore, similar to the TD method for Q-learning (10), the incurred reward
and next-step parameterized 𝑄(𝑠𝑘+1, 𝑤) are often used together to approximate 𝑄(𝑠𝑘 , 𝑎𝑘), i.e., assuming that
𝑟 (𝑠𝑘 , 𝑎𝑘) + 𝛾max𝑎′∈A𝑄(𝑠𝑘+1, 𝑎′, 𝑤) ≈ 𝑄(𝑠𝑘 , 𝑎𝑘). With this approximation, stochastic gradient descent (SGD)
can be used to solve (11) where the update of parameter 𝑤 is shown to be

𝑤𝑘+1 = 𝑤𝑘 + Δ𝑤, (12)

where Δ𝑤 = 𝛼 [𝑟 (𝑠𝑘 , 𝑎𝑘) + 𝛾max𝑎′∈A𝑄(𝑠𝑘+1, 𝑎′, 𝑤) −𝑄(𝑠𝑘 , 𝑎𝑘 , 𝑤)] ∇𝑤𝑄(𝑠𝑘 , 𝑎𝑘 , 𝑤). The above combination
of Q-learning and neural-network-based FAs is known as deep Q-network (DQN).

2.2.2. Deterministic policy gradient
In contrast to value-based methods where action or state value functions must be obtained before acquiring
the optimal policy, policy-based methods directly search for the best policy to optimize the RL objective:

𝐽 (𝜃) = E𝜋𝜃 ,𝑠𝑘 [𝑅1 |𝑠0] , (13)

where 𝑠0 is the starting state of the task and 𝜋𝜃 is a neural network, known as actor network, parameterized by
𝜃, to approximate the continuous action space 𝜋𝜃 : S→ A. The policy gradient algorithm uses SGD to update
𝜃 to maximize the objective in (13), such that

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼𝑘∇𝜃𝐽 (𝜃) |𝜃=𝜃𝑘 , (14)

where 𝛼𝑘 is the learning rate, and the gradient of 𝐽 (𝜃), using the policy-gradient theorem [21], turns out to be

∇𝜃𝐽 (𝜃) = E𝜋𝜃 ,𝑠𝑘 [𝑄𝜋 (𝑠𝑘 , 𝑎𝑘)∇𝜃 log 𝜋𝜃 (𝑎𝑘 |𝑠𝑘)] , (15)

which is in terms of the 𝑄 value function. Note that in the implementation of the policy gradient above, the
expectation is replaced by samples (i.e., using SGD) for updating the parameter 𝜃. Moreover, the 𝑄 value in
(15) is replaced by its neural network FA 𝑄𝜋 (𝑠𝑘 , 𝑎𝑘 , 𝑤) to accommodate continuous state and action spaces,
known as the critic network. The parameters of actor and critic networks can be updated sequentially using
(12) and (14). This forms the well-known actor-critic architecture [34]. The actor aims to find the optimal policy
and the critic serves as a judge to assess the current policy prescribed by the actor.

Stochastic policies often demand a large number of samples for evaluating the policy gradient (15), especially
for high-dimensional action space. As an extension of DQN, deterministic policy gradient (DPG) is proposed
by Silver et al. [22] where the deterministic policy is given as 𝜇𝜃 : S→ A. That is, for a given state 𝑠𝑘 , the actor
returns 𝑎𝑘 = 𝜇𝜃 (𝑠𝑘) with probability one. Then the gradient of 𝐽 (𝜃) becomes

∇𝜃𝐽 (𝜃) = E𝑠𝑘
[
∇𝑎𝑄𝜇 (𝑠𝑘 , 𝑎) |𝑎=𝜇𝜃 (𝑠𝑘)∇𝜃𝜇𝜃 (𝑠𝑘)

]
. (16)

Compared with the stochastic counterpart (15), the gradient of the deterministic policy above has expecta-
tion with respect to only the state transition probability, thereby the required number of data samples can be
significantly reduced.

As an extension of DQN, the DPG algorithm inherits some techniques adopted by DQN. (i): As shown in (8),
the target of Q-learning problem with FA can be represented as 𝑟 (𝑠𝑘 , 𝑎𝑘) + 𝛾max𝑎′∈A𝑄(𝑠𝑘+1, 𝑎′, 𝑤), which
depends on the parameter 𝑤 that is to be optimized. That is, the target is varying and this causes significant
difficulty for the supervised learning. Fixed Q target is one solution to alleviate this issue, in which a critic

http://dx.doi.org/10.20517/ces.2021.15

Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15 Page 7 of 21

Setpoint

Plant

Output

RL Actions

RL

Environment

P

I

D

+

-

+
+

+

PID Controller

e(t)

State, Reward, Action

Replay Buffer

DPG

Stable
Region

Stability-

Preserving

Tuning

Figure 2. Illustration of the stability-preserving RL-based PID tuning.

target network 𝑄(𝑠𝑘+1, 𝑎′, 𝑤′) with the same architecture as the critic network is used but its parameter 𝑤′

does not change rapidly; (ii): The target in (8) contains the maximization over 𝑎′ ∈ A that can be expensive
since the 𝑄 value function is a complex network with continuous inputs. To address this problem, a target
actor network 𝜇𝜃 ′ (𝑠𝑘+1) is used to approximate the optimal policy that maximizes 𝑄(𝑠𝑘+1, 𝑎′, 𝑤′). That is,
the target becomes 𝑟 (𝑠𝑘 , 𝑎𝑘) + 𝑄(𝑠𝑘+1, 𝜇𝜃 ′ (𝑠𝑘+1), 𝑤′). In summary, there are four networks involved in the
DPG framework: (1) actor network 𝜇𝜃 (𝑠𝑘) for selecting action based on the current state; (2) critic network
𝑄(𝑠𝑘 , 𝑎𝑘 , 𝑤) for evaluating the current𝑄 value function; (3) actor target network 𝜇𝜃 ′ (𝑠𝑘+1) for selecting the bast
action for maximizing the next-step𝑄 value; and (4) critic target network𝑄(𝑠𝑘+1, 𝜇𝜃 ′ (𝑠𝑘+1), 𝑤′) for evaluating
the optimal 𝑄 value for next state. To alleviate the dynamic correlations between samples, the replay buffer is
often used to store a large number of past transition pairs {𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘+1}. When updating the parameters in
DPG, a batch 𝐵 of past experience from the replay buffer is randomly selected, and they are used to formulate
two supervised learning problems for the critic and actor, respectively. The detailed DPG algorithm can be
found in [22,35].

3. STABILITY-PRESERVING PID TUNING WITH DPG
In this section, we demonstrate the procedures of adapting the aboveDPGalgorithm to the PID tuningproblem
with stability guarantee.

3.1. PID Tuning with DPG
The overall structure of the proposed DPG-based PID tuning with stability guarantee is shown in Figure 2.
The proposed scheme is multi-scale in time for RL training and closed-loop operation. For clarity, we define
the update step as the step that the parameters of RL agent are updated once, or equivalently, the parameters
in the PID controller are changed once. We use 𝑘 ∈ {0, 1, . . . , 𝐾} to denote the 𝑘-th update step, where 𝐾
represents the maximum number of training episodes. In contrast, the operation step is defined as one time
step in a closed-loop operation, denoted as 𝑡 ∈ {0, 1, . . . , 𝑇}, where𝑇 is the length of the episode. Each closed-

http://dx.doi.org/10.20517/ces.2021.15

Page 8 of 21 Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15

loop operation gives one sample of state and action transition of the environment. The parameters of the four
networks in the DPG algorithm are updated once as soon as one episodic closed-loop operation is complete.
Note that the PID parameters remain unchanged throughout one episode. One motivation for this setup is
that by overseeing the entire closed-loop trajectories of process variables in an episode, the performance of the
underlying PID parameters can be more comprehensively assessed by considering both point-based metrics
such as overshoot, rise time, etc., and trajectory-based metrics such as integrated square error (ISE). Moreover,
as stated in [23], if the RL agent and PID parameters are updated at every operation step, as has been done by
many works, the fast switching of controller parameters may lead to instability [36]. The details of each block
in Figure 2 are provided below.

