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Abstract
Energy-efficient water electrolysis is one of the most promising techniques for generating green hydrogen as a 
carbon-free energy source. As a half-reaction of water splitting, the oxygen evolution reaction is kinetically 
sluggish, leading to large thermodynamic potential gaps compared to the hydrogen evolution reaction. In terms of 
cost-effective hydrogen generation, mitigating this overpotential is a challenging obstacle, but it remains a hurdle 
to overcome. It is necessary to advance energy-saving hydrogen production by substituting with an oxygen 
evolution reaction as a thermodynamically favorable anodic reaction. Additionally, depending on the specific small 
molecules used for the anodic oxidation reaction, it is possible to reduce environmentally harmful substances and 
produce value-added chemicals. Nickel-based electrocatalysts have received growing attention for their application 
in electrochemical reactions due to their affordability, versatility in structural tuning, and ability to function as 
active sites for bond formation and cleavage. The purpose of this paper is to probe how the morphology, structure, 
and composition of these catalysts affect the electrocatalyst performance for small molecule oxidation. Explaining 
these relationships can accelerate the development of sustainable hydrogen production techniques by identifying 
the design principles of high-performance nickel-based electrocatalysts.

Keywords: Energy-saving hydrogen production, electrocatalyst, Ni-based catalyst, urea oxidation, hydrazine 
oxidation, ammonia oxidation, oxidation of small molecules
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INTRODUCTION
It is widely acknowledged that the use of fossil fuels should be reduced due to environmental pollution and 
global warming problems[1]. Sustainable energy conversion and production technologies are being actively 
developed to reduce reliance on fossil fuels[2]. Hydrogen is one of the most efficient and promising 
alternatives to replace fossil fuels as a sustainable energy source[3].

Hydrogen has an energy density of 33.5 kWh per kg, about 2.6 times higher than diesel, with an energy 
density of 13 kWh per kg[4]. The high energy content accounts for its emergence as an alternative to fossil 
fuels[5]. Another point is that hydrogen fuel clearly reduces carbon dioxide emissions compared to 
petroleum-based fuels[6]. As interest in carbon neutrality increases worldwide, the demand for hydrogen is 
expected to expand further, thereby highlighting the need for efficient hydrogen production systems[7].

Hydrogen is obtained through various methods, including natural gas reforming, industrial byproduct 
hydrogen, and water electrolysis[8]. However, the hydrogen produced as a byproduct or reformed in 
industrial processes is not environmentally suitable, as it consumes much energy and incurs high 
operational costs, limiting the achievement of carbon neutrality[9]. Water electrolysis offers a substantial way 
to produce cost-efficient hydrogen reducing carbon dioxide emissions[10].

Most literature informs about the overpotential of oxygen evolution reaction (OER) in relation to the 
complex four-electron transfer process and mechanism[11]. Thermodynamically, the onset potential for OER 
is set at 1.23 V [vs. reversible hydrogen electrode (RHE)] with a current density of 10 mA cm-2. However, a 
higher potential is typically required to enhance the OER and subsequently increase hydrogen 
generation[12]. For this reason, it is essential to substitute the OER with a thermodynamically and kinetically 
favorable oxidation half-reaction to energy-saving hydrogen generation[13].

For example, urea, ammonia, and hydrazine are nitrogen-containing molecules that act as pollutants in the 
air or water. These molecules have the low theoretical onset potential of electrochemical oxidation[14]. The 
coupling with these anodic reactions with cathodic hydrogen evolution reaction (HER) enables the 
mitigation of environmental pollution while reducing the energy required to generate hydrogen[15]. 
Furthermore, other small-molecule oxidation reactions coupled with HER contribute to reducing the 
thermodynamic potential yield value-added products[16]. This approach offers the potential to produce 
hydrogen with lower energy requirements and an important strategy for improving its role as a sustainable 
energy source. As these technologies advance, more efficient and environmentally sustainable pathways for 
hydrogen production are expected to emerge.

Over the decades, research has focused on noble metal electrocatalysts such as platinum (Pt), Ru, and Ir. In 
2009, the first Ni-based catalyst for urea electrolysis was reported, comparing its performance to Pt, Pt-Ir, 
and Rh[17]. For hydrazine oxidation, studies date back to 1981, with substantial efforts emerging in the 
2010s[18]. In ammonia oxidation, Yao et al. explored Ni catalysts in alkaline solutions to assess activity[19]. 
Noble metals face challenges including high costs and limited industrial scalability, prompting interest in 
transition metals in the form of oxides, hydroxides, or chalcogenides[20]. Transition metals can also serve as 
active sites or supports in heterogeneous structures such as heterojunctions or 2D frameworks[21].

Ni stands out for its low cost, availability, and modifiable properties, making it suitable for large-scale 
applications[22]. Its surface can be engineered through heterostructures, doping, or alloying to enhance 
reaction kinetics and electrochemical surface area (ECSA)[23]. Doping modifies electronic structure of Ni, 
improving reaction dynamics. In alkaline conditions, Ni forms oxides and hydroxides, with oxidation state 
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changes influencing activity and stability[24]. This paper reviews recent advancements in Ni-based catalysts, 
providing groundwork for future designs.

General design strategies of electrocatalyst for hydrogen production
Catalyst-support interaction
Carbon-based supports such as graphene, carbon nanotubes, and nitrogen-doped carbon offer high surface 
area, conductivity, and tunable properties for stabilizing catalysts[25]. They anchor metal nanoparticles (NPs), 
nanoclusters (NCs), or single-atom catalysts (SACs), improving dispersion, stability, and activity. 
Functional groups (e.g., carboxyl and hydroxyl) and chemical modifications(e.g., oxidation and sulfonation) 
anchor catalytic metals, prevent aggregation, and improve dispersion[26]. Nitrogen doping adjusts electronic 
structure, increases active sites, and stabilizes catalysts via strong metal-nitrogen bonds[27]. Sulfur or 
phosphorus doping boosts binding energy and charge transfer. Structural defects, such as single or double 
vacancies, create reactive sites that enhance metal binding and dispersion[28]. Hybrid materials (e.g., 
graphene-carbon nanotube composites) improve surface area and mass transport, while encapsulating NPs 
between carbon layers prevents leaching and aggregation for long-term efficiency[29,30]. Carbon supports 
improve electron transfer and reaction kinetics through strong catalyst-support interactions. For instance, 
Ru NCs on defective graphene enhance water-splitting efficiency by increasing electron conductivity[31]. 
SACs on nitrogen-doped carbon demonstrate optimized atomic coordination, stabilize intermediates, and 
improve kinetics, with annealing and impregnation techniques ensuring robust activity[32].

Metal-based supports such as reducible oxides (e.g., CeO2 and TiO2) stabilize NPs, NCs, and SACs through 
redox properties and tunable electronic interactions[33]. Strong metal-support interactions (SMSI) modulate 
adsorption energies(e.g., CO, NH, and OH species) and resist deactivation[34]. Oxygen or metal vacancies in 
oxides anchor SACs and prevent aggregation[35]. Dopants (e.g., nitrogen and sulfur) modify electronic 
density and improve charge transfer, influencing reactivity and selectivity[36]. Annealing under reducing or 
oxidizing conditions tunes the local coordination environment, enhancing activity and stability. For 
instance, Ir NCs on covalent organic polymers show improved stability and activity[37].

Surface engineering
Surface modification techniques, including the introduction of defects or heteroatom doping, enhance 
catalytic activity by increasing the number of available reactive sites and optimizing the adsorption of 
reactants[38]. Creating surface defects, such as nitrogen or oxygen vacancies, optimizes the adsorption and 
activation of target molecules such as Ammonia, Urea, Hydrazine and their intermediates[39]. The 
combination of crystalline and amorphous structures allows for efficient charge separation and transfer. The 
crystalline domains serve as pathways for electron transport, while the amorphous domains reduce 
recombination losses by trapping intermediates effectively[40].

Morphology engineering
Hierarchical structures, such as porous nanoarrays, increase the surface area and improve mass transfer. 
Ultrathin nanosheets or nanorods expose a greater fraction of reactive edges and corners, which are more 
catalytically active than flat surfaces[41]. By combining a stable core with a reactive shell, core-shell catalysts 
reduce degradation during reactions while maximizing active site availability[42]. Hollow or tubular designs 
minimize diffusion resistance, allowing reactants to access active sites more efficiently[43]. Layered structures 
expose interlayer spaces to reactants, facilitating catalytic reactions[44].
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Synergistic effects through heterostructures
Different components in heterostructures provide complementary properties, such as enhanced charge
separation or optimized adsorption energies for reactants. Heterostructures create localized electrophilic
and nucleophilic domains, effectively adsorbing and activating target molecules[45]. The interaction between
the materials at the interface creates new electronic states, enhancing the catalytic activity by lowering the
energy barriers of the reaction[46]. The heterojunction improves the charge transfer between materials
through the dynamic charge redistribution improving adsorption and reaction kinetics[47].

Adjustment of electronic structure and ensemble effects
Introducing multi-metallic components and dopants, such as Co, W, Mo, Fe, or heteroatoms including N,
S, and P, can effectively optimize electronic structures, facilitate charge redistribution, and lower energy
barriers. Modifying charge distributions using dopants or lattice engineering can stabilize these species,
improving catalytic performance[44]. The formation of high-valent nickel species, such as Ni3+ or Ni4+, is
crucial for active catalytic phases[48]. Co enhances the electron density at the Ni sites, while Mo contributes
to improved hydrogen adsorption and desorption[49]. Adjusting the d-band center or density of states (DOS)
optimizes the adsorption and desorption of reactants and intermediates. For example, in NiMoO3S, sulfur
doping improved electron transfer efficiency and urea adsorption by shifting the DOS closer to the Fermi
level thereby increasing carrier concentration and facilitating electron transport[50].

Electrochemical measurement and performance evaluation criteria
Electrochemical measurements for urea oxidation reaction (UOR), ammonia oxidation reaction (AOR),
hydrazine oxidation reaction (HzOR), and small molecule oxidation (SMOR) typically involve cyclic
voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), chronopotentiometry
(CP), and electrochemical impedance spectroscopy (EIS)[51-54].

CV and LSV tests, conducted with or without the target substance, assess activity overpotentials and
compare catalytic performance, often normalized to ECSA. Lower overpotentials at 10 mA/cm2 or
100 mA/cm2 indicate better performance. CA and CP tests evaluate long-term stability at current densities
ranging from 10 mA/cm2 to 1 A/cm2 or higher, over at least ten hours. EIS analyzes charge transfer and
surface dynamics, with the x-intercept of the Nyquist plot showing electrolyte impedance and the
high-frequency arc indicating charge transfer impedance[52]. For UOR, high-frequency responses reflect
Ni2+/Ni3+ interconversion, while low-frequency responses correspond to direct urea oxidation[55]. EIS also
reveals COx generation and desorption as rate-limiting steps, with arc shifts indicating surface poisoning
and stability[56].

Oxidation reactions must occur at lower overpotentials than OER, within a favorable potential region
preceding OER onset. By detecting the amount of product generated within this region, key metrics such as
selectivity (%), yield (%), and faradaic efficiency (FE, %) can be calculated by[52]:

Selectivity(%) = (nproduct / nconsumed substance) × 100%                                             (1)

Yield(%) = (nproduct ⁄ ninitial substance) × 100%                                                   (2)

FE(%) = (nproduct × n × F⁄Q) × 100%                                                        (3)

Where n, F and Q represent the number of electrons transferred, the Faraday constant (96,485 C/mol) and
total electric charge (in coulombs) passed during the electrochemical formation of a specific product,
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respectively. Gas chromatography (GC) and differential electrochemical mass spectrometry (DEMS) are
commonly utilized techniques for detecting gaseous products. Ion chromatography (IC) is generally used to
analyze ionic species, and high-performance liquid chromatography (HPLC) is used for identifying
liquid-phase compounds. To enhance data accuracy and reliability, the isotope labeling method is
recommended as an effective approach for tracing diverse products[57].

