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Abstract
The deployment of wireless sensor networks (WSNs) in extreme environments such as nuclear fusion devices and
the aerospace industry is crucial for real-time monitoring of critical parameters. However, it faces many challenges.
In this paper, we propose the desert goldenmole optimization algorithm (DGMOA), a novel algorithm inspired by the
survival strategy of the desert golden mole and combined with the Dingo optimization algorithm (DOA). DGMOA
addresses these challenges through two core mechanisms: the sand swimming strategy enhances the global search
capability, and the hiding strategy is used for fine-grained local optimization. Through simulation tests, DGMOA
shows excellent performance. It can quickly explore a large range of solution space in the initial search phase and
adjust the position of individuals to avoid local optimal traps, resulting in a more uniform sensor layout and higher
coverage. In convergence speed, it outperforms existing algorithms with faster convergence. Regarding energy con-
sumption, the reasonable node layout reduces unnecessary waste and prolongs the service life of the sensor network.
The results show that DGMOA is a highly effective solution for sensor layout in complex and extreme environments,
with significant improvements in performance and energy consumption over traditional methods.

Keywords: Desert golden mole optimization algorithm, wireless sensor networks, coverage optimization, Dingo op-
timization algorithm, heuristic algorithm
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Figure 1. The simulated structure of the vacuum vessel.

1. INTRODUCTION
In high-tech equipment and experimental facilities, vacuum vessels, as a key component, are widely used in
nuclear fusion devices, semiconductor manufacturing, and aerospace industry [1,2]. Since these vessels are re-
quired to operate in extreme environments, such as high temperatures, strong radiation, and complex pressure
variations, real-time monitoring of their status is crucial [3]. Wireless sensor network (WSN) layout is one of
the core means to achieve this goal, and by reasonably arranging multiple types of sensors, the temperature,
pressure, stress, leakage, and other key parameters of the vacuum vessel can be comprehensively monitored to
ensure its stability and safety.

The WSN layout should not only consider the geometry and operating environment of the vacuum vessel,
but also need to incorporate its material properties and operating conditions. Complex geometries may lead
to stress concentrations and localized hotspots, while weld points and seams in the vessel are often the key
areas for monitoring [4]. Figure 1 shows the simulated structure of the vacuum vessel. In addition, the non-
magnetic materials and high vacuum conditions of vacuum vessels present technical challenges for sensor
selection and installation. Therefore, the type, number, location, and signal processing methods of the sensors
must be carefully designed and optimized in order to minimize interference with the internal environment of
the vacuum vessel while ensuring monitoring accuracy.

WSN is a network consisting of a large number of sensor nodes distributed in space that collaborate to collect,
process and transmit environmental data through wireless communication [5]. Wireless sensors provide strong
support for applications such as environmental monitoring, security, and smart agriculture [6–8]. In practical
applications, the deployment of wireless sensors needs to address several key issues, including how to maxi-
mize coverage, ensure image resolution and quality, optimize energy consumption, and cope with changes in
complex environments [9]. In WSNs, due to the wide distribution of nodes, limited resources, and uncertainty
of network topology, it becomes a challenge to effectively solve the problems of node placement, routing, and
energy management [10,11]. Optimization algorithms are widely used in WSNs as an effective solution, such as
genetic algorithms [12], particle swarm optimization algorithms [13], ant colony algorithms [14], etc., to improve
the network coverage, energy utilization efficiency, and data transmission quality by optimizing the network
topology and the node behaviors, so as to enhance the performance and reliability of WSNs.
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In order to further improve the effectiveness of WSN deployment and coverage optimization, this paper pro-
poses a new approach based on the desert golden mole optimization algorithm (DGMOA). DGMOA is a
heuristic optimization algorithm inspired by the survival adaptations of the desert golden mole in extreme
environments, which simulates its swimming and hiding behaviors in the sand and combines with the collab-
orative strategy of the Dingo optimization algorithm (DOA) [15] to search for the optimal solution. DGMOA
is suitable for solving complex optimization problems due to its powerful global search capability and fast
convergence. The following are the main contributions of this paper:

(1) Improved group synergy strategy: while retaining the group attack, chase, scavenger and survival rate strate-
gies in DOA, DGMOA further enhances the inter-individual synergy, making the algorithm more efficient in
global search and local optimization.

(2) Sand swimming strategy: the sand swimming behavior of desert golden mole rats shuttling in the desert is
introduced, so that the algorithm can quickly explore a large range of solution space in the initial search phase
to avoid falling into the local optimum too early. This strategy simulates the random search behavior of the
golden mole when searching for food, which enhances the global search ability of the algorithm.

(3) Hiding strategy: this strategy simulates the hiding behavior of desert golden mole when encountering
danger by adjusting the position of individuals to avoid dangerous regions or locally optimal traps in the
search space. It improves the accuracy and adaptability of the algorithm in localized search and ensures that
individuals are able to find more optimal solutions.

The remainder of this paper is organized as follows: Section 2 presents an overview of related work and themo-
tivations behind our work. Section 3 describes the deployment model, sensor deployment and its steps based
on the DGMOA algorithm. Section 4 details the experimental environment and discusses the experimental
results. Finally, Section 5 concludes the paper.