3.1.1. Environment, state and action
In the proposed scheme, the closed-loop system with PID control is viewed as the environment. The outputs
of the environment are the trajectories of process variables, such as MVs, CVs, and setpoint, throughout an
episodic closed-loop operation. Specifically, after the 𝑘-th closed-loop operation, the trajectories of process
variables are

y𝑘 =
[
𝑦0
𝑘 , 𝑦1

𝑘 , . . . , 𝑦𝑘𝑇
]T
, u𝑘 =

[
𝑢𝑘0 , 𝑢

𝑘
1 , . . . , 𝑢

𝑘
𝑇

]T
, (17)

where y𝑘 and u𝑘 are the CV and MV trajectories, respectively. Existing literature [18,32] generally stacks the
entire input and output trajectories, possibly with setpoint and other information, into a tuple as the envi-
ronment state. However, this can lead to the issue of overly high-dimensional input to the DPG networks,
especially for slow processes that require a large episode length 𝑇 to reflect the overall response trend. As a
result, the networks involved in DPG will be large in scale and this makes the training extremely challenging.
In this work, to reduce the input dimension, we propose to use a subset of these trajectories as the environment
state. To be specific, we select a subset of CVs and MVs at an equally-spaced interval over y𝑘 and u𝑘 . The
environment state is defined as

s𝑘 =
[ỹ𝑘 , ũ𝑘 , r̃𝑠𝑝𝑘

]T
, ỹ𝑘 = [𝑦𝑘0 , 𝑦𝑘𝑖 , 𝑦𝑘2𝑖 , . . .]T, ũ𝑘 = [𝑢𝑘0 , 𝑢

𝑘
𝑖 , 𝑢

𝑘
2𝑖 , . . .]

T, r̃𝑠𝑝𝑘 = [𝑟 𝑠𝑝,𝑘0 , 𝑟
𝑠𝑝,𝑘
𝑖 , 𝑟

𝑠𝑝,𝑘
2𝑖 , . . .]T, (18)

where 𝑖 represents the interval over which a subset of process variables is selected. In (18), the setpoint infor-
mation r̃𝑠𝑝𝑘 is included to inform the RL agent of the tracking target information. This becomes important if
an episode contains setpoint changes, a common scenario often met for online controller tuning with RL. In
our work, for simplicity, we will only consider the situation where the setpoint is a constant. Scenarios with
varying setpoints and online tuning will be tackled in our future work. The action a𝑘 of the RL agent consists
of the PID parameters:

a𝑘 =
[
𝐾𝑝 , 𝜏𝐼 , 𝜏𝐷

]
. (19)

At the end of each episode, the RL agent receives information from the environment, updates its parameters,
and then delivers one set of PID parameters to the controller. The closed-loop system then operates under the
new PID controller for the next episode.

3.1.2. Reward
The proposed method will use the reward 𝑟 to assess the control performance of PID by monitoring closed-
loop trajectories of CVs and MVs. Instead of relying on point-based metrics such as overshoot, settling time,
etc., we will utilize trajectory-based metrics, particularly the ISE as the primary assessment method:

𝑟 = −
𝑇∑
𝑡=0

𝑒2
𝑡 , (20)

where 𝑒𝑡 = 𝑟 𝑠𝑝𝑡 − 𝑦𝑡 , 𝑡 = 0, 1, . . . , 𝑇 , represents the tracking error. Note that more comprehensive assessment
metrics consisting of both trajectories- and point-basedmetrics can easily be constructed as above. In addition,
the amplitude of the MV can also be incorporated into the performance criterion with a weight reflecting
its importance relative to the CV. In our scheme, the reward (20) is computed using the entire closed-loop
trajectories (17), rather than the subset of them selected for defining the state as in (18).

http://dx.doi.org/10.20517/ces.2021.15

Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15 Page 9 of 21

La
ye

r
N

o
rm

Fu
lly

 C
o

n
n

ec
te

d

Fu
lly

 C
o

n
n

ec
te

d

ta
n

h

La
ye

r
N

o
rm

C
lip

Noise

𝒔𝑘State
Action
𝒂𝑘

Actor Network

N
o

rm

FC

FC

La
ye

r
N

o
rm

N
o

rm

Fu
lly

 C
o

n
n

ec
te

d
 State 𝒔𝑘

Action 𝒂𝑘

Critic Network

Q Value+

+

Figure 3. The structure of the actor and critic networks. Left: The actor networkwhere layer normalization is used before each network layer.
Decaying noise is added to the output to encourage exploration at the beginning of RL training. Right: The critic network that consumes
state and action, and returns the 𝑄 value for updates with policy gradient.

3.1.3. Agent
As discussed in Section 2, our RL will utilize the DPG algorithm for training the agent. At the end of each
closed-loop operation episode, the setpoint, MV, and CV trajectories will be consumed to extract the environ-
ment state, action (PID parameters used for this episode), and reward, as shown in Figure 2. Such information
is saved into the replay buffer. A batch of 𝐵 samples of past transition data (𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘+1) is then randomly
sampled to be used as the dataset for updating network parameters in the agent. Figure 3 shows the structures
of actor network 𝜇𝜃 (𝑠𝑘), critic network𝑄(𝑠𝑘 , 𝑎𝑘 , 𝑤), and their target networks 𝜇𝜃 ′ (𝑠𝑘+1),𝑄(𝑠𝑘+1, 𝜇𝜃 ′ (𝑠𝑘+1), 𝑤′)
used by the agent in this work. During RL exploration, it is likely that the agent will attempt some PID pa-
rameters that are close to the unstable region of the parameter space. This could lead to closed-loop responses
where CV and MV have overly large amplitudes, which has been observed in our simulation study. Without
normalization, it is likely that such a large-amplitude input to the actor network will drive the output of the
actor network to the saturation zone of the ”tanh” function [37]. As a result, the returned action a𝑘 always stays
at the upper or lower bounds. Such a behavior prevents the agent from learning meaningful policies [35]. In
this work, we use layer normalization [38] to mitigate this issue. For the actor network, in order to encourage
the agent’s exploration of PID parameter space at the beginning, we add a Gaussian noise after the ‘tanh’ func-
tion. However, the variance of the noise decays over episodes so that the agent will focus more on exploitation
at the later stage of the training. Note that the architectures (e.g., the number of layers and nodes for each
layer) of these networks in Figure 3 for specific problems need fine tuning to optimize the performance of the
trained RL agent. As shown in Figure 2, the output (action) of the RL agent is the next set of PID parameters
to be deployed to the closed-loop system. However, some PID parameters, if implemented, may give rise to
unstable closed-loop responses that can cause disastrous consequences in practice. To preserve the stability
and thus ensure safety, a novel mechanism is proposed to correct those poorly selected PID parameters before
causing instability, as discussed in the next subsection.