Energy efficiency (η) is a critical parameter in evaluating the performance of electrochemical systems. When
the electrochemical conversion of the target substance is conducted on both electrodes of an electrolytic cell,
η can be calculated as the ratio of the absolute value of the cell energy (Ecell) to the applied voltage (U),
expressed as[52,58]:

η = (Ecell / U) × 200%                                                                     (4)

Here, Ecell is determined by the FE and the respective electrode potentials as follows:

Ecell = (FEanode × Eanode) - (FEcathodee × Ecathode)                                              (5)

The energy contribution (E) of each reaction is further derived from the Gibbs free energy (∆G0) and is
determined by:

E = (∆G0) ⁄ -nF) - 0.059 × pH                                                          (6)

Notably, the maximum combined FE of the system can reach up to 200%, as the contributions of the anodic
and cathodic half-reactions are additive, with each capable of achieving 100%[52].

Ni-based electrocatalyst for urea oxidation reaction
Urea has been substantiated as a hydrogen carrier due to its distinctive advantages, which include
nontoxicity, nonflammability, convenience in storage and transportation, and substantial hydrogen
contents[51,59,60]. The thermodynamic equilibrium potential of hydrogen production using urea oxidation as
an anodic reaction is only 0.37 V vs. RHE[61,62]. However, the UOR is a six-electron reaction [CO(NH2)2 +
6OH- → N2 + CO2 + 5H2O + 6e-] involving several complex processes such as continuous dehydrogenation,
C-N bond cleavage, N-N coupling, CO2 formation, and CO2 desorption[63,64]. This complexity accentuates
the need to explore Ni-based electrocatalysts as a potential solution to enhance η.

Among the catalysts utilized for the UOR, Ni-based catalysts are widely favored due to their low cost, high
current density, and low overpotential in alkaline conditions[65,66]. In particular, Ni-based hydroxides are
recognized as promising UOR electrocatalysts, as they form highly active oxyhydroxides in alkaline
environments, enhancing their catalytic performance[67,68]. This demonstrates a strong correlation between
the electrocatalytic performance of urea oxidation and the redox activity of active surfaces, bringing to light
the need for further investigation into these mechanisms[56,69]. Understanding these pathways is
indispensable for optimizing Ni-based electrocatalysts and improving their efficiency in the UOR.

The research to boost the efficiency of UOR focuses on maximizing catalyst activity through metal doping
and novel synthesis methods and optimizing reaction pathways[51,70]. However, the mechanisms and reaction
pathways of the UOR remain poorly understood. Possible mechanisms and reaction pathways have been
revealed using in situ surface-enhanced Raman (SER) and Operando synchrotron-radiation
Fourier-transform infrared (SR-FTIR) characterization techniques. In situ SER has been employed to



Page 6 of Kim et al. Energy Mater. 2025, 5, 500097 https://dx.doi.org/10.20517/energymater.2024.24437

monitor active species during the UOR. For example, the formation and reduction of NiOOH species were
observed as critical steps in the catalytic process, revealing that NiOOH acts as the primary active site for
UOR. Operando SR-FTIR revealed bond cleavage during the UOR, identifying key intermediates such as
*NNH2

+ and *OCONH2
[71,72].

Indirect chemical oxidation mechanism:

Ni(OH)2 + OH- ↔ NiOOH + H2O + e-                                                  (7)

[6NiOOH∙CO(NH2)2]ads + H2O → 6Ni(OH)2 + CO2 + N2                                   (8)

Direct mechanism:

[NiOOH∙CO(NH2)2]ads + 6OH- → [NiOOH∙CO2]ads + N2 + 5H2O + 6e-                  (9)

NiOOH + OH- → [NiOOH∙OH]ads + e-                                            (10)

[NiOOH∙CO2]ads + 2[NiOOH∙OH]ads → 3NiOOH + CO3
2- + H2O                     (11)

[NiOOH∙CO2]ads + 2[OH-]sol → NiOOH + CO3
2- + H2O                           (12)

With several possible UOR pathways, this study will mainly investigate various designed compositions and
structures of Ni-based electrocatalysts for UOR.

Nickel oxide and (oxy)hydroxide-based electrocatalyst for UOR (NiO, NiOOH, and NiOH)
The UOR mechanism in alkaline environments, as posited by Botte, is referred to as indirect chemical
oxidation. Another mechanism, called direct chemical oxidation, was proposed by several researchers[73-76].
In the indirect mechanism, NiOOH is first electrochemically oxidized and then reduced back to Ni(OH)2,
indicating that NiOOH acts as an oxidizing agent to oxidize urea[77-79]. Since the Ni in the catalyst
regenerates to its initial state (Ni2+) after the oxidation reaction process, it exhibits sustained catalytic
activity[80]. In the direct mechanism, urea undergoes electrochemical oxidation facilitated by NiOOH,
thereby preserving the integrity of the active NiOOH species[56].

Ni-based (oxy)hydroxides such as NiO, Ni(OH)2, NiOOH, and Ni-based layered double hydroxides (LDH)
have demonstrated good catalytic performance for the UOR. For instance, Liu et al. reported a study on
growing Ni Manganese (Mn) LDH on carbon fiber cloth (CFC). The nanoarray structure provides
numerous active sites, enhancing catalytic activity[81]. Due to the presence of Mn, the oxidation peak of Ni to
Ni3+ occurs at a lower voltage compared to Ni(OH)2

[81-83]. Additionally, U-NiMn LDH exhibits superior
electrocatalytic performance compared to bulk NiMn LDH by exposing more catalytic active sites. U-NiMn
LDH was fabricated using a hydrothermal method on CFC [Figure 1A]. Atomic force microscopy (AFM)
confirmed that the catalyst forms a nanosheet structure with a thickness of 5.5 nm to 5.7 nm, highlighting
the structure of U-NiMn LDH.

The honeycomb shape enhances catalytic activity by providing a large surface area, numerous active sites,
and high conductivity[84,85]. The transmission electron microscopy (TEM)-energy-dispersive X-ray
spectroscopy (EDS) spectrum of NiMn-LDH/CFC revealed an atomic ratio of approximately 2.97:1 (Ni),
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Figure 1. Examples of Ni-layered double hydroxide catalysts. (A) Scheme of synthesis of the Ultrathin NiMn-LDH/CFC; (B) 
Corresponding Tafel slopes; (C) UOR stability evaluates the U-NiMn-LDH/CFC; (D) Multi-current process acquired with the U-NiMn-
LDH/CFC catalyst; (E) CV curves of U-NiMn-LDH/CFC and B-NiMn-LDH; (F) XRD patterns of U-NiMn-LDH/CFC before and after 
long-term stability test of UOR and OER; (G) Mn 2p in U-NiMn-LDH/CFC before and after long-term durability tests of UOR and 
OER[81]. This figure is quoted with permission from Liu et al. LDH: Layered double hydroxides; CFC: carbon fiber cloth; UOR: urea 
oxidation reaction; CV: cyclic voltammetry; XRD: X-ray diffraction; OER: oxygen evolution reaction.

consistent with the atomic ratios typically observed in LDHs. In this study, the U-NiMn-LDH/CFC catalyst 
demonstrated UOR activity at 1.351 V (vs. RHE) with a current density of 20 mA cm-2 in a 1.0 M KOH 
solution containing 0.5 M urea, showing superior performance compared to commercial RuO2 (1.443 V). 
Additionally, the oxidation potential of the UOR was 272 mV lower than that of the OER, confirming that 
the UOR is a more thermodynamically favorable reaction. The U-NiMn-LDH/CFC catalyst exhibited a 
Tafel slope of 38.9 mV dec-1 [Figure 1B], indicating fast UOR kinetics, and maintained a current density of 
34 mA cm-2 with only a 2.8% decrease over 25 hours [Figure 1C], demonstrating excellent stability. 
Additionally, stable potential levels at varying current densities in a 1.0 M KOH and 0.5 M urea solution 
highlighted its effective mass transport capabilities [Figure 1D]. The CV curves of Ni(OH)2/CFC and 
U-NiMn-LDH/CFC electrodes show that the Ni(OH)2 nanosheet array exhibits an oxidation peak at 
1.482 V (vs. RHE), corresponding to the transition from Ni(OH)2 to NiOOH [Figure 1E]. This transition is 
enhanced by the introduction of highly charged Mn3+ ions[86]. The results suggest that the in-situ generated 
NiOOH during the anodic reaction serves as active sites for UOR[87].

After long-term electrocatalysis for the UOR, characterization of U-NiMn-LDH/CFC using scanning 
electron microscopy (SEM), TEM, X-ray diffraction (XRD) analysis, Raman spectroscopy, and X-ray 
photoelectron spectroscopy (XPS) confirmed structural and compositional stability. XRD data showed the 
main peak remained stable, while SEM and TEM images confirmed the nanosheet structure was intact. XPS 
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data identified Ni, Mn, and O with Ni 2p peaks shifting slightly, indicating higher oxidation states 
post-UOR, supported by increased O 1s signals[41]. Raman spectra showed new peaks at 476 cm-1 and 
559 cm-1, linked to Ni-O vibrations indicating NiOOH formation. Mn 2p peaks remained stable, suggesting 
minimal valence change[88,89][Figure 1F and G].

The high activity of Ni-based electrocatalysts in UOR is primarily attributed to a combination of key factors. 
The presence of Mn3+ in the catalyts enhances the electronic structure, facilitating the conversion of Ni2+ to 
Ni3+, which improves the electrocatalytic activity for the UOR[90]. The generated Ni species during the 
oxidation reaction play a significant role in urea electrolysis. Based on these analyses, Ni-based LDH not 
only generates active NiOOH species during urea oxidation but also provides an active site without precious 
metals[91]. A similar example is the heterostructure studied by Yan et al., in which the Ni Cobalt(Co) LDH 
exhibits low onset potential and high activity, attributed to the abundant NiCo LDH-NiCo(OH)2 interface 
and the dual metal characteristics[92].

Ni-based electrocatalysts have researched various strategies to improve UOR performance, particularly by 
engineering Ni-based oxides, hydroxides, and LDH. These strategies include morphological design, 
heteroatom doping, and surface engineering. For instance, Miao et al. demonstrated that dual cation 
modification using Co and Mn significantly enhances the catalytic activity and stability of Ni hydroxide 
[Ni(OH)2] nanosheets[93].

Additionally, Periyasamy et al. demonstrated that spinel NiMn oxide, particularly Ni1.5Mn1.5O4, exhibits 
superior electrochemical activity and low charge transfer resistance compared to other compositions, 
confirming its potential as an effective UOR catalyst[94]. Furthermore, Periyasamy et al. demonstrated that 
surface structure engineering of two-dimensional Ni(OH)2 nanocrystals contributes to improved UOR 
performance, achieving optimal results by utilizing specific KOH concentrations during synthesis[94]. The 
advancements in Ni(OH)2-based catalysts offer promising solutions for efficient urea conversion and 
hydrogen production, contributing to the progress of sustainable energy technologies[95].