2. RELATED WORKS
WSNs have been extensively studied due to their wide range of applications in areas such as environmental
monitoring, security and smart agriculture. Deployment and optimization of sensor nodes in WSNs is crucial
to maximize coverage, minimize energy consumption and ensure reliability of data transmission. Various
optimization algorithms have been applied to address the challenges in WSN deployment. ZainEldin et al.
proposed an improved dynamic deployment technique based on genetic algorithms (IDDT-GA), which aims to
maximize the area coveragewith aminimumnumber of sensor nodes, increasing the coverage and reducing the
node overlapping area [16]. Deghbouch et al. proposed a hybrid bee colony algorithm and locust optimization
algorithm (BAGOA) for optimizing node deployment in WSNs, which utilizes the advantages of each method
and enhances the ability of local search, which improves the optimization accuracy and convergence speed [17].
Yao et al. proposed an optimization algorithm for node deployment in WSNs based on the improved moth
flame optimization (MFO) algorithm, by introducing a variable spiral position update strategy and an adaptive
inertia weighting strategy to enhance the global search capability of the algorithm, and combiningwith a virtual
force interference strategy to optimize the deployment path of the nodes and improve the network coverage [18].
Wang et al. proposed an adaptive multi-strategy artificial bee colony algorithm (SaMABC) to optimize the
coverage problem of WSNs [19]. The algorithm enhances the ability to jump out of local optimal solutions by
designing a pool of policies and a fine-grained selection mechanism, combined with simulated annealing and
dynamic search steps. Moreover, a hybrid approach combining multiple optimization techniques can achieve
better results in WSN deployments. In terms of optimizing the performance of WSNs, Zhang et al. proposed
a CERED active queue management method based on a priority scheduling policy to solve the congestion
problem of WSN data packets [20]. Zhang et al. proposed adaptive N-strategy sleep scheduling for WSNs,
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which solves the high data packet delay problem of N-strategy sleep scheduling by introducing a wait state,
while reducing energy consumption [21].

Heuristic algorithms have attracted significant attention due to their capacity to handle complex optimization
challenges, and they have been widely applied in the context of WSN deployment. The DGMOA proposed in
this paper is inspired by the survival adaptations of the desert goldenmole. Similar nature-inspired algorithms,
such as whale optimization algorithm (WOA) [22] and crayfish optimization algorithm (COA) [23], have shown
remarkable success in diverse engineering optimization problems. They typically exhibit superior convergence
speed and can often find high-quality solutions. For instance, the WOA models the unique hunting behavior
of whales to search for optimal solutions effectively, while the COA emulates the behavior of crayfish in nature.
However, these algorithms also have their limitations. They may not fully consider the specific characteristics
and constraints of WSN deployment, such as the complex geometries and extreme operating conditions of
the deployment environment, which could lead to suboptimal sensor placements. The DOA, proposed by
Peraza-Vázquez et al., simulates the hunting and foraging behaviors of Dingoes [15]. It models strategies such
as pack hunting, individual pursuit, and survival probability to solve optimization problems. While DOA has
its strengths in certain scenarios, it may face challenges in adapting to the highly dynamic and constrained
nature of WSNs. For example, in a WSN, the sensor nodes have limited resources and need to communicate
wirelessly, which requires a more fine-grained optimization of node positions and energy consumption. In
contrast, DGMOA is specifically designed to address the challenges inWSN deployment. It not only draws on
the survival strategy of the desert golden mole but also integrates the collaborative strategies of DOA.

The desert golden mole lives under the sand dunes in the Namib Desert. To adapt to the extreme environment,
it has evolved unique behavioral patterns. During the hot daytime, it digs holes under the sand dunes to avoid
the high temperature, while at night, it needs to shuttle between the sand dunes in search of food and water.
This movement behavior between the sand dunes inspired us to design the sand swimming strategy, which
is incorporated into the DGMOA. Inspired by the desert golden mole’s movement between sand dunes at
night, in the initial search phase, this strategy allows the algorithm to quickly explore a large range of solution
space. This is because it simulates the movement way of the desert golden mole between sand dunes, enabling
the optimization algorithm to explore more flexibly in the search space and quickly traverse a large range of
solution space, thus avoiding getting trapped in local optima too early and significantly enhancing the global
search ability. When the desert golden mole encounters danger, it will use the surrounding environment to
hide and choose the appropriate direction and position to avoid according to its relative position relationship
with the danger source, the safe area and other individuals of the same kind. This hiding behavior is applied
to the hiding strategy of DGMOA.This strategy adjusts the position of individuals to avoid dangerous regions
or locally optimal traps in the search space, which improves the accuracy and adaptability of the algorithm
in localized search and ensures that individuals can find more optimal solutions. By combining these unique
strategies such as the sand swimming strategy and the hiding strategy, DGMOA is better able to meet the
complex requirements ofWSNdeployment and optimize the coverage and energy consumption of the network
more effectively than existing algorithms.

Effective sensor deployment strategies are essential to maximize coverage and ensure the reliability of WSNs.
Various deploymentmodels have been proposed, including deterministic, random, and hybrid approaches. De-
terministic models place sensors at predetermined locations, while stochastic models randomly distribute sen-
sors within the target area. Hybrid models combine the advantages of deterministic and random deployment
to balance coverage and cost. The proposed DGMOA-based deployment strategy leverages the advantages of
these models to maximize coverage by achieving optimal sensor placement through heuristic optimization.

http://dx.doi.org/10.20517/ir.2025.01


Wang et al. Intell. Robot. 2025, 5(1), 1-18 I http://dx.doi.org/10.20517/ir.2025.01 Page 5

3. METHODS
This section introduces the wireless sensor deployment model and the DGMOA, which combines the syner-
gistic strategy of the DOA and simulates the sand swimming and hiding behaviors of the DGMOA to improve
the convergence speed and coverage of the algorithm, and achieves a balance between global search and lo-
cal optimization, and is applicable to the problem of optimizing the layout of a sensor network in a complex
environment.