3.2. Stabilitypreserving PID tuning with baseline controller
Ensuring the stability of the closed-loop system during RL exploration of PID parameters is critical for prac-
tical implementation. However, algorithms such as DPG employed by RL agent focus solely on maximizing
the return (13) that does not directly relate to the closed-loop stability, especially when the training episode
has a short duration where the unstable behavior cannot be clearly manifested. Moreover, constrained RL
algorithms [39] that restrict the searchable action space to ensure safety may not be applicable since the sta-
bility region of the PID parameter space is usually extremely difficult to obtain and be formulated as explicit
constraints. Reward modification methods such as Lagrangian relaxation [40,41] only add some soft penalty
on constraint violation or unstable response to discourage such explorations to a certain extent, that is, they
cannot strictly ensure that the recommended PID parameters by RL agent for subsequent trials are within the
stable region. In this work, we propose a novel idea that is based on a baseline PID controller for ensuring the
stability for RL-based PID tuning.

http://dx.doi.org/10.20517/ces.2021.15

Page 10 of 21 Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15

Start

𝑡 = 0, RR = 0,

PID = 𝐾𝑝
𝑘 , 𝜏𝐼

𝑘 , 𝜏𝐷
𝑘

Initialization

Is RR < λ ∙
𝑅𝑏𝑚𝑘?

PID = 𝐾𝑝
0, 𝜏𝐼

0, 𝜏𝐷
0

No

Is 𝑡 < 𝑇?

Yes

RR update
Yes

End

𝑡 ← 𝑡 + 1

Figure 4. The flow chart for the proposed stability-preserving RL-based PID tuning approach. The running reward is denoted as “RR”.

The proposed method utilizes a conservative but stable PID controller as a baseline. The corresponding PID
parameters are denoted as 𝐾0

𝑝 , 𝜏0
𝐼 , 𝜏

0
𝐷 , respectively. Conservative controllers enable better tolerance of model

uncertainties and disturbances, thereby better capability to maintain the closed-loop stability. The baseline
controller can be selected based on prior knowledge of the system and classical tuning guidelines (e.g., Ziegler-
Nichols) but with a de-tuned setup (thus possibly poor performance). Prior to the training of RL agent, the
baseline controller is deployed to the system to observe the closed-loop response over an episode. The tracking
error in (20) then can be computed based on the acquired response profiles, and this is used as the benchmark
reward 𝑅𝑏𝑚𝑘 > 0 for the subsequent RL training. The details of the stability-preserving PID tuning are shown
in the flowchart in Figure 4. As shown in this figure, for the 𝑘-th RL exploration with PID parameters 𝐾 𝑘𝑝 , 𝜏𝑘𝐼 ,
𝜏𝑘𝐷 , initially this combination of parameters is deployed to the controller for closed-loop operation. To ensure
stability, a supervisor mechanism is mounted on top of the closed-loop system tomonitor the process variables
at each operation step. This supervisor accumulates the running reward (RR) or running tracking error at each
operation step and compares it with the benchmark reward 𝑅𝑏𝑚𝑘 . For instance, the RR at time 𝑡 can be defined
as (note about the sign):

𝑅𝑅(𝑡) =
𝑡∑
𝑠=0

𝑒2
𝑠 . (21)

At time 𝑡, if the running reward exceeds the benchmark reward: 𝑅𝑅(𝑡) > 𝜆𝑅𝑏𝑚𝑘 where 𝜆 ≥ 1, it indicates
that the underlying PID controller gives a worse performance even than the baseline controller. This occurs
with a high chance due to an unstable controller. Upon such observations, the supervisor will replace the
underlying parameters with the baseline parameters 𝐾0

𝑝 , 𝜏0
𝐼 , 𝜏

0
𝐷 to correct the closed-loop response in advance

before actual instability happens. The remaining closed-loop operation will be under the baseline controller.
Due to the transients afterwards, the eventual total reward will be a much worse value than the benchmark.
This final reward will be used as the associated reward for the deployed PID parameters. The obtained poor
reward value can inform the RL agent of avoiding exploring nearby regions for subsequent trials, so as to dis-
courage exploring unstable regions. In the subsequent sections, the deployed PID parameters at the beginning
of the episode are defined as explored parameters, whereas the actually utilized parameters until the end of the
episode are defined as implemented parameters. For an unstable PID controller, the implemented parameters
are indeed the same as the baseline parameters. The conservativeness of the baseline controller can, to the

http://dx.doi.org/10.20517/ces.2021.15

Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15 Page 11 of 21

Table 1. Pseudo code for stability-preserving DPG-based PID tuning

Algorithm: Stability-preserving DPG-based PID tuning
1: Input: initial policy parameter 𝜃 , Q-function parameter 𝑤 , and empty replay buffer D
2: Initialize target networks 𝜃′ ← 𝜃 , 𝑤′ ← 𝑤 . Choose the baseline controller (𝐾 0

𝑝 , 𝜏0
𝐼 , 𝜏0

𝐷)
3: Repeat
4: Set running reward 𝑅𝑅 = 0. Observe state 𝑠 and select action 𝑎 = 𝑐𝑙𝑖 𝑝 (𝜇𝜃 (𝑠) + 𝜖 , 𝑎𝑙𝑜𝑤 , 𝑎ℎ𝑖𝑔ℎ)

where 𝜖 is random noise. The action is the PID parameters 𝑎 = (𝐾𝑝 , 𝜏𝐼 , 𝜏𝐷)
5: Perform closed-loop operation under (𝐾𝑝 , 𝜏𝐼 , 𝜏𝐷)

for 𝑡 = 0, 1, . . . , 𝑇 :
If 𝑅𝑅 (𝑡) > 𝜆𝑅𝑏𝑚𝑘 :

PID← (𝐾 0
𝑝 , 𝜏0

𝐼 , 𝜏0
𝐷)

One-step simulation forward, update 𝑅𝑅 (𝑡), append CV, MV, and setpoint values
6: Observe the next state 𝑠′ and compute the episodic reward 𝑟 using the closed-loop data
7: Store the transition (𝑠, 𝑎, 𝑟 , 𝑠′) into the replay buffer D
8: Update RL agent parameters:
9: Randomly select a batch of transitions 𝐵 = {(𝑠, 𝑎, 𝑟 , 𝑠′) } from D with

the number of transitions as |𝐵 |
10: Compute the target for each sample in 𝐵: 𝑦 = 𝑟 +𝑄 (𝑠′, 𝜇𝜃′ (𝑠′) , 𝑤 ′) ∈ R|𝐵 |

11: Update the Q-function by one step of gradient descent using cost function w.r.t. 𝑤 :
1
|𝐵 |

∑
(𝑠,𝑎,𝑟 ,𝑠′)∈𝐵 (𝑄 (𝑠, 𝑎, 𝑤) − 𝑦)2

12: Update the policy by one step of gradient descent using cost function w.r.t. 𝜃 :
1
|𝐵 |

∑
𝑠∈𝐵 𝑄 (𝑠, 𝜇𝜃 (𝑠))

13: Update the parameters 𝑤′ and 𝜃′ in the target networks (0 < 𝜌 < 1 but close to 1):
𝑤′ ← 𝜌𝑤 ′ + (1 − 𝜌)𝑤 , 𝜃′ ← 𝜌𝜃′ + (1 − 𝜌) 𝜃

14: Until Convergence then End Repeat

maximum extent, prevent the process variables from divergence and drive them to the steady-state. The devel-
oped stability-preserving DPG-based PID tuning algorithm is shown in Table 1. The theoretical proof of the
closed-loop stability of our method can be found in the Appendix.