Nickel-based chalcogenides and phosphides electrocatalyst for UOR (NiS, NiSe, and NiP)
Ni-based catalysts are commonly used in the UOR, with NiOOH acting as a key species. NiOOH is either 
directly or indirectly involved in the conversion of urea into N2 or CO2. Therefore, the aim of using 
Ni-based catalysts is to enhance UOR efficiency by promoting the formation of NiOOH[96,97]. However, these 
materials have limitations in electronic conductivity[98]. For this purpose, Jiang et al. have introduced Ni2P, a 
highly conductive material, as a promising alternative for LDH[99] [Figure 2A and B]. Ni2P nanoflakes have 
proven effective for UOR, showing high activity at 1.33 V (vs. RHE) with in-situ generated NiOOH acting as 
active sites. Catalytic tests in 1 M KOH with 0.5 M urea confirmed performance. Synthesized by heating 
β-Ni(OH)2 with NaH2PO2 in an argon atmosphere at 300 °C for two hours, the Ni2P nanoflakes retained 
their 10 nm flake structure, with uniform Ni, P, and O distribution verified by scanning transmission 
electron microscopy (STEM)-EDS and high-resolution (HR) TEM [Figure 2C-E] [100].

XPS analysis of Ni2P nanoflakes shows Ni 2p peaks indicating Ni2+ in Ni-O/Ni-PO4
3- bonds, with Ni-P peaks 

at lower binding energies, suggesting that Ni ions in Ni2P are more negatively charged and enhance electron 
transfer [Figure 3A and B]. The P 2p spectrum confirms Ni2P formation with P-O bonds, while O 1s reveals 
surface oxidation, supported by STEM-EDS mapping [Figure 3C and D].Compared to β-Ni(OH)2, Ni2P 
nanoflakes demonstrate a lower onset potential [1.33 V (vs. RHE)] and higher current density 
(95.47 mA cm-2)[100,101].
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Figure 2. (A) Synthesis of Ni2P nanoflakes; (B) XRD pattern; (C) SEM image; (D) TEM image (inset shows the corresponding HRTEM 
image and SAED pattern); and (E) STEM-EDS elemental mapping shows uniformity of elemental[100]. This figure is quoted with 
permission from Liu et al. XRD: X-ray diffraction; SEM: scanning electron microscopy; TEM: transmission electron microscopy; HRTEM: 
high-resolution TEM; EDS: energy-dispersive X-ray spectroscopy; SAED: selected area electron diffraction.

The stability of Ni2P nanoflakes during UOR was confirmed by CP, showing minimal potential shifts. 
Rotating ring-disk electrode (RRDE) tests revealed superior UOR performance for Ni2P compared to OER. 
Ni2P promotes NiOOH formation via PO4

3-, enhancing catalytic activity. While β-Ni(OH)2 generates more 
NiOOH, Ni2P enables efficient recovery of Ni(OH)2, supporting a direct UOR pathway, as confirmed by 
ECSA analysis. This direct oxidation pathway, along with in-situ NiOOH generation, contributes to 
superior UOR performance of Ni2P compared to the indirect pathway in β-Ni(OH)2 [Figure 3E and F]. The 
mechanism of Ni2P during the UOR is illustrated in Figure 3G[100].

Recently, Ni-based catalysts coordinated with diverse anions have garnered attention due to their excellent 
electrical conductivity and adjustable electronic configurations. Among them, Ni3S2 has good durability and 
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Figure 3. XPS spectra, (A) Ni 2p XPS spectrum for Ni2P nanoflake; (B) Ni 2p XPS spectrum for β-Ni(OH)2; (C) p 2p XPS spectrum for 
Ni2P nanoflakes; (D) O 1s XPS spectrum for Ni2P nanoflakes; (E) RRDE polarization curves in 1 M KOH solution at 1,600 rpm with and 
without 0.5 M urea at 5 mV s-1 and the ring potential is set as 0.2 V ( vs. RHE) to detect the as-generated O2; (F) Polarization curves of 
the two-electrode water splitting systems with Pt mesh||Ni2P electrodes in 1 M KOH solution with and without 0.5 M urea at 5 mV s-1 
(G) UOR mechanism on Ni2P and β-Ni(OH)2 nanoflakes in alkaline media[100]. This figure is quoted with permission from Liu et al. XPS: 
X-ray photoelectron spectroscopy; RRDE: rotating ring-disk electrode; UOR: urea oxidation reaction; RHE: reversible hydrogen 
electrode.

metallic conductivity[102]. Zeng et al. have developed various Ni sulfides, some of which exhibit enhanced 
catalytic activity due to improved electronic structure achieved by doping with P and Mo [Figure 4A and B]. 
This study addresses a strategy to accelerate NiOOH production through an in-situ method to 
phosphorylate the surface of Ni sulfide to improve the efficiency of urea electrolysis[103]. Surface 
phosphorylation facilitates proton transfer, optimizes electronic structure, and increases active sites by 
introducing phosphate groups that act as proton acceptors. These modifications accelerate NiOOH 
formation and improve the urea oxidation kinetics, thereby enhancing overall electrolysis performance[104]

[Figure 4C].

Ni-based electrocatalyst for ammonia oxidation reaction
Ammonia (NH3) exhibits a high hydrogen density, making it an excellent candidate for use as a hydrogen 
carrier, with a hydrogen content of approximately 17.6% by weight[105]. Its molecular structure allows 
efficient hydrogen storage, providing an effective method for storage and transportation. Furthermore, the 
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Figure 4. (A) Scheme of Ni-based sulfide; (B) XRD, SEM, TEM and HAADF-STEM image of Ni3S2@Ni3P and line scanning profile of 
NI3S2@Ni3P; (C) Confirm the performance and valence state of Ni, S and P[104]. This figure is quoted with permission from Guo et al. XRD: 
X-ray diffraction; SEM: scanning electron microscopy; TEM: transmission electron microscopy; HAADF-STEM: high-angle annular 
dark-field scanning transmission electron microscopy.

absence of oxygen eliminates the danger of explosion, unlike in water electrolysis[106]. The AOR is an 
important process to generate hydrogen with Nitrogen at a theoretical voltage of 0.097 V (vs. RHE). This is 
significantly lower than the required voltage for water electrolysis, which is 1.23 V (vs. RHE)[107].

Based on the study with the Pt surface, two distinct mechanisms were postulated, depending on the timing 
of N-N coupling. The first mechanism involves N-N coupling occurring on hydrogenated NHx absorbed 
species (Gerischer and Mauerer, G-M). The second mechanism involves N adatoms coupling with each 
other, where the adatoms closely interact and form a bond (Oswin and Salomon, O-S). These two 
mechanisms play a crucial role in enhancing the efficiency of the AOR. The study results indicate that the 
mechanism proposed by Gerischer and Mauerer is kinetically preferred. Additionally, research 
demonstrates the activity of Ni-based catalysts using an ammonia volcano plot[108,109]. Ni-based catalysts are 
significant due to their ability to activate N-H bonds in adsorbed species such as NHx, which is vital for 
facilitating the initial adsorption of ammonia on the catalyst surface. This activation not only initiates the 
reaction but also enhances the stability of key reaction intermediates, preventing their decomposition 
during the bond formation process[110,111]. Consequently, this stabilization allows for more efficient N-N 
bond formation, promoting a smoother progression of the reaction. Furthermore, Ni-based catalysts 
optimize the thermodynamic pathways by lowering energy barriers, making the overall reaction occur more 
readily[108].

Nickel oxide and (oxy)hydroxide-based electrocatalyst for AOR (NiO, NiOOH and NiOH)
Ni-based catalysts, known for their excellent reactivity under alkaline conditions, are the focus of active 
research. Nickel oxide (NiO) significantly enhances the efficiency of ammonia electrolysis and is expected to 
contribute to sustainable energy production[108,112]. Although the lack of understanding of the reaction 
mechanisms of ammonia oxidation, Herron et al. suggest that Ni, due to its stability in alkaline electrolytes, 
is considered a potential substitute for Pt, one of the best electrocatalysts for the AOR[108]. Ni-based 
compounds convert to NiOOH during oxidation process, with Cu doping enhancing the AOR activity of 
Ni(1-x)CuxOOH [Figure 5A and B]. Doping with Cu2+ increases the electron density around O-O-Ni, 
promoting NH3 adsorption, though performance declines at high Cu doping levels[108,113]. Based on this, Fe3+ 
was co-doped to modify Ni(1-x)CuxOOH. Fe3+ polarizes the electron cloud, further increasing the electron 
density around O-O-Ni and lowering the ∆G0 for adsorption[108] [Figure 5C and D].
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Figure 5. (A) Ni-Cu-Fe-OOH and the schematic illustration of the ammonia oxidation process; (B) The energy barriers of the different 
reaction steps of the N - N mechanism in Ni-Cu-Fe-OOH and Ni-Cu-OOH. The inset figure shows the energy barrier of the bifurcation 
step of the G-M mechanism and the N + N mechanism in the Ni-Cu-Fe-OOH system. Charge difference (C) in Ni-Cu-OOH system; and 
(D) Ni-Cu-Fe-OOH system (purple corresponds to charge accumulation, while yellow corresponds to charge depletion)[111]. This figure is 
quoted with permission from Zhu et al.

When both Cu and Fe are co-doped into NiOOH, the electron density around the O atoms bonded to the 
dopants changes, lowering the energy barrier and leading to activation that enhances AOR activity. The 
synthesized NiCuFe electrode achieved a 90% ammonia removal efficiency at 0.55 V after 12 h, one of the 
highest efficiencies reported to date [Figure 6A and B]. This study presents a valuable strategy for 
developing high-performance AOR catalysts. The results suggest a higher likelihood of the N-N coupling 
reaction occurring via the N-N coupling pathway, rather than the Gerischer and Mauerer mechanisms[108,114].

The synthesized catalysts exhibited XRD peaks similar to those of commercial NiCu bimetallic electrodes. 
The shift in the (111) and (200) peaks due to Fe doping indicates an expansion of the interlayer spacing, 
which can facilitate the accommodation of OH- ions and potentially increase AOR activity. XPS analysis 
confirmed the electronic states of the surface material. Ni exhibited a distinct 2p3/2 peak at 856.7 eV, with a 
strong satellite peak indicating the presence of Ni2+. This peak showed a shift of 0.7 eV compared to the 
synthesized NiCuFe/CP, suggesting that the surface Ni metal was converted to Ni2+. The Cu 2p3/2 peak, 
located at 934.7 eV, displayed a strong satellite peak characteristic of Cu2+. After activation, the Fe 2p3/2 peak 
appeared broad around 713.9 eV, associated with Fe3+. The O 1s spectrum showed a main peak at 531.3 eV, 
attributed to metal hydroxides. These results confirm that the electrode surface was fully oxidized[108] 
[Figure 6C and D].