3.1. WSN deployment model
TheWSN deployment problem can be converted into a constrained optimization problem, usually a nonlinear
programming problem. Assuming that multiple wireless sensors are deployed in a two-dimensional planar
area so that the area is well monitored, the deployment of sensors needs to be uniform and reasonable. The
problem is expressed as follows:

Minimize 𝐶 (𝛼) =
(
𝐹 (𝛼1, 𝛼2)

∪
𝐹 (𝛼3, 𝛼4)

∪
· · ·

∪
𝐹 (𝛼𝐷−1, 𝛼𝐷)

) ∩
𝑀𝐴𝑃

𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜
𝐷 = 2 × 𝑁

𝛼(𝑙)
𝑘 ≤ 𝛼𝑘 ≤ 𝛼(𝑢)

𝑘 , 𝑘 = 1, . . . , 𝐷

(1)

Where 𝛼 is a 𝐷-dimensional vector; 𝑁 denotes the number of sensors to be deployed in the region; 𝑀𝐴𝑃

indicates the set of two-dimensional planar area points; 𝐹 (𝛼𝑖 , 𝛼𝑖+1) is the set of sensor sensing area points with
(𝛼𝑖 , 𝛼𝑖+1) as the circle point; the radius will be different in the sensor model or type;𝐶 (𝛼) denotes the coverage
of the current sensor deployment.

Assume that the monitoring area is a two-dimensional plane and digitize it into 𝑙 × 𝑢 pixel points, each of
equal size. 𝑁 sensors are randomly thrown on this 2D plane, and the set of sensor nodes is 𝑆 = {𝑠1, 𝑠2, · · · , 𝑠𝑁},
where the sensor sensing radius is 𝑟 and the coordinates of node 𝑖 are 𝑠𝑖 = {𝑥𝑖 , 𝑦𝑖}. The distance between the
𝑖-th sensor and the pixel point 𝑠𝑖𝑡𝑒(𝑥, 𝑦) is calculated using Euclidean distance:

𝑑𝑖,𝑠𝑖𝑡𝑒 =
√
(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 (2)

In this paper, we use a binary perception model where the sensor node 𝑖 perceives the target pixel point 𝑠𝑖𝑡𝑒
as:

𝐹 (𝑠𝑖) =
{
1, 𝑑𝑖,𝑠𝑖𝑡𝑒 ≤ 𝑟

0, 𝑑𝑖,𝑠𝑖𝑡𝑒 > 𝑟
(3)

The set of area points contained in the sensor 𝑠𝑖 is recorded. The area coverage points for all sensor nodes are:

𝐶 (𝑆) =
(
𝐹 (𝑠1)

∪
𝐹 (𝑠2)

∪
· · ·

∪
𝐹 (𝑠𝑁 )

) ∩
𝑀𝐴𝑃 (4)

The goal of WSN coverage optimization is to achieve maximum coverage area using a minimum number of
sensors, which is expressed in the form of a coverage ratio in order to facilitate the comparison of the coverage
area of the sensors:
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𝐶𝑅𝑎𝑡𝑒 =
𝐶 (𝑆)
𝑙 × 𝑢

(5)

Which is used as an objective function, and an optimization algorithm is employed to find a set of sensor node
combinations to maximize the coverage.

The model uses an optimization algorithm to reasonably deploy sensor nodes in the two-dimensional plane
andmaximize the coverage area of the monitoring area by introducing a coverage objective function. Through
mathematical modeling and formula derivation, it can effectively describe and solve the deployment problem
of WSNs.

3.2. DGMOA
In this paper, based on the research of Fielden et al., we deeply analyzed the behavioral patterns of the desert
golden mole, proposed the sand swimming strategy and the hiding strategy, and implemented these strategies
through code [24]. Meanwhile, combinedwith theDOAproposed by Peraza-Vázquez et al., theDGMOA shows
significant advantages in terms of performance and flexibility [15]. Combining the sand swimming strategy
and the hiding strategy, the DGMOA performs well in WSN coverage deployment, and is able to improve
the network coverage and optimize the distribution of nodes more efficiently, thus significantly improving the
overall performance of the WSN.

3.2.1. DOA
Dingoes usually hunt small animals, chasing them relentlessly until they capture them alone. The persecution
strategy is modeled below:

−−−−−−−−→
𝛼𝑘 (𝑥 + 1) = 𝜉1𝑒

𝜉2
(−−−−−→
𝛼𝑡1 (𝑥) −

−−−−→
𝛼𝑘 (𝑥)

)
+ −−−−−→
𝛼𝐵 (𝑥) (6)

Where
−−−−−−−−→
𝛼𝑘 (𝑥 + 1) represents the new position of Dingoes 𝑘 , 𝜉1 is a random number generated uniformly in the

interval [−2, 2], 𝜉2 is a random number generated uniformly in the interval [−1, 1], 𝑡1 is a random number
generated in the interval from 1 to the maximum number of Dingoes searched for,

−−−−→
𝛼𝑡1 (𝑥) represents the po-

sition of the 𝑡1-th Dingoes (𝑡1 ≠ 𝑘),
−−−−→
𝛼𝑘 (𝑥) represents the position of Dingoes 𝑘 , and

−−−−→
𝛼𝐵 (𝑥) is the last search

iteration of the best position.