Remark 1. Similar to the definition of reward (20), the running reward defined in (21) can be flexible by
including other performance metrics, e.g., penalty on the inputs and even the input change rate. However, the
form of the running reward shall be consistent with that of the reward in (20). The underlying principle of
using the performance metric as the reward for the RL agent to learn stays the same. The selection of 𝜆 can be
properly determined based on the conservativeness of the baseline controller or other piratical considerations.

3.3. Connection to gain scheduling
RL-based PID auto-tuning as proposed in this work inherits similarities with gain scheduling [42]. Both strate-
gies seek an ultimate goal of achieving online adaptivity of controllers to varying operating conditions. How-
ever, they also have important differences. For gain scheduling, a set of scheduling parameters that indicate
the current operating condition must be measured online. The deployed controller under current scheduling
parameters is updated in real-time by, for example, linearly combining baseline controller parameters that
were designed beforehand at prescribed operating conditions. For the RL-based PID tuning, the optimal PID
parameters are obtained through the online interactions between RL agent and closed-loop system, and thus
it does not need to measure any scheduling parameter. In the literature, two strategies have been reported:
PID parameters can be updated in real-time at every time step [29] or in an episodic mode as in our work. For
the former approach, since the PID parameters are changed instantaneously instead of waiting the closed-loop
response to evolve for a duration, it is hard to define a reasonablemetric to assess the control performance (e.g.,
overshoot, integrated squared error, etc.) under given parameters. Moreover, the overly fast abrupt switching
of PID parameters during RL search may lead to closed-loop instability [29]. For our episodic approach, these
two issues can be well addressed and one potential issue is the large number of time steps required to com-
plete the training. In fact, one of our future research topics is exactly on how to accelerate the training of RL
agent using sample efficient RL techniques to significantly reduce the number of data samples required for the
training. In this way, this potential issue can be mitigated.

Remark 2. Despite the stability-preserving feature of the proposed approach, some potential limitations may

http://dx.doi.org/10.20517/ces.2021.15

Page 12 of 21 Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15

Figure 5. Stability-preserving automatic PID tuning results with Algorithm 1 with two tunable parameters 𝐾𝑝 and 𝜏𝐼 .

exist for its practical applications. One of the main difficulties, as mentioned above, is the relatively low sam-
ple efficiency of not only our method but also general RL approaches. We will tackle this problem in our
future work using employing sample efficient RL methods to accelerate the training by reducing the number
of required samples. Another potential limitation is the determination of hyper-parameters for the proposed
algorithm (e.g., learning rate, actor/critic network structures, etc.) that could affect the convergence and sam-
ple efficiency. One solution could be to employ existing well-developed RL models as a starting point (similar
to the idea of transfer learning) to facilitate the selection of hyper-parameters.

4. SIMULATION EXAMPLE
In this section, we study the PID tuning for a second-order plus dead-time (SOPDT) process with model as

𝐺 (𝑠) = 0.3
25𝑠2 + 10𝑠 + 1

𝑒−10𝑠,

with time-delay as 10 seconds. For simulating this process, the sampling time is selected as 1 second. Due to
the large time-delay, PID control is the preferred mode. The ranges for the three parameters are respectively
𝐾𝑝 ∈ [0, 10], 𝜏𝐼 ∈ [0, 15], 𝜏𝐷 ∈ [0, 10]. The bound for the MV is chosen to be 𝑢 ∈ [0, 100]. If the computed
MV is outside these bounds, the anti-windup technique will be used (cf. Section 2). The episodic length for
closed-loop operation (step test) is 𝑇 = 200 steps. We use the setpoint-tracking performance as the reward
for a given setpoint 𝑟 𝑠𝑝 = 7.5. The baseline controller is chosen as 𝐾0

𝑝 = 4.56, 𝜏0
𝐼 = 8.85, 𝜏0

𝐷 = 5.90. In
the following case studies, we use numerical methods to separate the stable and unstable regions in the PID
parameter space. Specifically, we grid the range of each PID parameter with an interval of 0.2. For each mesh
grid of the PID parameter space, we conduct a step test with reference value 7.5 and compute the tracking error.
If the tracking error exceeds a threshold (selected as 15 in our work based on our analysis of the tracking errors

http://dx.doi.org/10.20517/ces.2021.15

Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15 Page 13 of 21

Table 2. List of key hyper-parameters used by our RL-based PID tuning algorithm

Parameters Values Parameters Values
Learning rate 𝛼 for actors 0.0002 Learning rate 𝛽 for critics 0.0002
Memory size 𝑁 for replay buffer 1000 Batch size 𝐵 32
Episode length 𝑇 200 Environment state dimension 𝑛𝑠 30
Discount factor 𝛾 in the return 0.99 Polyak averaging coefficient 𝜌 for DPG 0.999
Structure for actor and its target networks [40,30,1] Structure for critic and its target networks [40,30,1]
Reward threshold 𝑅𝑏𝑚𝑘 to baseline controller 15 Scaling parameter 𝜆 for reward threshold 1
Initial noise variance 𝜎2 for exploration 0.05 Noise decay factor 0.001

over several marginally stable PID controllers) and at the same time there is an overshoot, then we claim that
the underlying PID parameter combination is unstable. Note that we use overshoot to distinguish the large
tracking errors caused by sluggish and unstable controllers. Such an analysis is conducted over all grid points
and this gives us the stable and unstable regions.

Table 2 lists the key parameters adopted by our algorithm for the following simulations. In determining some
parameters such as learning rates, noise level, replay buffer, and batch size, we referred to benchmark DPG
models [22] and did slight tuning on top of those benchmark values. Other parameters such as actor and critic
network structure and noise level are determined based on our insight into the specific problem along with
some trial and error. Through this process, we discover that the algorithm outcome is sensitive to some param-
eters such as the learning rate and network structure, but not sensitive to parameters such as the buffer size,
batch size, etc. Our interpretation is that those sensitive parameters are directly related to the overall complex-
ity, scale, and optimization performance of the resultant RL problem. Therefore, one potential challenge in
implementing such RL-based PID auto-tuning methods is the determination of such parameters for the spe-
cific application. However, to accelerate and automate the selection of hyper-parameters will be an interesting
and important future topic.

Case 1: For the first case, PID control is used but only two free parameters 𝐾𝑝 and 𝜏𝐼 are available for tuning.
The derivative parameter 𝜏𝐷 is chosen to be dependent on 𝜏𝐼 , i.e., 𝜏𝐷 = 2𝜏𝐼/3. In other words, the space of
tunable parameters only consists of 𝐾𝑝 and 𝜏𝐼 . With the developed DPG-based safety-preserving PID tuning
Algorithm 1, the simulation results are shown in Figure 5. The top left plot shows the learning curve of the RL
agent during training, where the red curve shows themoving-averaged reward value over episodes and the blue
noisy curve shows the raw reward values. It shows that with the proposed method, after initial exploration, the
RL agent is able to quickly concentrate on exploitation to converge to the optimum. The top right plot shows the
unstable (red) and stable (white) regions of the 2Dparameter space. The green dots are the explored parameters
by the RL agent during the training, whereas the purple dots show the distribution of the actually implemented
parameters. One can see that all implemented parameters are located within the stable region, despite that
some explored parameters are in the unstable region. This observation clearly shows the effectiveness of our
proposed technique in that it can force the implemented parameters to be always in the stable region to main
closed-loop stability. The red star shows the true optimum, which is surrounded by purple dots. This indicates
that our algorithm is able to find the global optimum during training. The bottom left plot shows the trajectory
of explored and implemented 𝐾𝑝 and 𝜏𝐼 over episodes. At the beginning, the agent explores many unstable
parameters but our algorithm can always replace them with the baseline stable controller. The bottom right
plot shows the tracking performance under the worst-case episode and the last episode during RL training. It
is clear that the PID parameters from the last episode can give a satisfactory tracking performance. For the
worst-case episode, due to the presence of early correction from our stability-preserving algorithm, the CV
and MV can still be maintained to be convergent. This observation certifies the effectiveness of the proposed
method in preserving closed-loop stability during RL exploration.