CV demonstrated the catalytic activity for the AOR, showing varying current densities depending on the 
presence or absence of NH4Cl. The presence of Fe significantly enhanced AOR activity, as indicated by the 
CV data [Figure 6E]. To assess the stability of the a-NiCuFe electrode, CP was performed at 0.55 V. The 
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Figure 6. (A) Ammonia removal efficiency at different condition of pH and (B) different ammonia concentration; (C) XPS of XAS spectra 
of Ni L2,3-edge; (D) Schematic illustration of energy barrier during ammonia adsorption on the surface of Ni-Cu-Fe-OOH and Ni-Cu-
OOH; (E) CV profile and (F) Chronoamperometry curves of the NiCuFe electrode and NiCu electrode in 0.5 M NaOH w/wo 55 × 10-3 
NH4Cl; (G) UV-vis curves of the electrolyte tested for AOR after 12 h, 15 h, 18 h, and 24 h, respectively; (H) Ammonia removal efficiency 
and Faradaic efficiency of activated NiCuFe electrode under different anode potentials[111]. This figure is quoted with permission from Zhu 
et al. XPS: X-ray photoelectron spectroscopy; XAS: X-ray absorption spectroscopy; CV: cyclic voltammetry; AOR: ammonia oxidation 
reaction; UV: ultraviolet.

results confirmed that the a-NiCuFe electrode exhibited the highest current density under ammonia
conditions, with the declining trend indicating the oxidation of ammonia [Figure 6F]. After the AOR test,
the nitrate concentration in the electrolyte was measured, with no nitrite ions detected. IC revealed a nitrate
concentration of 0.528 ppm, suggesting that the NiCuFe electrode facilitates N-N coupling, demonstrating
its effectiveness as the AOR catalyst [Figure 6G and H]. By co-doping Cu and Fe onto NiOOH, the energy
barrier is lowered, enabling efficient electrooxidation of ammonia[111].

Ni-based electrocatalyst for the hydrazine oxidation reaction
Hydrazine has been extensively used in aerospace as a propellant and rocket fuel, as a foaming agent in the
synthesis of polymeric foams, as well as a precursor to pharmaceuticals, agrochemicals, and in steam cycles
of nuclear and conventional power plants as an oxygen scavenger[115,116]. On the other hand, hydrazine is an
exceedingly hazardous and carcinogenic compound, presenting a substantial threat to human health[117].
HzOR plays a critical role in both the elimination of hydrazine from industrial wastewater and as an
alternative to the OER, minimizing the overpotential at the anode and thereby promoting a more
energy-efficient route for hydrogen production[54,118]. The oxidation of hydrazine (N2H4) may occur via a
four-electron transfer pathway through two distinct mechanisms: the alternating pathway and the distal
pathway[119].

N2H4 → *N2H3 + H+ + e-                                                                  (13)

*N2H3 → *N2H2 + H+ + e-                                                                 (14)

*N2H2 → *N2H + H+ + e-                                                                 (15)

*N2H → N2 + H+ + e-                                                                   (16)
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In the alternating pathway, the adsorption configuration of *N2H2 is HNNH*, where the NH groups
alternate. In the distal pathway, the adsorption configuration of N2H2* is *NNH2, with one nitrogen bonded
to two protons.

Under acidic conditions, the theoretically calculated standard equilibrium potential is

NH2NH3
+ → N2 + 5H+ + 4e- [E0 = -0.23 V (vs. RHE)]                                     (17)

Under alkaline conditions, the theoretically calculated standard equilibrium potential is

N2H4 + 4OH- → N2 + 4H2O + 4e- [E0 = -0.33 V (vs. RHE)]                                (18)

Both are more negative than the potentials at which hydrazine begins to oxidize in acidic or alkaline
solutions. The dehydrogenation of hydrazine to molecular nitrogen, a transformation that is seemingly
straightforward, is accompanied by substantial kinetic constraints[120].

Nickel oxide and (oxy)hydroxide-based electrocatalyst for HzOR(NiO, NiOH, and NiOOH)
Ni-based electrocatalysts with suitable d-band configurations and versatile structures have gained significant
attention for hydrazine oxidation (HzOR)[121]. NiO demonstrates superior performance in HzOR due to
active phase formation, oxygen defects, and multi-metallic oxide structures[115,122]. Sakamoto et al. developed
NiO/Nb2O5/C composites using evaporation drying and thermal annealing. Extended X-ray absorption fine
structure (EXAFS) analysis revealed oxygen vacancies in the composites (ratios 8:1 and 4:1), leading to high
activity, durability, and selectivity. NiO, a non-stoichiometric p-type semiconductor, thermodynamically
favors Ni vacancies, reducing Ni-O coordination. Metallic Ni facilitates N-N bond breaking, while oxygen
defects stabilize the electrooxidation process[123].

Ni/Fe and Ni/C oxides also demonstrate strong catalytic activity for HzOR, influenced by Ni oxidation
states and metal synergies[124]. Askari et al. synthesized a NiFe2O4-reduced graphene oxide (rGO)
nanocatalyst using hydrothermal methods, achieving 98% stability after 5,000 cycles[125]. Yang et al. created a
NiC2O4-Nb2O5 hybrid on Ni foam via a two-step low-temperature reaction with Ni3S2 as a sacrificial
template. Electron transfer from Ni to Nb redistributed charge within the composite, improving the rate-
determining step (RDS)[126]. Before and after the OER and HzOR test, the binding energy of Ni2+ within the
Ni 2p3/2 orbital decreases from 857.0 eV to 855.9 eV, the latter corresponding to the binding energy of
Ni(OH)2. Additionally, the observed minimal Tafel slope (84 mV/dec) suggests that the presence of
electron-deficient Ni species at the SNiC2O4-Nb2O5 interface likely facilitates the adsorption of hydrazine
molecules, thereby promoting highly favorable catalytic kinetics for the HzOR[127].

Ni hydroxide/oxyhydroxide (Ni(OH)2/NiOOH) is a principal redox system widely used as a positive
electrode in various applications[128]. LDHs, resembling two-dimensional materials, exhibit superior catalytic
performance due to their unique geometry and hierarchical nanostructure, which enhance conductivity and
ion transport, significantly improving HzOR activity[129]. LDHs are also effective supports, offering tunable
elemental compositions[130]. Babar et al. synthesized a bimetallic Ni-Fe hydroxide nanoarray [NiFe(OH)2-
SD/NF] on Ni foam using stepwise electrodeposition. This method produced an amorphous NiFe(OH)2

structure with numerous active sites and random bond orientations. Synergistic interactions between Ni
and Fe, particularly the presence of Fe ions alongside Ni(OH)2, greatly enhanced catalytic efficiency in
alkaline HzOR. This enhancement is attributed to the facile intercalation of OH-, facilitated by the increased
porosity, structural disorder, and the presence of edge sites or defects within the Ni(OH)2 matrix. Moreover,
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the amorphous structure of NiFe(OH)2 contains a greater number of unsaturated sites similar to those of 
metallic Ni, making it a highly effective catalyst for HzOR[131]. Liu et al. developed a ternary copper- Ni-Co 
LDH nanosheet array catalyst featuring sulfurization-induced and Cu-doped edge amorphization. The 
results indicated that the optimal concentration of the Cu dopant effectively modulated the electronic 
structure of the catalyst and enhanced the edge amorphization, which enriched the presence of high-valence 
Ni3+ ions. This effect is attributed to the formation of amorphous species during the sulfurization process, 
where Ni ions exhibit partial unsaturation, thus improving the performance in HzOR[48].

Nickel-based chalcogenides and phosphides electrocatalyst for HzOR(NiS, NiSe, and NiP)
Transition metal phosphide (MP) are highly effective electrocatalysts due to their superior electrical 
conductivity and rapid reaction kinetics[132]. Successive distortions in Ni phosphides arise from the interplay 
between metal-metal and phosphorus-phosphorus bonding. These compounds exhibit minor differences in 
binding energies compared to pure metals, retaining high electrical conductivity for efficient electron 
transport and reaction kinetics[133]. Their diverse structural phases and tunable electronic configurations 
contribute to significant synergistic effects[134].

A three-dimensional (3D) Ni-Co phosphide heterostructure, deposited on Ni foam (Ni-Co-P/NF), has been 
synthesized via a two-step hydrothermal method [Figure 7A]. Compared to CoP, the Co 2p spectra of 
Ni-Co-P/NF shift slightly to lower binding energies, while the Ni 2p spectra shift more pronouncedly to 
higher binding energies relative to NiP/NF [Figure 7B][135]. This shift suggests an increase in the ionicity of 
the M-P bond in bimetallic phosphides, facilitating improved electron transfer from the metal to the 
phosphide[135,136]. CV measurements in KOH solutions revealed redox peaks indicating MP oxidation state 
transitions critical for HzOR activity. When N2H4 was added, a new oxidation peak (A2) appeared, 
indicating preferential hydrazine oxidation over the MP. Peak A1 increased as N2H4 depleted, while 
reduction peak B1 disappeared, showing immediate reduction of metal phosphorus oxide (MPOx) back to 
MP by N2H4. However, prolonged cycling with low or no N2H4 caused over-oxidation, leading to 
irreversible deactivation of Ni-Co-P/NF [Figure 7C]. The Ni-Co-P/NF system demonstrated superior HzOR 
performance, with low resistance and a potential of 90 mV to reach 200 mA cm-2. It retained over 90% of its 
initial current density after 100 h of operation [Figure 7D and E]. Raman spectroscopy of Ni-Co-P/NF 
showed a peak at 400 cm-1 for the M-P bond, which weakened with increasing voltage, while a P-O bond 
peak at 1,020 cm-1 appeared, indicating MPOx formation. When 0.1 M N2H4 was added, peaks for adsorbed 
hydrazine species emerged. During HzOR, the M-P bond weakened with increasing voltage but recovered 
after stopping the voltage, confirming MPOx reduction back to MP by N2H4 [Figure 7F and G][135] .

A new reaction pathway for HzOR was proposed, involving N-N bond breakage in hydrazine at voltages 
above 0.2 V, suggesting a more complex mechanism than previously understood. At these voltages, Raman 
spectra revealed increased peak intensity for NH2, indicating the accumulation of the *NH2 intermediate 
from N2H4 bond cleavage. This new pathway (Path II) suggests that N2H4 adsorbs on the Ni-Co-P/NF 
surface, breaking into two *NH2 groups, which then dehydrogenate to produce N2

[135,137]. The traditional 
proton-coupled electron transfer (PCET) process (Path I) remains the primary HzOR mechanism. 
However, Path II, involving N-N bond cleavage, becomes favorable at potentials above 0.2 V, where 
stronger binding of N atoms to the catalyst surface significantly reduces the N-N bond energy barrier (ΔG = 
0.065 eV). This facilitates N-N bond weakening, enabling Path II to complement the PCET process 
[Figure 7H][127,135,137].

Liu et al. reported the synthesis of a heterojunction catalyst supported on Ni foam, consisting of amorphous 
NixP and crystalline Ni NPs, using a single-step electrodeposition technique. The catalytic activity of the 
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Figure 7. (A) HRTEM image of the Ni-Co-P/NF with a further magnified image in the inset; STEM-EDS elemental mapping of 
Ni-Co-P/NF; (B) High-resolution XPS spectra of Co 2p; c Ni 2p; d P 2p for the prepared samples; (C) CV profile in 1 M KOH (blue 
curves) or 1.0 M KOH + 0.005 M N2H4 under different cycles of scanning; (D) Stability measurements of Ni-Co-P/NF for HzOR; (E) 
Electrochemical properties of the HzOR in 1.0 M KOH and 0.1 M N2H4 50% iR-corrected LSV; (F) Raman spectra of Ni-Co-P/NF in 1 M 
KOH or 1 M KOH + 0.1 M N2H4; (G) In situ electrochemical Raman spectra of Ni-Co-P/NF in 1 M KOH or 1 M KOH + 0.1 M N2H4 at varied 
applied potentials and different reaction time intervals under constant 0.2 V; (H) Free energy changes of HzOR in path I at 
NiCoP(111)/CoP(011) interface, CoP(011) and NiCoP(111) surfaces and the most stable adsorption configuration of the intermediate at 
NiCoP(111)/CoP(011) interface in the inset and Free energy changes of HzOR in path II at NiCoP(111)/CoP(011) interface with the most 
stable adsorption configuration of the intermediate[135]. This figure is quoted with permission from Zhu et al. TEM: Transmission electron 
microscopy; HRTEM: high-resolution TEM; STEM: scanning transmission electron microscopy; EDS: energy-dispersive X-ray 
spectroscopy; XPS: X-ray photoelectron spectroscopy; CV: cyclic voltammetry; LSV: linear sweep voltammetry.