Dingoes usually hunt small prey, such as rabbits, alone, but when targeting larger animals such as kangaroos,
they hunt in packs. Group Attack strategy is their most common hunting strategy where they surround their
prey in a range and start chasing it until it tires. This strategy is modeled below:

−−−−−−−−→
𝛼𝑘 (𝑥 + 1) = 𝜉1

𝜔

𝜔∑
𝑗=1

[
𝛽 𝑗 (𝑥) −

−−−−→
𝛼𝑘 (𝑥)

]
− −−−−→
𝛼𝐵 (𝑥) (7)

Where
−−−−−−−−→
𝛼𝑘 (𝑥 + 1) represents the new location of Dingoes 𝑘 , 𝜉1 is a uniformly generated random number in the

interval [−2, 2], 𝜔 is a random integer in the interval [2, 𝑄/2] (𝑄 denotes the population size of the Dingoes),
𝛽 𝑗 (𝑥) is the subset of Dingoes that will be subject to pack hunting (the Dingoes that will be subject to pack
hunting are randomly selected),

−−−−→
𝛼𝑘 (𝑥) represents the location of Dingoes 𝑘 , and

−−−−→
𝛼𝐵 (𝑥) is the best location

from the previous search iteration.
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WhenDingoes fail to find prey, they roam their habitat in search of carrion. The Scavenger strategy is modeled
as follows:

−−−−−−−−→
𝛼𝑘 (𝑥 + 1) = 𝑒𝜉2

−−−−−→
𝛼𝑡1 (𝑥) − (−1)𝔐−−−−→

𝛼𝑘 (𝑥)
2

(8)

Where
−−−−−−−−→
𝛼𝑘 (𝑥 + 1) represents the new position of Dingoes 𝑘 , 𝜉2 is a random number generated uniformly in the

interval [−1, 1], 𝑡1 is a random number generated in the interval from 1 to the maximum number of dingoes
searched,

−−−−→
𝛼𝑡1 (𝑥) represents the position of the 𝑡1-th dingo (𝑡1 ≠ 𝑘), 𝔐 is randomly chosen to be either 0 or 1

and
−−−−→
𝛼𝑘 (𝑥) represents the position of Dingoes 𝑘 .

Australian Dingoes are at risk of extinction due to illegal hunting. Their probability of survival is modeled as
follows:

𝐿𝑖𝑣𝑒𝑅𝑎𝑡𝑒 (𝑘) = 𝑓 𝑢𝑛𝑢 − 𝑓 𝑢𝑛 (𝑘)
𝑓 𝑢𝑛𝑢 − 𝑓 𝑢𝑛𝑑

(9)

Where 𝑓 𝑢𝑛𝑢 denotes the value of the best fitness for this iteration, 𝑓 𝑢𝑛𝑑 denotes the value of the worst fitness
for this iteration, and 𝑓 𝑢𝑛 (𝑘) denotes the value of the Dingoes 𝑘 fitness, which is executed to update the
Dingoes when their survival probability is below a certain value:

−−−−→
𝛼𝑘 (𝑥) =

−−−−−→
𝛼𝑡1 (𝑥) − (−1)𝔐−−−−−→

𝛼𝑡2 (𝑥)
2

+ −−−−→
𝛼𝐵 (𝑥) (10)

Where
−−−−→
𝛼𝑘 (𝑥) denotes the current Dingoes with low probability of survival, 𝑡1 and 𝑡2 are random numbers

generated from the interval from 1 to the maximum number of Dingoes searched (𝑡1 ≠ 𝑡2),
−−−−−→
𝛼𝑡1 (𝑥) represents

the position of the 𝑡1-th Dingoes,
−−−−−→
𝛼𝑡2 (𝑥) represents the position of the 𝑡2-th Dingoes, 𝔐 is randomly chosen

to be either 0 or 1, and
−−−−−→
𝛼𝐵 (𝑥) is the optimal position from the previous search iteration.

3.2.2. Desert golden mole sand swimming strategy
In this paper, we introduce a sand swimming strategy for desert golden moles to optimize the search process
by simulating the desert golden mole’s behavior of shuttling between sand dunes at night. The desert golden
mole is a small mammal living under sand dunes in the Namib Desert that survives in extreme environments
with its unique behavior. During the hot days of the desert, they often shelter from the heat by digging holes
under the dunes, but at night they need to travel between the dunes in search of food and water. Observing this
behavior of desert golden mole inspired the design of an optimization strategy, the sand swimming strategy.

The sand swimming strategy is used to improve the global search capability of the optimization algorithm
by simulating the way the desert golden mole moves between dunes at night. Assuming that

−−−−→
𝛼𝑘 (𝑥) denotes

the multi-dimensional coordinates of the desert golden mole’s current position, 𝜐 denotes its moving velocity
vector, and 𝜃 denotes the angle vector of the desert golden mole’s moving direction in each dimension, the
desert golden mole’s dune movement at night can be written as:

−−−−−−−→
𝛼𝑘 (𝑥+1) =

−−−−→
𝛼𝑘 (𝑥) + 𝜐 ⊙ w (𝜃+𝜎) (11)
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Where ⊙ denotes the element-by-element product and 𝜎 is a unit vector of random deviations in the interval
[0, 1] used to increase the randomness of the moving direction. w is a function to map the angle vector to
the unit vector so that the angle of the moving direction can be correctly applied to each dimension. The
calculation makes the movement of the desert golden mole in multi-dimensional space more flexible and
versatile, and can adapt to various complex terrain situations. In the desert, the desert golden mole needs to
shuttle between sand dunes to search for food and water, especially at night. This behavior is simulated in the
formula to improve the global search ability of the optimization algorithm. The position of the desert golden
mole is represented by the multi-dimensional coordinate