Case 2: For the second case, we consider the full-scale setup of PID tuning with three tunable parameters.
We use the same baseline controller as the previous case. However, to better clarify the difference between

http://dx.doi.org/10.20517/ces.2021.15

Page 14 of 21 Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15

Figure 6. PID tuning results with Algorithm 1 with three tunable parameters 𝐾𝑝 , 𝜏𝐼 , and 𝜏𝐷 . Red: results from stability-preserving RL-based
PID tuning; Green: results from traditional RL-based PID tuning without stability-preserving.

stability-preserving and traditional RL-based PID tuning without stability preservation, in this example, we
choose the bounds of MV to be [−20, 100] to allow unstable behavior to evolve to certain extent. Note that
the presence of MV bounds can make the CV diverge to an upper bound instead of infinity for the unstable
response. Figure 6 illustrates the test results with our proposed stability-preserving method (red curves) and
traditional method without preserving stability (green curves). The top left plot shows the learning curves (i.e.,
episodic reward) under these two scenarios. It can be seen that within 2000 episodes, both learning curves
converge to a stable value. For the case without stability-preserving, the rewards can be as low as -40 over quite
a few number of episodes, whereas for our method with stability-preserving, the lowest reward never exceeds
-20. This indicates that our method can avoid exploring some poor regions (possibly unstable regions) during
RL search. The top right plot shows the scatter of implemented PID parameter values under these twomethods.
The light blue surface is the separation between stable and unstable regions in the parameters space, where the
volume behind the surface is the unstable region. As shown in this plot, all red points, i.e., the implemented PID
parameters with ourmethod, are strictly located in the stable region, whereas some green points (implemented
parameters without stability preservation) are behind the surface in the unstable region. The bottom left plot
compares the CV and MV of the respective worst-case episode of these two methods during the RL training.
It is clear that for our method, even for the worst-case episode, the CV (red) still converges to a steady-state,
thanks to the early correction mechanism in our algorithm. In contrast, for the traditional method without
considering stability-preserving, the worst-case CV (green) demonstrates oscillation behaviors, which is a clear
sign of unstable response. Note that this behavior is indeed strictly unstable since the presence of MV bound
prevents the CV to diverge exponentially. The bottom right plot presents the CV and MV of the last episode.
Both methods are able to discover a combination of PID parameters with high control performance. As note
in [23], the MV bound can ensure bounded unstable response so as to give a meaningful reward value to RL
agent. Without such a bound, the presence of a portion of divergent responses will significantly deteriorate the

http://dx.doi.org/10.20517/ces.2021.15

Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15 Page 15 of 21

0 20 40 60 80 100 120 140 160 180 200

Time step

0

1

2

3

4

5

6

7

8

9

C
V

 P
ro

fil
e

Closed-loop specifie
d

IMC-M
AC

IMC-PID tuning

Stability
 preserving RL-based

0

2

4

6

M
S

E
 o

f t
ra

ck
in

g
er

ro
r

Figure 7. Comparison of the of RL-based PID auto-tuning (our approach), closed-loop specified, IMC-MAC, IMC-PID tuning method

data quality in the replay buffer, which will disable the RL agent to learn a useful policy. These results again
clearly verify the effectiveness of our stability-preserving RL-based PID automatic tuning framework.

Comparison with existing PID tuning methods. There are numerous methods available in the literature
for PID tuning such as Ziegler-Nichols method [43], direct synthesis method, internal model control (IMC)
tuning, IMC-Maclaurin closed-loop tuning [44] and so on. In this work, we specifically select the following three
classicalmethods for comparisonwith ourmethod: IMC-PID tuning, IMC-Maclaurin tuning, and closed-loop
specified tuning. Prior to using the IMC-PID tuning method, a first-order plus dead-time (FOPDT) model
has to be developed to approximate the SOPDT model. To this end, the following relations are used to obtain
the FOPDT approximation model [44]:

𝐾𝑚 = 𝐾𝑐, 𝜏𝑚 = 1.641𝜏, 𝐷𝑚 = 0.505𝜏 + 𝐷, (22)

where 𝐾𝑚 , 𝐷𝑚 , and 𝜏𝑚 are the gain, dead time, and time constant of the approximated FOPDT model, re-
spectively. 𝐾𝑐 , 𝐷, and 𝜏 denote the gain, dead time, and time constant of the original SOPDT system. The
tuning parameters are then obtained by the first row of Table 3, where 𝜆 = max(0.25𝐷𝑚 , 0.2𝜏𝑚) is a hyper-
parameter. IMC-MAC and closed-loop specified tuning methods can handle the SOPDT system directly. The
specific formula for determining the PID parameters can be seen in Table 3. The tuning parameters calcu-
lated from the IMC-PID, IMC-MAC and closed-loop specified PID tuning methods are [3.08, 14.47, 3.55],
[2.87, 12.92, 3.99], and [0.833, 5, 5], respectively.

Figure 7 compares the setpoint tracking performance between our method and the other three selected tuning
guidelines. Among these step response curves of the output, ourmethod tracks the setpoint quickly despite the
presence of a secondary peak. The closed-loop specified tuning gives the worst performance. The embedded
bar plot shows that our method yields the minimum tracking error among others. The reason is that our RL-
based PID tuning aims at finding the optimum in the PID parameter space to maximize the reward. However,
the other classical tuning methods are more empirical and their purpose is to quickly provide a good set of
PID parameters without explicitly optimizing a specific objective.

Adaptivity to changes in systemmodel. In this subsection, we extend the previous results fromCase 2 to study