HzOR in an alkaline electrolyte was compared with the performance of reference catalysts, a-NixP/NF and 
Ni/NF, under the same conditions. The a-NixP /Ni/NF catalyst exhibited superior performance with an 
onset potential of -0.11 V and a high current density of 1,215 mA cm-2 at +0.30 V, surpassing the reference 
catalysts. EIS and CV measurements showed the catalyst had the lowest charge transfer resistance and 
highest double-layer capacitance, indicating a larger ECSA. When normalized to ECSA, it demonstrated 1.3 
and 1.5 times higher activity than a- NixP /NF and Ni/NF, respectively[40]. The superior performance of 
a-NixP/Ni/NF is due to its heterojunction between amorphous NixP and nanocrystalline Ni, offering active 
sites for both N2H4 and OH- adsorption[40,138]. This balanced catalytic environment and the enhanced 
intrinsic activity of amorphous NixP result in significantly higher ECSA-normalized activity compared to 
crystalline catalysts[138].

Metal sulfides exhibit favorable electronic properties and defect profiles, with the assembly of Ni-based 
heterostructures demonstrating enhanced performance due to localized modulation of the electronic 
structure[139]. Zhou et al. synthesized CoNi-alloy@CoNi-sulfide core-shell nanoarrays in a three-step process: 
(1) CoNi-LDH nanosheet arrays were grown on a Ni foil via a hydrothermal method, (2) the arrays were 
reduced to form conductive CoNi-alloy (CoNi-R) particles, and (3) a CoNi-sulfide shell was formed 
through in situ vulcanization, producing CoNi-R-S [Figure 8A]. This distinctive structure exhibits a 
synergistic effect, where the conductive CoNi alloy core facilitates efficient electron transfer, while the 
CoNi-sulfide shell presents a high density of active sites that significantly enhance the electrooxidation of 
hydrazine[139-141]. TEM analysis revealed the nanosheet morphology of CoNi-R-S, where the CoNi-sulfide 
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Figure 8. (A) Schematic illustration for the synthesis of CoNi-alloy@CoNi-sulfide nanoarrays (B) TEM image, crystal fringes and 
HAADF-STEM image and EDS mapping of CoNi-R-S; (C) The energy profiles for the reaction pathways over CoNi-sulfide and CoNi-
oxide[141]. This figure is quoted with permission from Zhou et al. EDS: Energy-dispersive X-ray spectroscopy; TEM: transmission electron 
microscopy; HAADF-STEM: high-angle annular dark-field scanning transmission electron microscopy.

shell (7 nm thick) encapsulates the CoNi-alloy core (32 nm diameter). HRTEM analysis confirmed the 
coexistence of nanocrystalline CoNi-sulfide and CoNi-alloy. Elemental analysis verified the core-shell 
structure, with sulfur concentrated in the shell and Co/Ni in the core [Figure 8B]. Density functional theory 
(DFT) calculations showed that CoNi-sulfide has a smaller bandgap (0.75 eV) than CoNi-oxide (1.45 eV), 
suggesting better electron transport. The dissociation of hydrogen from N2H4 was more thermodynamically 
favorable on CoNi-sulfide, with lower activation energies for the dehydrogenation steps compared to 
CoNi-oxide [Figure 8C][141].

The CoNi-alloy core provides high conductivity for efficient electron transport, while the CoNi-sulfide shell 
offers abundant active sites for hydrazine electrooxidation. The hierarchical structure also facilitates mass 
diffusion and electrolyte penetration, contributing to the superior catalytic performance[141,142].

Metal nitrides exhibit exceptional catalytic efficiency across various reactions, particularly in the HzOR, due 
to their metallic properties, high electrical conductivity, and strong chemical stability and structural 
integrity[141]. The incorporation of nitrogen into Ni nitride alters the electronic properties of metals by 
increasing the electron density on its surface. This modification enhances electrocatalytic activity by 
improving the adsorption of intermediates[143]. Recently, molybdenum-doped Ni nitride (Mo-Ni3N) porous 
nanosheets grown on Ni foam (Mo-Ni3N/Ni/NF) were synthesized. The synergistic effects of interfacial 
engineering and chemical substitution in the molybdenum-doped Ni nitride demonstrated exceptional 
electrocatalytic properties for HzOR under alkaline conditions. The XPS survey confirmed Mo, Ni, and N in 
the Mo-Ni3N/Ni/NF sample, with no Mo in undoped Ni3N/Ni/NF, indicating successful Mo doping. The Ni 
2p spectrum showed metallic Ni, Ni nitrides, and Ni2+ due to surface oxidation, with a 0.1 eV shift 
suggesting electron transfer between Mo and Ni. The N 1s peak at 397.2 eV indicated a metal-N bond, 
shifted by 0.5 eV, confirming Mo-Ni interaction. Mo 3d peaks revealed Mo3+, Mo4+, and Mo6+ states, and Ar+ 
etching confirmed Ni3N presence by leaving only metallic Ni and Ni3N peaks [Figure 9A]. Mo- Ni3N/Ni/NF 
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Figure 9. (A) XPS spectra performed on the Mo/Ni3N/Ni and Ni3N/Ni powder scratched off the Ni foam. High-resolution XPS spectra of 
Mo/Ni3N/Ni for (A) Ni 2p, (B) N 1s, and (C) Mo 3d, respectively; High-resolution XPS spectra of Mo/Ni3N/Ni after Ar ion etching for Ni 
2p, N 1s and Mo 3d, respectively; (B) The investigation on HzOR and HER activity for Mo/Ni3N/Ni/NF LSV curves and (C) Tafel plots of 
different catalysts toward HzOR (D) I-t test for Mo/Ni3N/Ni/NF toward HzOR (up) measured at the work potential of 124 mV and HER 
(down) at the work potential of 68 mV, both without iR correction; (E) The density of states and (F) Charge density difference and 
planar-averaged electron density difference of Mo-Ni3N/Ni; (G) Gibbs free energy profiles for the stepwise dehydrogenation process of 
N2H4 with solvent interactions on Mo-Ni3N/Ni, Ni3N/Ni, and Ni3 N[144]. This figure is quoted with permission from Liu et al. XPS: X-ray 
photoelectron spectroscopy; HER: hydrogen evolution reaction; LSV: linear sweep voltammetry.

exhibited superior catalytic activity for HzOR in alkaline media, outperforming Ni3N/Ni/NF. It achieved a 
working potential of -0.3 mV to reach a current density of 10 mA cm-2, and only 75 mV was needed for 
200 mA cm-2. The Tafel slope was much lower for Mo- Ni3N/Ni/NF (48 mV dec-1) compared to Ni3N/Ni/NF 
(92 mV dec-1), indicating faster catalytic kinetics. Furthermore, Mo-Ni3N/Ni/NF exhibited outstanding 
stability in HzOR. CA tests showed no significant current decay during 110 h of continuous operation, 
confirming the robustness of the catalyst [Figure 9B-D]. DFT simulations showed that Mo doping reduces 
the energy barrier for the dehydrogenation of hydrazine. The RDS for HzOR shifted from the 
dehydrogenation of *NH2NH2 to *N2H2 on Ni3N to the final N2 release on Mo- Ni3N/Ni, reducing the 
energy barrier and enhancing catalytic efficiency[144]. The synergy between Mo doping and the Ni/Ni3N 
heterostructure improves HzOR activities[144,145]. The DOS analysis revealed increased charge carrier density 
at the Fermi level, improving the electronic conductivity and charge transfer kinetics of the catalyst 
[Figure 9E-G][144].

Similarly, incorporating copper can significantly modify the electronic configuration and improve the 
adsorption energy of intermediates, thereby accelerating catalytic kinetics. Porous nanosheets of copper-Ni 
nitride (Cu1Ni2-N), anchored onto CFC, were synthesized using CuNi-LDH as a precursor through a 
thermal ammonolysis process. Specifically, the Cu1Ni2-N electrode exhibits an overpotential of 71.4 mV at a 
current density of 10 mA cm-2 in 1 M KOH solution, while concurrently achieving an extraordinarily low 
potential of 0.5 mV at 10 mA cm-2 for the HzOR in a 1.0 M KOH/0.5 M hydrazine electrolyte. As confirmed 
by both experimental results and DFT calculations, Cu1Ni2-N exhibits excellent electrical conductivity, 
facilitating rapid electron transport during electrocatalytic processes. The DOS analysis shows that the 
d-band center shifts downward relative to the Fermi level incorporating Cu4N, reducing the hydrogen 
binding strength. Strong interfacial interactions between Ni3N and Cu4N likely promote charge 
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redistribution across the interfaces, modifying the electronic structure of the surface and enhancing the 
adsorption energy of reaction intermediates. This synergy effectively boosts the intrinsic catalytic activity[121].

A strong local electric field is established between electron-rich Ni3N and electron-deficient Co3N by 
systematically engineering bimetallic nitrides. The electric field is leveraged to further activate electron 
transfer by introducing Mn, leading to improved system performance. The closely aligned crystalline 
structures of Ni3N and Co3N establish an intrinsic conductive pathway, facilitating efficient electron 
transfer. From the DFT calculation, introducing Mn reduces the work function (Wf) difference between 
Ni3N and Co3N, suggesting that Mn promotes spontaneous charge transfer from Ni3N to Co3N. The 
enhanced HzOR activity exhibited by Mn@Ni3N-Co3N/NF was significantly more pronounced than that of 
other transition metal-based catalysts and even composite catalysts incorporating noble metals[146].

Heterostructured Ni-based electrocatalysts for HzOR
Electrochemical reactions occurring through heterogeneous catalysis are highly surface-sensitive, with their 
efficiency being strongly influenced by the surface chemical states and properties of the catalyst[147]. 
Consequently, heterostructure catalysts have been developed to optimize these interactions, utilizing key 
mechanisms such as the synergistic effect, electronic effect, surface defect effect, and multi-component 
synergistic effect[148,149].

Meanwhile, SACs, defined by atomically dispersed active sites and optimized utilization of metallic atoms 
enhance electrochemical activity[150,151]. The presence of unsaturated coordination optimizes the electronic 
DOS, leading to an increase in adsorption energy while simultaneously reducing the activation energy 
required for reactions[152]. As a specific example in the context of HzOR, Zhou et al. synthesized a Ti3C2Tx-
MXene, with rich titanium vacancies, which served as a substrate for the immobilization of discrete Ni 
single atoms (SAs) via a “self-reduction” strategy [Figure 10A]. DFT computations were conducted to 
elucidate the origin of the elevated HzOR activity. Incorporating Ni SAs into the MXene matrix shifts the 
d-band center from 1.74 eV to 1.52 eV, optimizing activation energy for hydrazine oxidation. 
Ni SACs/Ti3C2Tx show stronger hydrazine adsorption energy (-0.695 eV) than Ni NPs/ Ti3C2Tx (-0.553 eV), 
identifying Ni SAs as the active sites. The total energy barrier for hydrazine oxidation is lower on Ni SACs 
(0.450 eV) than on Ni NPs (0.583 eV), making the reaction easier on Ni SACs[153]. Stabilization of *N2H2 and 
*N2H intermediates further promotes dehydrogenation [Figure 10B-E][153,154].