−−−−→
𝛼𝑘 (𝑥). The moving velocity vector 𝜐 and the angle

vector 𝜃 of the moving direction in each dimension are introduced. The unit vector of random deviations 𝜎
in the interval [0, 1] is added to increase the randomness of the moving direction. w is used to map the angle
vector to the unit vector, so that the angle of the moving direction can be correctly applied to each dimension.
Through these elements, the formula is constructed to simulate the flexible and adaptable movement of the
desert golden mole in the multi-dimensional space, which enables the algorithm to search and optimize in
complex environments.

In particle swarm optimization, the position update of particles mainly depends on their own historical op-
timal positions and the group’s historical optimal positions. Consequently, the search direction is relatively
concentrated around the known relatively good regions, and there is a high risk of getting trapped near the
local optimal solution. In contrast, within the DGMOA’s sand swimming strategy, the position update for the
desert golden mole is expressed as

−−−−−−−→
𝛼𝑘 (𝑥+1) =

−−−−→
𝛼𝑘 (𝑥) + 𝜐 ⊙ w (𝜃+𝜎). −−−−→𝛼𝑘 (𝑥) represents the multi-dimensional

coordinates of the desert golden mole’s current position, 𝜐 is the movement velocity vector, 𝜃 is the angle vec-
tor of the movement direction, 𝜎 is a unit vector of random deviations within the interval [0, 1] that serves
to enhance the randomness of the movement direction, and w is a function that maps the angle vector to
a unit vector. This design enables the desert golden mole to move more flexibly and diversely in the multi-
dimensional space, thereby better adapting to various complex terrain situations. Specifically, it allows the
algorithm to quickly traverse a larger range of solution space during the initial search phase, effectively avoid-
ing premature convergence to local optimal solutions. The sand swimming strategy considers the movement
of the desert golden mole in a multi-dimensional space. By leveraging multi-dimensional coordinates and
angle vectors of the moving direction, it can adapt to diverse terrain conditions, including alterations in the
height and inclination of sand dunes. This multi-dimensional adaptability renders the sand swimming strategy
highly effective in complex environments.

3.2.3. Desert golden mole hiding strategy
In this paper, we introduce the hiding strategy of the desert golden mole to optimize the search process by
simulating the hiding behavior of the desert golden mole when encountering danger. In the optimization
algorithm, the hiding strategy is used to adjust the exploration direction during the search process to avoid
falling into unfavorable local optimal solutions or encountering dangerous regions in the search space as much
as possible.

Suppose the position of the desert goldenmole is a multi-dimensional vector
−−−−→
𝛼𝑘 (𝑥) = (𝜂1, 𝜂2, . . . , 𝜂dim), where

each dimension 𝜂𝑖 denotes the position of the desert goldenmole in the 𝑖-th dimension. dw = (𝑑𝑤1, 𝑑𝑤2, . . . , 𝑑𝑤𝑛)
indicates the relative distance between the desert goldenmole and theworst positionedmole;ds = (𝑑𝑠1, 𝑑𝑠2, . . . , 𝑑𝑠𝑛)
indicates the relative distance of the desert golden mole to the best-positioned mole; c = (𝑐1, 𝑐2, . . . , 𝑐𝑛) de-
notes a vector of safe locations, where each element indicates whether the desert golden mole is safe in the first
dimension, and smaller means safer; r = (𝑟1, 𝑟2, . . . , 𝑟𝑛) denotes a vector of randomized hazard parameters,
where each denotes the hazard level of the predator encountered in the first dimension. The hiding strategy is
expressed as:
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−−−−−−−−→
𝛼𝑘 (𝑥 + 1) = −−−−→

𝛼𝑘 (𝑥) + c ⊙
(
𝑝d𝑤 + 𝑞d𝑏

)
⊙ r (12)

Where
−−−−→
𝛼𝑘 (𝑥) denotes the current position vector of the desert goldenmole and

−−−−−−−−→
𝛼𝑘 (𝑥 + 1) indicates the updated

position vector. 𝑝 and 𝑞 are coefficients used to adjust the degree of influence of the danger factor and safety
factor on hiding movement. ⊙ denotes the element-by-element multiplication operation. The desert golden
mole moves to hide in the more dangerous dimension according to the hiding factor vector, and considers
the danger level and relative distance of the encountered predators, so as to avoid the danger more effectively
and find a suitable hiding place. When the desert golden mole senses danger, it will comprehensively consider
its own position, the relative positions with other individuals of the same kind (including the worst and best
positions), the safety degree of the surrounding environment, and the randomly emerging danger factors to
determine the next moving direction and distance. The part c ⊙

(
𝑝d𝑤 + 𝑞d𝑏

)
⊙ r calculates an adjustment

vector based on the safe position vector c, the relative distance vectors d𝑤 and d𝑏 between the desert golden
mole and the worst and best-positioned individuals, and the coefficients 𝑝 and 𝑞. This adjustment vector
reflects the direction and magnitude of the position adjustment that the desert golden mole should make
based on its own position, the positions of other individuals in the group, and safety factors. Multiplying by
the random danger parameter vector r further introduces randomness to simulate the random hiding behavior
of the desert golden mole when facing uncertain dangers, and finally obtains the new position of the desert
golden mole at the (𝑥 + 1)-th iteration.