http://dx.doi.org/10.20517/ces.2021.15

Page 16 of 21 Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15

Table 3. The selected classical PID tuning methods for SOPDTmodel

Method PID parameter determination
IMC-PID tuning [44] 𝐾𝑃 = 2𝜏𝑚+𝐷𝑚

2𝐾𝑚 (𝜆+𝐷𝑚) , 𝜏𝐼 = 𝜏𝑚 + 0.5𝐷𝑚 , 𝜏𝐷 = 𝜏𝑚𝐷𝑚
2𝜏𝑚+𝐷𝑚

IMC-MAC tuning [45] 𝐾𝑃 = 𝜏𝐼
𝐾𝑐 (2𝜆+𝐷) , 𝜏𝐼 = 2𝜏 − 2𝜆2−𝐷2

2(2𝜆+𝐷) , 𝜏𝐷 = 𝜏𝐼 − 2𝜏 + 𝜏2− 𝐷3
6(2𝜆+𝐷)
𝜏𝐼

Closed-loop specified tuning [46] 𝐾𝑃 = 𝜏
2𝐾𝑐𝐷 , 𝜏𝐼 = 𝜏, 𝜏𝐷 = 𝜏

the adaptivity of our stability-preserving RL-based PID tuning. To this end, after the initial RL training, we
purposely introduce a change in the system gain. We then examine whether the RL agent is able to adapt to the
new system via interactions with the closed-loop system. Specially, this simulation experiment starts after the
episodic reward in the top left plot of Figure 6 settles down, e.g., after 2000 episodes. With the trained RL agent,
we operate the closed-loop system in an episodic mode and gradually change the process gain from 0.3 to 0.5
in 1000 episodes. Such a slow transition in the system parameter is analogous to practical situations when the
process operation condition slowly drifts over time. If a scheduling parameter is measurable (e.g., if the process
gain ismeasurable for our case) to indicate the current operating condition in real-time, gain scheduling control
will be a variable approach to enable the adaptivity of controllers [42]. In this subsection, we compare our
RL-based PID auto-tuning approach with gain-scheduling PID by assuming that the process gain (i.e., the
scheduling parameter) is measurable in real-time. Note that our RL-based PID tuning does not require any
measurable scheduling parameters, in contrast to gain scheduling. For the gain-scheduling PID control, several
benchmark controllers under prescribed operating conditions shall be designed in advance. Then, the real-
time PID controllers can be obtained by linearly interpolating those baseline controllers based on the current
value of the scheduling parameter. For simplicity, we pre-designed two PID controllers under two prescribed
conditions where the process gains are 0.3 and 0.6, respectively. We used the guideline provided by [9] for
SOPDT to design two benchmark PID controllers as [2.87, 12.92, 3.99] and [1.44, 12.92, 3.99], respectively.
The real-time PID controller parameters are obtained by interpolating these two benchmark controllers based
on the current process gain value. The left plot in Figure 8 shows the control performance (the reward is
the negative of the mean-squared tracking error) under different adaptive PID strategies. For our approach
shown in blue, the reward initially drops after the change of the process gain, however, through a number of
interactions, the RL agent is able to learn the best PID parameters and recovers the control performance under
the newoperating condition. The gain-scheduling PIDpresents consistent control performance in the presence
of process gain change (the embedded subplot is amicroscopic view), which gives the best performance among
the threemethods. However, this observation is based on the assumption that we have ameasurable scheduling
parameter in real-time, which does not always hold in practical situations. As another comparativemethod, we
consider using the previous baseline controller from Case 2 with fixed PID parameters throughout the entire
experiment. As shown in green, this fixed controller is not able to adapt to the system change, thus giving a
degraded control performance that never recovers. The right plot of Figure 8 presents the final CVprofiles from
these adaptive PID strategies after adaptation. Our approach even gives a slightly better control performance
than the gain-scheduling PID, as indicated by the bar plot. The fixed baseline PID controller presents the worst
performance. To visualize the adaptation process of the RL-based PID auto-tuning, we plot the evolution of the
CV profiles before and after introducing the process gain change, as shown in Figure 9. From this figure, after
the system change, the control performance starts to deteriorate, since the previous well-tuned PID parameters
may not perform well under the new operating condition. The RL starts to gain experience from the degraded
rewards, after a number of interactions, eventually, the RL agent is able to generate good PID parameters to
adapt to the new operating condition and recover the control performance (see episode # 3000).

Remark 3. Similar to other RL-based methods as well as shown by the results from this simulation section,
the major computation burden of the proposed algorithm lies in the training of the RL agent. For a large
and complex PID parameter space, the exploration of the space and discovering the optimum can take a large
number of training samples. Indeed, there are a number of factors that can directly affect the training time,
such as the learning rate, episode length, and action noise level. If the learning rate is overly small together

http://dx.doi.org/10.20517/ces.2021.15

Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15 Page 17 of 21

0 1000 2000 3000 4000

Episode number

-14

-12

-10

-8

-6

-4
E

pi
so

di
c

re
w

ar
d

RL-autotuning PID
Baseline PID
Gain scheduling PID

0 500 1000 1500 2000 2500 3000 3500 4000

-3.75

-3.7

-3.65
Episodic reward for gain scheduling

System change

0 50 100 150 200

Time step

0

2

4

6

8

10

12

F
in

al
 C

V
 a

fte
r

ad
ap

tiv
e

P
ID

RL-autotuning PID
Baseline PID
Gain scheduling PID

0

2

4

6

8

M
S

E
 o

f t
ra

ck
in

g
er

ro
r

Figure 8. Comparison of the adaptivity of RL-based PID auto-tuning (our approach), gain-scheduling PID, and the fixed baseline PID con-
troller to the process gain change. Left: episodic rewards (the negative of mean squared tracking error) for these methods; Right: The
ultimate CV profiles after the PID adapts to the new process gain based on these methods. Note that that green color shows the results
where a fixed baseline PID from Case 2 is used throughout the entire experiment.

Figure 9. Evolution of the CV profiles with RL-based PID auto-tuning after introducing the process gain change.

with a long episode, the RL agent would take more time to obtain the state and reward from the closed-loop
system and require more iterations to converge to the optimum, thus can considerable considerably increase
the training time. In addition, if the action noise level is too large, then RL’s exploration of the PID space
can consume much more time. Therefore, a good trade-off between exploration and exploitation is also an
important factor that affects the computation complexity of the proposed method.

Remark 4. In this section, we used a linear second-order system as an example to implement and validate
our algorithms. Although the selected system is simple, our main objective here is to verify that the proposed
stability-preserving approach can ensure closed-loop stability during the search of optimal PID parameters, as
indicated in the results above. However, our ultimate long-term objective is to achieve a fully online automatic
PID tuning framework for generic nonlinear systems (e.g., CSTR) based on RL methods to enable the online
adaptivity, optimality, and stability throughout varying operating conditions. As part of our future work, the
proposed stability-preserving method will be applied to nonlinear systems where online auto-tuning will also
be achieved. The determination of closed-loop stability can be conducted via monitoring the running reward,
instead of relying on theoretical approaches that can be nontrivial for nonlinear systems.

http://dx.doi.org/10.20517/ces.2021.15

Page 18 of 21 Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15

5. CONCLUSIONS
We presented a novel stability-preserving framework for RL-based automatic PID tuning. This work is moti-
vated by the observation that although methods exist for the PID tuning for complex systems, many conven-
tional PID tuning methods rely on trial and error. The obtained PID parameters from such empirical methods
may not be optimal. Moreover, existing RL-based tuning methods cannot ensure the closed-loop stability
during policy search. To this end, we propose a novel multi-scale episodic PID automatic tuning framework
based on the DPG algorithm. For this method, the RL agent receives the reward and updates the network
parameters once after each entire closed-loop operation. To preserve the closed-loop stability, we employ a
stable PID controller as a baseline whose reward is used as a benchmark. A supervisor mechanism monitors
the running reward for any explored PID parameter. Once the running reward exceeds the benchmark, the
supervisor mechanism replaces the underlying PID controller with the baseline controller to prevent unstable
response. Simulation examples are provided to show that ourmethod can not only discover the optimal tuning
parameters efficiently but also preserve the closed-loop stability for all explored PID parameters, compared
with the standard RL-based PID tuning without considering stability preservation. Moreover, the proposed
method is able to adapt to system changes without requiring any knowledge about the underlying operating
condition. Future work includes enabling the online and efficient PID tuning with RL-based methods for
nonlinear systems while ensuring stability during the policy search.

6. APPENDIX
This appendix is devoted to the proof of the overall closed-loop stability of our stability-preserving method.