Due to their inherently superior catalytic properties, noble metals such as palladium (Pd), Pt, Rh, and Ru 
have been incorporated into Ni-based catalysts to enhance the catalytic efficiency of the HzOR[155]. For 
example, Pd atomically dispersed on bimetallic NiCo2O4 nanoplates enhances and accelerates the kinetics of 
hydrazine dehydrogenation. Additionally, Pd deposition occurs as NPs, NCs, or SAs on NiFe-LDHs, 
adjusting the d-band center and promoting stronger hybridization between Pd d-orbitals and the σ orbitals 
of N2H4 molecules. Recently, the synthesis of single-Pd-NPs-functionalized NiCo2O4 (Pd/NiCo2O4 
composite) was achieved through a synergistic hydrothermal and calcination process, using 2D NiCo-LDH 
as the precursor. Then pulsed laser irradiation (PLI) methodology was employed to functionalize Pd NPs 
with diverse concentrations on the NiCo2O4 surface [Figure 10A]. The Pd/NiCo2O4-2 composite 
demonstrated superior electrocatalytic activity for the HzOR in an alkaline medium. Notably, it recorded a 
very low operating potential of -6 mV (vs. RHE) at a current density of 10 mA cm-2, indicating excellent 
performance[156]. According to In Situ/Operando Raman spectroscopy, new peaks at 462 cm-1 and 530 cm-1 
related to γ-NiOOH and at 636 cm-1 and 814 cm-1 corresponding to NH2 signals appearing during HzOR 
[Figure 10F][76,157]. The formation of γ-NiOOH from Ni2+ to Ni3+ ions, facilitated by surface-adsorbed N2H4 
intermediates, contributed to the enhanced HzOR activity. Pd NPs improved electrical conductivity and 
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Figure 10. (A) Synthesis pathways for the Pd/NiCo2O4 composite[156]. This figure is quoted with permission from Senthil et al; (B) 
Projected electronic density of states of d orbitals and total electronic density states plots for Ni atom in Ti3C2T x, Ti3C2T x, and 
Ni SACs/Ti3C2Tx; (C) and (D) Schematic for the stepwise N2H4 molecular dehydrogenation process on the Ni NPs/Ti3C2Tx and the Ni 
SACs/Ti3C2Tx; (E) Energy profile for HzOR on Ni NPs/Ti3C2Tx and Ni SACs/Ti3C2Tx

[153]. This figure is quoted with permission from Zhou 
et al.; (F) In situ/operando Raman spectra of the Pd/NiCo2O4-2 composite during the HzOR in a 1M KOH/0.5M N2H4 solution at various 
potentials [0-0.2 V ( vs. RHE)]; (G) Gibbs free energy plots of the HzOR on the Pd/NiCo2O4 composite catalyst. (H) Proposed HzOR 
process on the Pd/NiCo2O4 composite catalyst[156]. This figure is quoted with permission from Senthil et al. SACs: Single-atom catalysts; 
RHE: reversible hydrogen electrode.

promoted N2H4 adsorption, accelerating reaction kinetics. From the DFT calculations, the adsorption of 
N2H4 is more favorable on the Pd site (-0.79 eV) than on the Ni or Co sites[155,158]. The RDS for HzOR, 
dehydrogenation of N2H2 to N2H, has the lowest energy barrier at the Pd site (0.08 eV), resulting in faster 
HzOR kinetics [Figure 10G and H][155,159].

Liu et al. investigated the size effect of Pd spcies at the subnanometer scale in HzOR, ranging from NPs and 
NCs to SAs on a NiFe-LDH, by fine-tuning precursors and reduction methods [Figure 11A][160]. Pd NCs on 
NiFe-LDH were found to be the most effective catalysts for hydrazine oxidation, outperforming SAs and 
NPs different from previous studies. Despite lower metal loading in Pd SAs/NiFe, its mass activity remained 
low, demonstrating that HzOR activity is more influenced by the size of Pd species than by the metal 
content. The order of activity is Pd NCs/NiFe > > Pd NPs/NiFe > PdSAs/NiFe. In order to elucidate the 
catalytic properties of the three Pd catalysts, in situ EIS was conducted to examine the dynamic 
characteristics during the HzOR. The low-frequency region in the Bode plots reflects hydrazine mass 
transfer. Both Pd NCs/NiFe and Pd NPs/NiFe exhibited a transition peak at 0.15 V (vs. RHE), indicating 
electrooxidation of hydrazine [Figure 11B]. However, Pd SAs/NiFe showed no transition peak, indicating 
poor HzOR activity[160]. The DFT calculation indicated that Pd NCs/NiFe demonstrated the best catalytic 
performance due to optimal electronic structure and minimal steric hindrance, allowing easier 
dehydrogenation steps compared to Pd SAs and Pd NPs[159,160]. Both electronic structure and steric effects 
significantly influence HzOR activity [Figure 11C and D][160].
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Figure 11. (A) Illustration of the Preparation of Pd SAs/NiFe, Pd NCs/NiFe, and Pd NPs/NiFe (B) Bode plots for the three Pd catalysts; 
(C) Reaction pathways of three Pd catalysts for the HzOR; (D) Intermediates of the HzOR for Pd NCs/NiFe[160]. This figure is quoted 
with permission from Liu et al. SAs: Single atoms; NPs: nanoparticles; NCs: nanoclusters.

Recently, partially substituting Ni with Rh within Ni-BDC [i.e., a metal-organic framework (MOF) built 
from Ni nodes and 1,4-benzenedicarboxylate (BDC) ligands) was synthesized. Rh atoms function as the 
catalytic sites facilitating hydrogen evolution, whereas Ni is accountable for the oxidation of hydrazine 
during the process of hydrazine oxidation-assisted seawater splitting. An exceptional level of stability was 
attained for the synthesized NiRh0.016-BDC, which can be ascribed to the contractive nature of the Ni-O 
bond subsequent to the incorporation of Rh, thereby demonstrating that appropriate node engineering 
could markedly augment the long-term stability of MOF catalysts. The DFT computations indicated that 
the Rh nodes within NiRh-BDC can accept electrons from the neighboring Ni, thereby functioning as active 
sites that exhibit enhanced adsorption of H2O* and H* during the HER, while the modified Ni site could 
facilitate a reduction in the energy barrier associated with N2H4 dehydrogenation as a consequence of charge 
transfer with proximate atomic Rh during the HzOR[161].

In the case of introduced Pt, the catalytic properties of the PtNi catalyst may arise from its interaction with 
hydrazine surface adsorbates, which act as intermediaries for both non-faradaic dehydrogenation and 
faradaic electrooxidation processes. The PtNi nanocatalyst exhibits high catalytic efficiency for the complete 
dehydrogenation of N2H4. Comparative investigations reveal that the catalytic efficiency of the Pt0.2Ni0.8 
catalyst is enhanced due to its reduced particle dimensions and demonstrates superiority over alternative 
nanocatalysts, such as Pt, Ni, Pd0.2Ni0.8, and Au0.2Ni0.8

[161].

Ru has been investigated to enhance the efficiency of the HzOR by accelerating dehydrogenation kinetics, 
and Ru is proposed as a potential candidate for the HER due to its hydrogen adsorption energy being 
comparable to that of Pt. In this regard, atomic Ni(Co)-Ru-P interfacial sites with Ru SAs (Ru1-NiCoP) 
were constructed on a matrix of NiCoP nanowire arrays (NWAs). According to the EXAFS data and DFT 
calculation, the geometric and electronic structure analyses suggest that the d-electron distribution and 
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energy levels in NiCoP are effectively modulated by Ru-SA, leading to improved electrocatalytic 
performance for HzOR[162].

Bimetallic alloys often exhibit superior catalytic performance compared to their monometallic 
counterparts[163]. Alloying allows for tuning of adsorption/desorption energies of reaction intermediates, 
often bringing them closer to optimal values for catalysis[164]. The presence of a second metal can alter the 
electronic structure of the catalyst surface, potentially lowering activation barriers[165]. From this perspective, 
NiCo/MXene was synthesized through the deposition of NiCo-MOF nanosheets onto MXene-coated 
copper foam, subsequently undergoing annealing in an ammonia atmosphere [Figure 12A and B]. DFT 
calculations explored the origin of the HzOR activity on Ni3Co alloy. Among the facets studied (100, 110, 
111), the (100) facet showed the strongest N2H4 adsorption with the most negative binding energy (-1.54 eV 
to -1.89 eV), indicating the highest activity for activating N2H4. Charge transfer from N2H4 to Ni and Co 
atoms weakens N-H bonds, facilitating HzOR. The dehydrogenation steps are more favorable on the (100) 
facet, with the RDS being the conversion of N2H3 to N2H2*, while the (110) and (111) facets face higher 
energy barriers during the initial dehydrogenation [Figure 12C][166].

Feng et al. synthesized single crystalline ultrathin NixCo1-x alloy nanosheet arrays (ANSAs) exhibiting finely 
tunable compositions (NixCo1-x, where x ranges from 0.9 to 0.5) through the gentle topochemical reduction 
of NixCo1-x(OH)2 nanosheet array precursors under mild conditions. The remarkable electrocatalytic 
efficiency of ultrathin Ni0.6Co0.4-ANSA can be attributed to its exceptionally high intrinsic activity towards 
hydrazine oxidation, as well as its significantly increased surface area and the abundance of unsaturated 
atoms (i.e., surface atoms, step/corner atoms) resulting from the ultrathin two-dimensional nanostructures. 
These unsaturated atoms may serve as highly efficient sites for electrocatalytic activity[167]. Similarly, Sun et 
al. developed a 3D hierarchically nanotubular Ni-Cu alloy on Ni foam [Ni(Cu)/NF] for HzOR catalyst. The 
optimal HzOR performance of Ni(Cu)/NF is achieved with 2% Cu doping after 400 s dealloying, attributed 
to a large ECSA and a 3D hierarchical porous structure. This structure enhances electron transfer, mass 
transport, and gas release, despite the activity decreasing with further Cu dissolution[168]. Zhang et al. 
synthesized a 3D Ni-Fe alloy catalyst supported on NF using hydrothermal method and reductive 
calcination. The Ni-Fe/NF catalyst exhibits excellent performance in hydrazine oxidation, offering high 
activity, stability, and selectivity. Specifically, the influence of Fe on enhancing the HzOR activity while 
simultaneously suppressing the non-faradaic decomposition of hydrazine[169].

CARBON CONTAINED SMALL MOLECULE OXIDATION REACTION
By incorporating chemical compounds with lower oxidation potentials into the water electrolysis process, it
becomes possible to couple thermodynamically favorable oxidation reactions with the HER, allowing the
electrolytic system to achieve significant benefits at both the anode and cathode while simultaneously
reducing energy consumption[129]. Additionally, certain carbon-containing SMOR can lead to the
production of high-value chemicals[129]. For example, 5-Hydroxymethylfurfural (HMF) can be oxidized to
the valuable product 2,5-furandicarboxylic acid (FDCA). The theoretical overpotential for the
electrooxidation of HMF to FDCA can be derived from the thermodynamic considerations of the reaction.
The complete oxidation of HMF to FDCA involves a six-electron transfer process[170]. This means that
theoretically, six electrons are required to convert one molecule of HMF to one molecule of FDCA.