The hiding strategy simulates the evasive behavior of the desert goldenmole in the face of dangerous situations
by using amulti-dimensional vector to represent the position of the desert goldenmole and introducing a series
of parameters to influence the evasive movement. By calculating the relative distances between the desert
golden mole, the worst-positioned mole and the best-positioned mole, and considering the safe position and
the randomdanger parameters, it realizes the intelligent adjustment of the exploration direction to avoid falling
into the local optimal solution or encountering a dangerous area. The advantage of this strategy is that it can
intelligently adjust the moving direction based on environmental conditions, enabling the algorithm to avoid
dangers more effectively and find safer hiding places, thus improving the search efficiency and global search
ability.

3.2.4. WSN coverage deployment with DGMOA
Firstly, the size of the sensor deployment area is set to 𝑙 × 𝑢, the number of sensors is 𝑆, the population size of
the Desert Golden Mole is 𝑀 , and the number of iterations of the algorithm is 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 , and the number of
iterations of the algorithm is . The WSN deployment model is introduced, and the computation is conducted
using the DGMOA [Figure 2], and the specific steps are as follows:

Step 1: Initialize the position vector of the desert golden mole. The position of each desert golden mole repre-
sents a possible sensor deployment scenario. Initialize a vector of relative distances between the worst position
mole and the best position mole to represent the distance of each desert golden mole from the current worst
and best positions. Initialize a vector of safe locations to represent the level of safety at each location. Initialize
a vector of random hazard parameters for adding randomness to the exploration process.

Step 2: Based on the current position vector of the desert golden mole, the fitness of each desert golden mole,
i.e., the value of the objective function, is calculated.

Step 3: TheDGMOA is used to update the position of the desert goldenmole, adjusting its exploration direction
and step size.

Step 4: During each periodic nighttime sand swimming event, the position vector of the desert golden mole
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Figure 2. DGMOA application toWSN deployment modeling. DGMOA: Desert goldenmole optimization algorithm;WSN: wireless sensor
network.

is adjusted according to the mathematical model of the sand swimming strategy to simulate its movement
through the desert. This strategy increases the randomness and exploration of movement directions by intro-
ducing velocity vectors and random deviations.

Step 5: With a probability of encountering a predator of 𝐿, the position vector of the desert golden mole is
adjusted according to themathematical model of the hiding strategy, allowing it to intelligently choose a hiding
place to avoid detection. This strategy optimizes themoving position of each desert goldenmole by calculating
the relative distance and the safe position so that it avoids dangerous areas.

Step 6: Based on the WSN coverage deployment model, calculate the coverage ratio under the current desert
golden mole location to assess the coverage effect of the sensor network. The coverage ratio indicates the
proportion of the sensor deployment scenario that covers the entire area.

Step 7: Repeat steps 3 to 6 until a set number of iterations or convergence conditions are reached. In each iter-
ation, the sensor deployment scheme is continuously optimized through the combination of position update,
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sand swimming strategy and hiding strategy to improve the coverage and deployment efficiency.

Step 8: Output the location vector of the optimal or near-optimal solution, along with the corresponding
fitness value and coverage. The optimal solution represents the best deployment solution for the sensors that
maximizes the coverage area and optimizes the energy consumption.

Through the above steps, the DGMOA is able to search the problem space intelligently, simulate the behavior
of the desert golden mole in the natural environment by using the sand swimming strategy and the hiding
strategy, so as to improve the algorithm’s searching efficiency and global searching ability, and finally output
the optimization results. The introduction of the shared optimal solution mechanism further enhances the
optimization performance of the algorithm and makes it perform better in complex environments.

4. EXPERIMENTS
The experiments were conducted in a MATLAB R2023a environment on a standard PC equipped with a 3.20
GHz processor and 16 GB of memory. To test the performance of the proposed DGMOA for WSN deploy-
ment, we utilized simulated environments of 20 m × 20 m and 50 m × 50 m areas. We compared the latest
optimization algorithms, includingDOA, COA, salp swarm algorithm (SSA) [25], WOA, andMFO [26], in terms
of coverage rate, convergence speed, and computational efficiency.

4.1. Ablation experiments
To evaluate the impact of the sand swimming strategy and the hiding strategy, we designed an ablation ex-
periment. We compared the performance of the original DGMOA algorithm (with sand swimming strategy
and hiding strategy), DGMOA with sand swimming strategy removed and DGMOA with hiding strategy re-
moved. The experimental setups of the three algorithms are consistent in terms of simulated environment,
sensor parameters and maximum number of iterations. The population size of the optimization algorithms is
categorized as 500 and the maximum number of iterations is set to 1,000. The simulated environment used for
the deployment of the WSN is a 20 m × 20 m area.

Under the same experimental setting, it can be seen from the convergence curve of the 20 m × 20 m area
experimental results in Figure 3 that when the “sand swimming strategy” is removed from the DGMOA al-
gorithm, the performance changes significantly. The algorithm that removes the “sand swimming strategy”
requires more iterations to approach the coverage of the DGMOA algorithm. This shows that the sand swim-
ming strategy plays an important role in improving the convergence speed of the algorithm, which can help
the algorithm quickly explore a wider range of solution spaces in the early search period, thereby improving
the overall performance. When the “hiding strategy” is removed from the DGMOA algorithm, although the
convergence speed in the initial stage is similar to that of DGMOA, it is easy to fall into the local optimal
solution during the iteration process. The specific performance is that after reaching a certain coverage, the
coverage is improved slowly, and the final convergence result is lower than that of the DGMOA algorithm.