We consider a generic nonlinear system

¤𝑦 = 𝑓 (𝑦(𝑡), 𝑢(𝑡)), (23)

where 𝑦(𝑡) and 𝑢(𝑡) are, respectively, the CV and MV at time 𝑡. Assume that the initial unstable controller
delivered from RL is expressed as 𝑢(𝑡) = 𝑘𝑢 (𝑦(𝑡)), and the baseline stable PID controller is 𝑢(𝑡) = 𝑘𝑠 (𝑦(𝑡)).
Then the closed-loop system can be formulated as

¤𝑦 =
{
𝑓 (𝑦(𝑡), 𝑘𝑢 (𝑦(𝑡))) = 𝑔𝑢 (𝑦(𝑡)), if 𝑡 < 𝑡1

𝑓 (𝑦(𝑡), 𝑘𝑠 (𝑦(𝑡))) = 𝑔𝑠 (𝑦(𝑡)), if 𝑡 ≥ 𝑡1,
(24)

where 𝑡1 the instant when the running reward exceeds the threshold for the first time. To prove the overall
closed-loop stability with a switching from unstable to stable PID controller, we assume that the baseline PID
controller is exponentially stable, which is introduced as below.

Definition (Exponential stability) [47]. Consider a generic autonomous nonlinear closed-loop system ¤𝑦 =
𝑔(𝑦(𝑡)). The equilibrium 𝑦 = 0 (i.e., g(0)=0) is exponentially stable if there exist constants 𝑚 > 0, 𝛼 > 0, and
𝜀 > 0 such that

‖𝑦(𝑡)‖ ≤ 𝑚𝑒−𝛼(𝑡−𝑡0) ‖𝑦(𝑡0)‖, (25)

for all ‖𝑦(𝑡0)‖ ≤ 𝜀 and 𝑡 ≥ 𝑡0.

For the proposed stability-preserving strategy, define the reward threshold for switching into the baseline con-
troller as 𝛿 > 0. Due to the finite threshold 𝛿, the output at time 𝑡1 is bounded, i.e., 𝑦1 = 𝑦(𝑡1), 0 < 𝛿 ≤ ‖𝑦1‖ ≤ �̄�.
Notice that for any 𝑡 > 𝑡1, the stable PID controller is employed, and thus the definition of exponential stability
applies: there exist constants 𝑚 > 0 and 𝛼 > 0 such that

‖𝑦(𝑡)‖ ≤ 𝑚𝑒−𝛼(𝑡−𝑡1) ‖𝑦1‖ ≤ 𝑚�̄�𝑒−𝛼(𝑡−𝑡1) , ∀𝑡 > 𝑡1. (26)

http://dx.doi.org/10.20517/ces.2021.15

Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15 Page 19 of 21

Note that the switching time 𝑡1 differs depending on the initial value 𝑦(𝑡0) and the specific unstable controller
𝑢(𝑡) = 𝑘𝑢 (𝑦(𝑡)) delivered from the RL. However, as long as the initial value ‖𝑦(𝑡0)‖ < 𝛿, the stable baseline
controller will replace the unstable controller and thus maintain the above exponential bound to be valid. This
exponential bound converges to zero over time and this ensures the overall closed-loop exponential stability.

DECLARATIONS
Acknowledgments
M.A. Chowdhury acknowledges the support of Distinguished Graduate Student Assistantships (DGSA) from
Texas Tech University. Q. Lu acknowledges the new faculty startup funds from Texas Tech University. All the
authors acknowledge the valuable comments and suggestions from anonymous reviewers.

Authors’ contributions
Concept development and data acquisition: Lakhani AI, Lu Q
Drafting the manuscript: Lu Q, Chowdhury MA
Modifying the manuscript: Lakhani AI, Chowdhury MA

Availability of data and materials
Data will be made available upon e-mail request to the corresponding author.

Financial support and sponsorship
None.

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Copyright
©The Author(s) 2022.

REFERENCES

1. Boubertakh H, Tadjine M, Glorennec PY, Labiod S. Tuning fuzzy PD and PI controllers using reinforcement learning. ISA Transactions
2010;49:543–51. DOI

2. Ziegler JG, Nichols NB, et al. Optimum settings for automatic controllers. Trans ASME 1942;64. DOI
3. Borase RP,Maghade D, Sondkar S, Pawar S. A review of PID control, tuningmethods and applications. International Journal of Dynamics

and Control 2020:1–10. DOI
4. Lee D, Lee SJ, Yim SC. Reinforcement learningbased adaptive PID controller for DPS. Ocean Engineering 2020;216:108053. DOI
5. Zhong J, Li Y. Toward humanintheloop PID control based on CACLA reinforcement learning. In: International Conference on Intelli

gent Robotics and Applications. Springer; 2019. pp. 605–13. DOI
6. Guan Z, Yamamoto T. Design of a reinforcement learning PID controller. IEEJ Transactions on Electrical and Electronic Engineering

2021;16:1354–60. DOI
7. Teoh E, Yee Y. Implementation of adaptive controllers using digital signal processor chips. In: Intelligent Tuning and Adaptive Control.

Elsevier; 1991. pp. 109–13. DOI
8. Bucz Š, Kozáková A. Advanced methods of PID controller tuning for specified performance. PID Control for Industrial Processes

2018:73–119. DOI
9. Seborg DE, Edgar TF, Mellichamp DA, Doyle III FJ. Process dynamics and control. John Wiley & Sons; 2016.
10. Abushawish A, Hamadeh M, Nassif AB. PID controller gains tuning using metaheuristic optimization methods: A survey. Journal of

Huaqiao University (Natural Science) 2020;14:87–95. DOI

http://dx.doi.org/10.20517/ces.2021.15
http://dx.doi.org/10.1016/j.isatra.2010.05.005
http://dx.doi.org/10.1115/1.2899060
http://dx.doi.org/10.1007/s40435-020-00665-4
http://dx.doi.org/10.1016/j.oceaneng.2020.108053
http://dx.doi.org/10.1007/978-3-030-27535-8-54
http://dx.doi.org/10.1002/tee.23430
http://dx.doi.org/10.1016/B978-0-08-040935-1.50022-3
http://dx.doi.org/10.5772/intechopen.76069
http://dx.doi.org/10.46300/9108.2020.14.14

Page 20 of 21 Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15

11. Chang WD, Hwang RC, Hsieh JG. A multivariable online adaptive PID controller using autotuning neurons. Engineering Applications
of Artificial Intelligence 2003;16:57–63. DOI

12. Yu D, Chang T, Yu D. A stable selflearning PID control for multivariable time varying systems. Control Engineering Practice
2007;15:1577–87. DOI

13. Zhou K, Zhen L. Optimal design of PID parameters by evolution algorithm. Journal of Huaqiao University (Natural Science) 2005;26:85–
88.