Cathode reaction: 6H2O + 6e- → 3H2 + 6OH-                                        (19)

Anode reaction: HMF + 6OH- → FDCA + 4H2O + 6e-                                (20)
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Figure 12. (A) Schematic illustration of the synthetic strategy of NiCo@C/MXene/CF; (B) Free energy profiles of stepwise HzOR on 
different facets of Ni3Co alloy. Inset is the corresponding structural evolution of reaction intermediates adsorbed on the (100) facet of 
Ni3Co; (C) Elemental mapping showing the uniform distribution of C, N, Ti, Ni, and Co elements in this electrode. Scale bar, 5 μm[166]. 
This figure is quoted with permission from Sun et al.

Overall reaction: HMF + 2H2O → FDCA + 3H2                                             (21)

For the overall reaction, the calculated standard reaction potential is only 0.113 V (vs. normal hydrogen
electrode, NHE), which is much smaller than the OER[171]. The oxidation of alcohols represents a highly
promising and viable candidate for engaging in substitutional reactions specifically associated with the
process of OER, which is a critical aspect of various electrochemical systems and energy conversion
technologies[133]. The thermodynamic potential, a crucial parameter in evaluating the energetic feasibility of
chemical reactions, particularly for the oxidation of methanol (CH3OH), is measured to be 0.103 V (vs.
RHE)

Anode reaction: CH3OH + H2O → HCOOH + 4H+ [E0 = 0.103 V (vs. RHE)]                     (22)

During the methanol oxidation reaction (MOR), there is potential for the generation of a valuable product,
formic acid (FA), which can be synthesized through this chemical transformation[172]. Furthermore, the
glycerol oxidation reaction (GOR) exhibits a minimal theoretical oxidation potential [0.003 V (vs. RHE)],
thereby rendering it a compelling alternative to the OER for the generation of hydrogen.

HOCH2CH(OH)CH2OH + 3H2O → 3CO2 + 14H+ + 14e-                                   (23)

HOCH2CH(OH)CH2OH + 3H2O → 3CO2 + 7H2                                        (24)
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Ni-based electrocatalysts capable of efficiently oxidizing carbon-containing small molecules, including the 
substances mentioned above, were investigated as suitable alternatives for the OER[173,174].

Nickel oxide and (oxy)hydroxide-based electrocatalyst for SMOR (NiO, NiOH, and NiOOH)
Most carbon-based molecules, such as various forms of alcohols and aldehydes, typically undergo 
nucleophilic oxidation reaction (NOR), a key mechanism in organic chemistry that involves electron 
transfer from a nucleophile to an electrophilic species[175,176]. Recently, the β-Co0.1Ni0.9(OH)2/NF was 
synthesized for the oxidation of ethanol, phenylcarbinol, HMF, and benzylamine in NOR, producing acetic 
acid, benzoic acid, FDCA, and benzonitrile, respectively, with a lower theoretical potential than the OER. 
For β-Ni(OH)2 and NiO catalysts, the activity of NOR arises from β-Ni(OH)O (from lattice oxygen) and 
NiO(OH)ads (from adsorbed oxygen), respectively. The β-Ni(OH)2 operates via a unique two-step, 
one-electron mechanism involving lattice oxygen, suggesting that NOR activity can be optimized by 
adjusting the lattice oxygen environment. The β-Co0.1Ni0.9(OH)2/NF demonstrates outstanding ethanol 
oxidation reaction (EOR) performance, with a low onset potential [60 mV lower than β-Ni(OH)2/NF] and 
high current density (98 mA cm-2 at 1.35 V). It achieves near-complete ethanol conversion with 98% 
selectivity and a faradic efficiency of 95%, producing acetic acid as confirmed by GC-mass spectrometry 
(MS) and proton nuclear magnetic resonance (¹H NMR) spectroscopy [Figure 13A and B][176].

Huang et al. synthesized a Pd/Ni(OH)2/rGO hybrid electrocatalyst in which Ni(OH)2 significantly enhanced 
the performance of Pd for the EOR in an alkaline solution by improving both activity and durability. The 
catalyst maintained a high mass activity of 440 mA mg-1 after prolonged use, attributed to the role of 
Ni(OH)2 in facilitating the removal of carbonaceous poisons. Additionally, Ni(OH)2 reduced the selectivity 
for C2 products, thereby enhancing reaction control[177].

In the case of aldehydes, Trafela et al. investigated a mechanism for transforming Ni nanowire (Ni-NW) 
electrodes, originally composed of metallic Ni coated with NiO, into a catalytically active, disordered 
β-NiOOH/β-Ni(OH)2 redox pair with enhanced activity for HCHO oxidation. Potential cycling in 
0.5 M KOH at different scan rates (0 mV s-1, 10 mV s-1, 200 mV s-1, and 400 mV s-1) modifies the electrode 
by forming a hydroxide layer. The optimal catalytic performance was achieved at a scan rate of 200 mV s-1, 
yielding high current density (0.6 mA cm-2), low onset overpotential (0.4 V), and a minimal Tafel slope 
(99 mV dec-1). This enhanced performance is attributed to a balanced diffusion of OH- and O2, preventing 
NiO formation and improving conductivity of NiOOH by lowering the Wf [Figure 13C][178].

In the regards of GOR, NiCrO with vacancies (NiCrO-VCr,O) was synthesized by hydrothermal and 
annealing process and subsequently employed CV forming oxygen vacancies. The optimized NiCrO-VCr,O 
catalyst achieved impressive glycerol electrooxidation performance. In situ analyses (EIS, Raman 
spectroscopy, and attenuated total reflection (ATR) FTIR spectroscopy revealed distinct interfacial 
behaviors, unlike NiSx/Ni and NiOx/Ni nanorod arrays (NRAs), which undergo deep reconstruction to 
NiOOH for both OER and GOR; NiSex/Ni NRAs experience only shallow reconstruction under GOR, 
allowing direct glycerol oxidation at the interface [Figure 13C]. DFT calculations confirmed the enhanced 
adsorption of OH- and glycerol on NiCrO-VCr,O, indicating favorable negative adsorption energies 
(-0.869 eV, -0.526 eV, and -1.097 eV, respectively), in contrast to thermodynamically unfavorable positive 
energies on NiO [Figure 13D and E][175].

A NiOOH/Ni3S2/NF catalyst was synthesized by electrodepositing NiOOH on Ni3S2 nanosheets, enhancing 
electron transport and glycerol adsorption. The catalyst achieved a high FE (97.7%) for FA at 1.4 V (vs. 
RHE). The TEM analysis conducted subsequent to the GOR, in conjunction with the in situ Raman 
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Figure 13. (A) LSV curves for b-Ni(OH)2/NF and b-Co0.1Ni0.9(OH)2/NF in 1 M KOH with 50 mM phenylcarbinol, HMF, benzylamine and 
ethanol. Inset shows the conversion, selectivity, and faradic efficiency of EOR for b-Co0.1Ni0.9(OH)2/NF; (B) Proposed NOR mechanism 
scheme for b-Ni(OH)2

[176]. This figure is quoted with permission from Chen et al.; (C) Schematic presentation of the electron-injection 
mechanism for Ni-NiOOH/Ni(OH)2-nanowire electrode and Ni-NiO-NiOOH/Ni(OH)2-nanowire electrode; (D) Schematic diagram of 
the activated process[178]. This figure is quoted with permission from Trafela et al.; (E) Adsorption energies of OH-, glycerol, and the 
co-adsorption of OH- and glycerol on the NiO (200) surface and the NiCrO-VCr,O (200) surface[175]. This figure is quoted with 
permission from Xia et al. LSV: Linear sweep voltammetry; HMF: 5-Hydroxymethylfurfural; EOR: ethanol oxidation reaction; NOR: 
nucleophilic oxidation reaction.

spectroscopy investigations, provided compelling evidence which indicated that the NiOOH species served 
as the genuine active site throughout the GOR process. In situ IR and 1H NMR studies identified the GOR 
pathway, while Raman spectroscopy revealed NiOOH formation at active sites [Figure 14A-C][179].

Nickel-based chalcogenides and phosphides electrocatalyst for SMOR(NiS, NiSe, and NiP)
Recently, the Ni-based catalyst that engages in coordination with diverse anions on Ni NRAs (NiOx/Ni, 
NiSx/Ni, and NiSex/Ni NRAs) was synthesized by the electrodeposition. NiSex /Ni NRAs demonstrate 
enhanced GOR performance, achieving a FE of 92.9%. In situ spectroscopy elucidates that the coordination 
of NiSe impedes considerable oxidative restructuring, averting the formation of the NiOOH phase, 
consequently augmenting both the catalytic activity and stability [Figure 15A]. DFT calculations confirmed 
that the oxidation of *C2H3O3 intermediates via the adsorption of H2O is the RDS in the GOR at the NiSex 
interface [Figure 15B][180].

NiS exhibits superior electrocatalytic activity for the MOR and EOR in alkaline media, due to an increased 
ECSA and sulfate ions on the NiOOH surface. NiS achieves FEs over 95% for formate from MOR and over 
80% for acetate from EOR, with nearly double the product yield compared to Ni-only electrodes in 10,000 s 
tests [Figure 15A]. DFT calculations indicate that sulfate groups on the NiOOH surface enhance 
electroconductivity and electron transfer, favoring ethanol oxidation with a lower total reaction energy 
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Figure 14. (A) The XPS high-resolution S 2p spectra and The Raman spectra of NiOOH/ Ni3S2/NF catalysts before and after the 
reaction; (B) The in situ IR spectra and the in situ Raman spectra of NiOOH/Ni3S2/NF catalysts in 1 M KOH with 0.1 M glycerol; (C) 
Proposed GOR pathway in alkaline media based on the NiOOH/Ni3S2/NF electrode[179]. This figure is quoted with permission from Xu 
et al. XPS: X-ray photoelectron spectroscopy; GOR: glycerol oxidation reaction.

Figure 15. (A) In situ Raman spectra of NiSex/Ni NRAs at a constant potential of 1.35 V (vs. RHE) for 60 min during GOR and in situ 
ATR-FTIR spectra of NiSex/Ni NRAs for GOR collected at different potentials from open circuit potential (OCP) to 1.7 V ( vs. RHE); (B) 
The calculated Gibbs free energy profiles of GOR on NiSex, NiSx, NiOx, and NiOOH[180]. This figure is quoted with permission from Wang 
et al. NRAs: Nanorod arrays; RHE: reversible hydrogen electrode; GOR: glycerol oxidation reaction; ATR: attenuated total reflection; FTIR 
fourier-transform infrared.

(0.82 eV) than methanol (1.25 eV) [Figure 16A-C][181].

Jiang et al. developed the Pd-Ni-P electrocatalyst, containing Ni and P dopants, exhibits enhanced EOR 
activity in alkaline media due to charge transfer effects and increased active sites. Compared to Pd-Ni and 
Pd-blk, Pd-Ni-P has a more amorphous structure, smaller particle size, lower onset potential, and reduced 
overpotential by 110 mV[182].
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Figure 16. (A) Stable adsorption configurations of intermediates involved in the process of MOR on the NiOOH surface from the side 
and top view; (B) CV curves without and with 1 M methanol or ethanol at a scan rate of 50 mV s-1. CV curves as a function of methanol 
and ethanol concentration from 0.1 M to 1 M; (C) Comparison of Faradaic efficiency between the NiS and Ni electrodes[181]. This figure is 
quoted with permission from Li et al. CV: Cyclic voltammetry; MOR: methanol oxidation reaction.