4.2. Datasets
We set up different scenarios for the comparison of the experiments, 20 m × 20 m and 50 m × 50 m areas for
WSN deployment, respectively, and the population size of the optimization algorithm is set to 30, 50, 75, 125,
250, and 500, respectively, and the maximum number of iterations is set to 1,000. For the initialization of the
population, we use a random initialization method to determine the initial position of the sensor nodes in the
monitoring area. In the monitoring areas of 20 m × 20 m and 50 m × 50 m, the position coordinates of the
sensor nodes are randomly generated within the corresponding area. For example, in the area, the abscissa 𝑥
and the ordinate 𝑦 of each sensor node are real numbers randomly selected within the interval [0, 20]. This
random initialization method can provide diverse initial solutions for the algorithm and avoid the algorithm
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A B

Figure 3. Graphical representation of the results of the ablation experiment under the same experimental setup. (A) Convergence curve of
experimental results for 20 m × 20 m area; (B) final coverage statistics for the 20 m × 20 m area in the ablation experiment.

falling into the local optimal solution at the initial stage. At the same time, we clarify the value range of the
population size and its impact on the experiment. In different experiments, the population size is set to 30, 50,
75, 125, 250 and 500, and the adaptability and stability of theDGMOAalgorithmare comprehensively evaluated
by comparing the performance of the algorithm under different population sizes. For the parameters in the
sand swimming strategy, the initial value of the velocity vector 𝜐 is calculated and evaluated according to the
current optimal effect, current worst effect and survival rate, so that the algorithm dynamically adapts to the
convergence speed of the search space. The initial value of the angle vector 𝜃 is also randomly generated at each
iteration, and its value range is between [0, 2𝜋), which ensures that the direction of movement of the desert
goldenmole in themulti-dimensional space is random, which helps the algorithm to explore the solution space
widely in the initial search stage. Each element in the random deviation vector 𝜎 is randomly generated within
the interval [0, 1], which is used to introduce additional random factors to avoid premature convergence of the
algorithm. Regarding hiding strategy-related parameters, the initialization of the safe position vector c is set
according to the known safe area or relatively safe position information in the monitoring area. If there is no
pre-defined safety zone information, the initial value of c is set to 1, indicating that the security of all positions
is the same at the beginning. As the algorithm runs, the value of c will be dynamically updated according to
the interaction between the individual and other individuals and the environment. The coefficients 𝑝 and 𝑞

are used to balance the influence of the risk and safety factors on the hiddenmovement. In the experiment, the
initial values of 𝑝 and 𝑞 are set to 0.5. Through multiple experimental comparisons, it is found that this setting
can make the algorithm achieve a good balance between avoiding danger and tending to safety in most cases.
Each element of the random danger parameter vector r is randomly generated at each iteration, and its value
range is between [0, 1], which is used to simulate the uncertainty of the desert golden mole in encountering
danger in the real environment.

4.3. Experimental results and analysis
In a 20 m × 20 m area, 24 wireless sensors were deployed, the sensing radius was set to r = 2.5 m, and the
monitoring area was discretized into 2, 000 × 2, 000 pixel points. From the simulation experiment results in
Figure 4, it can be seen that DGMOA shows high coverage in the initial stage. This is mainly because the sand
swimming strategy of DGMOA simulates the behavior of desert goldenmoles shuttling between sand dunes at
night, allowing it to quickly explore a large range of solution spaces in the initial search phase and avoid falling
into the local optimum too early. In contrast, other algorithms may not be as comprehensive in the initial
search, resulting in a slower increase in coverage. Especially when the population size is 500, the convergence
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Figure 4. Coverage performance of the proposed DGMOA algorithm in a 20 m × 20 m area, based on different population sizes compared
with five other algorithms. (A) Population size is the result of 30; (B) 50; (C) 75; (D) 125; (E) 250; (F) 500. DGMOA: Desert golden mole
optimization algorithm.

Figure 5. Statistical map of final coverage in a 20 m × 20 m area.

speed of DGMOA is significantly faster than other algorithms. As the population size increases, as shown in
Figure 5, the performance of most algorithms improves. DGMOA performs particularly well in the case of
large-scale populations. The reason is that the improved group synergy strategy of DGMOA further enhances
the inter-individual synergy, enabling it to better balance global search and local optimization. In contrast,
some other algorithms may experience poor coordination or reduced search efficiency when the population
size increases. The effect of WSN coverage deployment in a 20 m × 20 m area is demonstrated in Figure 6. The
sensor layout under the DGMOA algorithm is more uniform. This is because the hiding strategy of DGMOA
adjusts the position of individuals to avoid dangerous regions or locally optimal traps in the search space,
making the sensor nodes more reasonably distributed in space. Other algorithms may lack such an intelligent
position adjustment mechanism, resulting in uneven node distribution or larger coverage overlaps and gaps.
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Figure 6. Deployment diagram of WSN coverage in a 20 m × 20 m area. WSN: Wireless sensor network.