14. Chen J, Huang TC. Applying neural networks to online updated PID controllers for nonlinear process control. Journal of Process Control
2004;14:211–30. DOI

15. Hou Z, Chi R, Gao H. An overview of dynamiclinearizationbased datadriven control and applications. IEEE Transactions on Industrial
Electronics 2016;64:4076–90. DOI

16. Wang XS, Cheng YH, Wei S. A proposal of adaptive PID controller based on reinforcement learning. Journal of China University of
Mining and Technology 2007;17:40–44. DOI

17. Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT press; 2018.
18. Shin J, Badgwell TA, Liu KH, Lee JH. Reinforcement Learning–Overview of recent progress and implications for process control. Com

puters & Chemical Engineering 2019;127:282–94. DOI
19. Watkins CJ, Dayan P. Qlearning. Machine Learning 1992;8:279–92.
20. Rummery GA, Niranjan M. Online Qlearning using connectionist systems. vol. 37. Citeseer; 1994.
21. Sutton RS, McAllester DA, Singh SP, Mansour Y. Policy gradient methods for reinforcement learning with function approximation. In:

Advances in Neural Information Processing Systems; 2000. pp. 1057–63.
22. Silver D, Lever G, Heess N, Degris T,Wierstra D, et al. Deterministic policy gradient algorithms. In: International Conference onMachine

Learning. PMLR; 2014. pp. 387–95.
23. Lawrence NP, Stewart GE, Loewen PD, Forbes MG, Backstrom JU, et al. Reinforcement learning based design of linear fixed structure

controllers. IFACPapersOnLine 2020;53:230–35. DOI
24. Qin Y, Zhang W, Shi J, Liu J. Improve PID controller through reinforcement learning. In: 2018 IEEE CSAA Guidance, Navigation and

Control Conference (CGNCC). IEEE; 2018. pp. 1–6. DOI
25. Sedighizadeh M, Rezazadeh A. Adaptive PID controller based on reinforcement learning for wind turbine control. In: Proceedings of

World Academy of Science, Engineering and Technology. vol. 27. Citeseer; 2008. pp. 257–62.
26. Boubertakh H, Glorennec PY. Optimization of a fuzzy PI controller using reinforcement learning. In: 2006 2nd International Conference

on Information & Communication Technologies. vol. 1. IEEE; 2006. pp. 1657–62. DOI
27. El Hakim A, Hindersah H, Rijanto E. Application of reinforcement learning on selftuning PID controller for soccer robot multiagent

system. In: 2013 Joint International Conference on Rural Information & Communication Technology and Electricvehicle Technology
(rICT & ICeVT). IEEE; 2013. pp. 1–6. DOI

28. Park D, Yu H, XuanMung N, Lee J, Hong SK. Multicopter PID attitude controller gain autotuning through reinforcement learning neural
networks. In: Proceedings of the 2019 2nd International Conference on Control and Robot Technology; 2019. pp. 80–84. DOI

29. Lawrence NP, Stewart GE, Loewen PD, Forbes MG, Backstrom JU, et al. Optimal PID and antiwindup control design as a reinforcement
learning problem. IFACPapersOnLine 2020;53:236–41. DOI

30. Omisore OM, Akinyemi T, Duan W, Du W, Wang L. A novel sampleefficient deep reinforcement learning with episodic policy transfer
for PIDbased control in cardiac catheterization robots. arXiv preprint arXiv:211014941 2021.

31. Astrom KJ, Rundqwist L. Integrator windup and how to avoid it. In: 1989 American Control Conference. IEEE; 1989. pp. 1693–98. DOI
32. Spielberg S, Tulsyan A, Lawrence NP, Loewen PD, Gopaluni RB. Deep reinforcement learning for process control: A primer for beginners.

arXiv preprint arXiv:200405490 2020. DOI
33. Watkins CJCH. Learning from delayed rewards. King’s College, Cambridge United Kingdom; 1989. . DOI
34. Degris T, White M, Sutton RS. Offpolicy actorcritic. arXiv preprint arXiv:12054839 2012.
35. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, et al. Continuous control with deep reinforcement learning. arXiv preprint

arXiv:150902971 2015.
36. Malmborg J, Bernhardsson B, Åström KJ. A stabilizing switching scheme for multi controller systems. IFAC Proceedings Volumes

1996;29:2627–32. DOI
37. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International

Conference On Machine Learning. PMLR; 2015. pp. 448–56.
38. Ba JL, Kiros JR, Hinton GE. Layer normalization. arXiv preprint arXiv:160706450 2016.
39. Liu Y, Halev A, Liu X. Policy learning with constraints in modelfree reinforcement learning: A survey. In: Proceedings of the 30th

International Joint Conference on Artificial Intelligence; 2021. . DOI
40. Chow Y, Ghavamzadeh M, Janson L, Pavone M. Riskconstrained reinforcement learning with percentile risk criteria. The Journal of

Machine Learning Research 2017;18:6070–120.
41. Bohez S, Abdolmaleki A, Neunert M, Buchli J, Heess N, et al. Value constrained modelfree continuous control. arXiv preprint

arXiv:190204623 2019.
42. Stewart GE. A pragmatic approach to robust gain scheduling. IFAC Proceedings Volumes 2012;45:355–62. DOI
43. Ellis G. Four types of controllers. Control System Design Guide 2012. DOI
44. Panda RC, Yu CC, Huang HP. PID tuning rules for SOPDT systems: Review and some new results. ISA Transactions 2004;43:283–

95. DOI

http://dx.doi.org/10.20517/ces.2021.15
http://dx.doi.org/10.1016/S0952-1976(03)00023-X
http://dx.doi.org/10.1016/j.conengprac.2007.02.004
http://dx.doi.org/10.1016/S0959-1524(03)00039-8
http://dx.doi.org/10.1109/TIE.2016.2636126
http://dx.doi.org/10.1016/S1006-1266(07)60009-1
http://dx.doi.org/10.1016/j.compchemeng.2019.05.029
http://dx.doi.org/10.1016/j.ifacol.2020.12.127
http://dx.doi.org/10.1109/GNCC42960.2018.9019095
http://dx.doi.org/10.1109/ICTTA.2006.1684633
http://dx.doi.org/10.1109/rICT-ICeVT.2013.6741546
http://dx.doi.org/10.1145/3387304.3387327
http://dx.doi.org/10.1016/j.ifacol.2020.12.129
http://dx.doi.org/10.23919/ACC.1989.4790464
http://dx.doi.org/10.1002/aic.16689
http://dx.doi.org/10.1016/0921-8890(95)00026-C
http://dx.doi.org/10.1016/S1474-6670(17)58071-4
http://dx.doi.org/10.24963/ijcai.2021/614
http://dx.doi.org/10.3182/20120620-3-DK-2025.00168
http://dx.doi.org/10.1016/B978-0-12-385920-4.00006-0
http://dx.doi.org/10.1016/S0019-0578(07)60037-8

Lakhani et al. Complex Eng Syst 2022;2:3 I http://dx.doi.org/10.20517/ces.2021.15 Page 21 of 21

45. Rivera DE, Morari M, Skogestad S. Internal model control: PID controller design. Industrial & Engineering Chemistry Process Design
and Development 1986;25:252–65. DOI

46. LeeY, Park S, LeeM, BrosilowC. PID controller tuning for desired closedloop responses for SI/SO systems. AIChE Journal 1998;44:106–
15. DOI

47. Khalil HK. Nonlinear Systems (Third Edition). Patience Hall 2002;115.

http://dx.doi.org/10.20517/ces.2021.15
http://dx.doi.org/10.1021/i200032a041
http://dx.doi.org/10.1016/S0019-0578(07)60037-8

	1. Introduction
	2. Preliminaries
	PID control
	Reinforcement learning
	Introduction
	Deterministic policy gradient

	3. Stability-preserving PID tuning with DPG
	PID Tuning with DPG
	Environment, state and action
	Reward
	Agent

	Stability-preserving PID tuning with baseline controller
	Connection to gain scheduling

	4. Simulation Example
	5. Conclusions
	Appendix
	Declarations
	Acknowledgments
	Authors' contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Copyright