Heterostructured nickel based electrocatalyst for SMOR
Recently, Araujo et al. synthesized bimetallic electrocatalysts composed of Pd and Ni, followed by a 
comprehensive comparison of these catalysts to evaluate their kinetics in the MOR. Pd, Pd3Ni, and PdNi 
catalysts exhibit different MOR behaviors due to their unique interactions with intermediates and varying 
CO poisoning tolerance. Pd shows lower CO tolerance, favoring early intermediates such as formaldehyde 
(CH2O) over CO2. Pd3Ni more effectively avoids CO formation by following a pathway through CH2OOH, 
resulting in higher CO2 production and enhanced MOR efficiency. PdNi demonstrates the highest MOR 
activity by favoring highly oxidized intermediates (e.g., CHOO), which prevent CO formation and rely on 
OH- concentration to promote direct oxidation pathways to CO2. DFT calculations and experimental data 
confirm that greater OH- adsorption of PdNi supports its superior MOR performance compared to Pd and 
Pd3Ni[183].

Three bimetallic catalysts composed of Pt and Ni, designated as PtNi1 through PtNi3, were synthesized with 
differing Ni concentrations. Spectroscopic analyses revealed that surface Ni(OH)x islands form under 
alkaline conditions but block *OH adsorption, rendering the bifunctional mechanism inactive. Instead, Ni 
modulates the electronic structure of Pt, enhancing catalytic performance and promoting selective partial 
carbon-carbon (C-C) bond cleavage toward glycolate formation. PtNi2 demonstrates the highest glycerol 
oxidation activity due to an optimized Pt-Ni coordination that weakens *CO and *OH binding on Pt 
[Figure 17A and B][184].

Nitaya et al. synthesized Pd NPs supported on Ni SAs encapsulated in carbon nanotubes (NiSA). The 
primary rationale for the pronounced enhancement in the alcohol oxidation of Pd/NiSA can be attributed 
to the distinctive synergetic effect exerted by the Ni SACs that effectively draw electrons from the supported 
Pd NPs. The Pd NPs, which possess a positive charge resulting from the elevation of the energy level of the 
Pd 3d orbitals, significantly extract electrons during the charge transfer mechanism, thereby promoting the 
cleavage of the C-C bonds[185].

CONCLUSION AND OUTLOOK
In conclusion, advancements in Ni-based electrocatalysts address challenges in energy-efficient hydrogen 
production. By facilitating various oxidation reactions as substitutes for OER, these catalysts reduce energy 
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consumption, offering a sustainable alternative to fossil fuels [Table 1].

Optimizing catalytic design involves adjusting electronic structure, surface area, and morphology to 
enhance performance. Metal doping or alloying modifies active sites, lowering reaction barriers in oxidation 
reactions such as UOR, AOR, HzOR, and SMOR. Ni-based catalysts with LDH structures excel due to their 
structural tunability, akin to 2D materials. For HzOR, integrating transition metals such as Co or Mn with 
Ni improves efficiency by modulating electronic structure and enhancing hydrazine dehydrogenation 
kinetics [Figure 18].

Limitations and potential solutions
Despite advancements, challenges remain. The complexity of multi-electron transfer in oxidation reactions 
requires further investigation to clarify mechanisms. Achieving long-term stability under harsh conditions, 
such as AOR and HzOR, is difficult due to catalyst degradation. While progress has been made in 
understanding this degradation, robust designs such as core-shell structures (e.g., conductive alloy cores 
with oxide or sulfide shells) show promise in enhancing stability and activity.

Future guidelines in anodic reaction development
To advance anodic reactions, challenges such as selective adsorption, byproduct formation, and competing 
reactions (e.g., OER) can be addressed by leveraging the versatility of nickel. For UOR and SMOR, 
designing multi-metal active sites tailored to specific intermediates enhances reaction kinetics. Transition 
metals (e.g., Ti, Fe, Cu) and noble metals (e.g., Rh, Ir, Ru) synergize with Ni, while high-entropy materials 
enable quaternary or quinary combinations to improve performance. Investigating Ni-metal combinations 
for synergetic effects remains a key focus.

For AOR and HzOR, suppressing NH3 formation and promoting N-N coupling requires strategies such as 
dimeric active site design and optimizing site distances. SA dimers, sub-nanosized alloys, and partial anion 
substitution (e.g., N, P, S) can facilitate coupling by modulating site distances. Future research should refine 
synthetic methods for dimeric site formation and controlled metal or anion substitution.

Industrial perspective of promising or commercial catalyst
Mass production of electrocatalysts demands precision manufacturing techniques capable of producing 
millions of membrane electrode assembly (MEA) annually. For commercial electrocatalysts, production 
must ensure high-quality, eco-friendly catalysts using scalable methods such as roll-to-roll processing and 
efficient recycling. Ni-based catalysts dominate due to cost-efficiency balance, but challenges such as 
degradation, reverse currents, and inefficiencies at high current densities persist. Advancing MEA-level 
electrocatalyst design is crucial to address real-world issues such as mass transport, thermal management, 
and three-phase boundary interactions.

Bridging the gap between academia and practical applications
Future research should explore new material combinations and synthesis techniques to enhance the activity, 
selectivity, and stability of Ni-based catalysts. Machine learning (ML) facilitates high-throughput catalyst 
screening, reaction mechanism analysis, and structure-property relationship identification. By integrating 
ML with DFT, predictive precision improves while reducing discovery time and resources. Advanced ML 
models such as convolutional neural network (CNN) and gradient boosting regressions predict adsorption 
energies, reaction pathways, and optimal catalyst configurations, accelerating design under industrial 
conditions. Combining the computational hydrogen electrode (CHE) model with ML further refines active 
site identification and configuration optimization, boosting stability and efficiency. ML-trained models for 
Ni-based catalysts minimize trial-and-error, optimizing performance for UOR, AOR, HzOR, and SMOR 
applications.
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Table 1. Summary of electrocatalytic performance of different applications

Catalyst Electrolyte Potential Tafel slope Stability Reference

Ultra thin-Ni-Mn LDH 0.5 M Urea/1.0 M KOH Overpotential = 1.351 V 38.9 mV/dec 40 h [81]

Co and Mn co-doped Ni(OH)2 nanosheet 0.33 M Urea/1.0 M KOH Overpotential = 1.38 V 35 mV/dec 25 h [94]

Mo/Ni-P 0.5 M Urea/1.0 M KOH Overpotential = 1.43 V 30.2 mV/dec 12 h [99]

Ni2P nanoflakes 0.5 M Urea/1.0 M KOH Overpotential = 1.6 V 30.2 mV/dec 20 h [100]

Ni-Fe phosphide/CF 0.33 M Urea/1.0 M KOH Overpotential = 1.39 V 30.2 mV/dec 8 h [101]

Ni3S2@Ni3P 0.33 M Urea/1.0 M KOH Overpotential = 1.36 V 19.13 mV/dec 20 h [104]

P-MoO2@CoNiP 0.33 M Urea/1.0 M KOH Overpotential = 1.38 V 47.6 mV/dec 100 h [126]

NiCuFe electrode 0.055 M NH4Cl/0.5 M NaOH Overpotential = 0.55 V 47.6 mV/dec 12 h [111]

Cu1Ni2-N/CFC 0.5 M Hydrazine/1.0 M KOH Overpotential = 0.5 mV 19.13 mV/dec 75 h [121]

Ni2B/rGO 0.5 M Hydrazine/1.0 M NaOH Overpotential = 0.3 V 19.13 mV/dec 50 h [122]

SNiC2O4-Nb2O5/NF 0.5 M Hydrazine/1.0 M KOH Overpotential = 1.41 V 81 mV/dec 100 h [127]

NixP/Ni/NF 0.5 M Hydrazine/1.0 M NaOH Overpotential = 0.3 V - 100 h [40]

Mo-Ni3N/Ni/NF 0.1 M Hydrazine/1.0 M KOH Overpotential = 0.55 mV - 110 h [144]

CoNi-R-S 20 mM Hydrazine /1.0 M KOH - 67 mV/dec 6,000 s [142]

Ni SACs/Ti3C2Tx 0.5 M Hydrazine/1.0 M KOH Onsetpotential = -0.03 V 62 mV/dec 24,000 s [153]

PW-Co3N NWA/NF 0.1 M Hydrazine/1.0 M KOH Overpotential = 0.358 V 14 mV/dec 10 h [146]

NiCo@C/MXene/CF 0.5 M Hydrazine/1.0 M KOH Overpotential = 0.049 V 54.2 mV/dec 125 h [166]

NiCrO-VcrO nanosheets 0.1M Glycerol/1 M KOH Overpotential = 1.37 V 13.93 mV/dec 12 h [175]

β-Co0.1Ni0.9(OH)2 0.05 M EtOH/1 M KOH Overpotential = 1.29 V - 20,000 s [176]

Disordered-β-NiOOH/β-Ni(OH)2 0.004 M HCHO/0.1 M NaOH Overpotential = 0.4 V 99 mV/dec - [178]

NiOOH/Ni3S2/NF 0.1 M Glycerol/1 M KOH Overpotential = 0.073 V - 24 h [179]

NiSex/Ni NRAs 0.1 M Glycerol/1 M KOH Overpotential = 1.43 V 114.73 mV/dec 48 h [180]

NiS-based electrode 1 M MeOH/1 M KOH 
1 M EtOH/1 M KOH

Overpotential = 1.368 V 
Overpotential = 1.339 V

- 
-

10,000 s [181]

Pd-Ni-P 1 M EtOH/0.1 M KOH Overpotential = 0.11 V 92 mV/dec 120 min [182]

PtNi2/Ni(OH)x 1 M Glycerol/1 M KOH Overpotential = 0.8 V - 2 h [184]

LDH:Layered double hydroxides; CFC: carbon fiber cloth; SACs: single-atom catalysts; NRAs: nanorod arrays; CF: copper foam.

Figure 17. (A) Products formed at different potentials with the Pt/C catalyst detected by online sampling coupled with HPLC. Each 
potential was held for 10 min, and 200 μL of electrolyte containing glycerol and oxidation products were withdrawn at the end of 
chronoamperometry. Formate should also be produced during the reaction. However, its HPLC signal is embedded in the glycerol peak 
and thus cannot be quantified; (B) Illustration of the Electronic Effect in PtNi Electrocatalysts (Green: Ni, gray: Pt) Under Potential less 
than 1 V ( vs. RHE)[184]. This figure is quoted with permission from Luo et al. HPLC: High-performance liquid chromatography; RHE: 
reversible hydrogen electrode.
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Figure 18. Summary of outlook highlighting the advantages, challenges and potential solutions of Ni-based electrocatalyst for different 
applications. UOR: Urea oxidation reaction; AOR:ammonia oxidation reaction; HzOR: hydrazine oxidation reaction; SMOR: small 
molecule oxidation.

In situ spectroscopy, such as High-energy-resolution fluorescence-detected X-ray absorption spectroscopy 
(HERFD-XAS) and Ambient pressure (AP) XPS, bridges academia and industry by providing precise 
insights into the electronic and geometric changes of catalysts under operational conditions. HERFD-XAS 
identifies shifts in oxidation states and coordination environments, while AP-XPS monitors real-time 
structural transformations, such as Ni(OH)2 converting to active NiOOH species. These techniques offer 
actionable data on catalyst behavior, crucial for industrial-scale optimization.

In summary, despite challenges, advancements in Ni-based electrocatalysts are driving sustainable hydrogen 
production. Current research offers a foundation for innovations in catalyst design. Interdisciplinary efforts 
in materials science, electrochemistry, and modeling can accelerate the development of efficient, durable 
catalysts, supporting global energy sustainability.
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