The performance results under different population sizes in a 50 m × 50 m area show that DGMOA consis-
tently outperforms other algorithms in terms of coverage and convergence speed. As can be seen in Figure 7,
DGMOA is able to rapidly improve the coverage in the initial iterations and achieve nearly 95% coverage with
fewer iterations. This is due to the combined effect of the sand swimming strategy and the hiding strategy of
DGMOA, and the improved group synergy strategy. The sand swimming strategy enhances the global search
ability, allowing it to quickly locate potential excellent solutions in a large and complex environment. The hid-
ing strategy improves the accuracy and adaptability of local search and avoids falling into the local optimum.
The improved group synergy strategy improves the overall search efficiency. In contrast, other algorithms
may have deficiencies in one or more of these aspects, resulting in poorer performance in terms of coverage,
convergence speed, and node distribution uniformity. In addition, Figure 8 shows the statistical analysis of
the final coverage rates for different population sizes, and compared with other algorithms, DGMOA achieves
higher coverage rates, especially when the population size is larger, and its advantage is more obvious. Figure 9
shows that the deployment of DGMOA-optimizedWSNs results in a more even distribution of nodes and less
overlap between coverage areas, further emphasizing the effectiveness of DGMOA in solving large-scale WSN
coverage problems.

Through the results of the WSN coverage deployment simulation experiment, it can be seen that DGMOA
shows significant excellence in sensor network deployment. The deployment of the sensor location is more
uniform, the overlap and gap between the coverage area is less, achieving a higher coverage rate, and can effec-
tively utilize the sensor resources to maximize the coverage area. Compared with other algorithms, DGMOA
has significant advantages. It can quickly improve the coverage rate in a shorter time while maintaining the
uniformity and efficiency of sensor deployment, proving that it outperforms the other compared algorithms
in terms of global search, fast convergence, and final coverage effect. In summary, DGMOA has significant
superiority in sensor network optimization and deployment and can quickly and efficiently achieve high cov-
erage.
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Figure 7. Coverage performance of the proposed DGMOA algorithm in a 50 m × 50 m area, based on different population sizes compared
with five other algorithms. (A) population size is the result of 30; (B) 50; (C) 75; (D) 125; (E) 250; (F) 500. DGMOA: Desert golden mole
optimization algorithm.

Figure 8. Statistical map of final coverage in a 50 m × 50 m area.

In terms of energy consumption, DGMOA deploys sensors to make the node layout more reasonable, reduc-
ing unnecessary energy waste, and thus improving the overall energy utilization efficiency. The unified sensor
layout avoids the rapid energy consumption caused by too dense nodes, and also reduces the additional en-
ergy consumption that may be caused by coverage blind spots. Compared with other algorithms, DGMOA
can maintain the effective operation of the network with lower energy consumption under the same moni-
toring tasks, prolonging the service life of the sensor network, especially suitable for complex and extreme
environments with limited resources.

4.4. DGMOA algorithm analysis
In order to deeply explore the performance of the DGMOA algorithm, a systematic and multi-dimensional ex-
periment and detailed analysis work was carried out. In the experimental planning, different scale simulation
areas such as 20m× 20m and 50m× 50mwere selected to buildWSN deployment scenarios and simulate var-
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Figure 9. Deployment diagram of WSN coverage in a 50 m × 50 m area. WSN: Wireless sensor network.

ious actual environments. The performance analysis focuses on the core indicators of coverage performance,
convergence speed and spatial distribution efficiency, so as to accurately measure the performance of the algo-
rithm. Compared with DOA, COA, SSA, WOA, MFO and other algorithms, the DGMOA algorithm stands
out and has significant advantages. In the 20 m × 20 m area, the initial coverage degree is high, and the 95%
coverage target can be quickly achieved. When the population size reaches 500, the convergence speed far
exceeds that of other methods; in the 50 m × 50 m area, the coverage effect is good and the convergence is fast.
The node distribution is balanced and the coverage overlap is less.

Through the design of ablation experiments, the effectiveness of the two strategies of sand swimming and
hiding is verified. As far as the sand swimming strategy is concerned, from the convergence curve of the
experiment in the 20 m × 20 m area, it can be seen that after removing the strategy, the algorithm needs
more iterations to approach the original coverage level, because it can efficiently explore the solution space
in the early search stage, greatly reduce the calculation time, and effectively improve the time efficiency. The
hiding strategy focuses on avoiding the local optimum and ensuring the convergence effect. After removing
it, although the initial convergence speed is not much different, the subsequent iterations are prone to fall into
the dilemma of local optimum, the coverage rate climbs slowly, and the final convergence result is not as good
as the original algorithm, which shows its key role in guiding the algorithm to avoid unfavorable areas and
optimize coverage.

Overall, the DGMOA algorithm has shown good performance in different scale regional experiments. The
sand swimming and hiding strategies complement each other, and the combined efforts significantly enhance
the comprehensive performance of the algorithm, which effectively confirms the important and effective posi-
tion of the two algorithms in the algorithm system. This provides a solid theoretical and practical foundation
for the algorithm to be deployed in complex WSNs.
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5. CONCLUSIONS
This paper presents the DGMOA, which makes significant contributions. The sand swimming strategy, in-
spired by the desert golden mole’s movement between sand dunes at night, allows the algorithm to quickly
explore a large range of solution spaces in the initial search phase. This effectively avoids falling into local
optima too early and greatly enhances the global search ability. The hiding strategy, simulating the desert
golden mole’s hiding behavior when encountering danger, adjusts the position of individuals to avoid danger-
ous regions or locally optimal traps in the search space. This improves the accuracy and adaptability of the
algorithm in localized search and ensures more optimal solutions. These two strategies make DGMOA highly
applicable in WSN deployment, optimizing the sensor layout and improving the network’s performance and
energy consumption.

Although DGMOA shows excellent performance, it still has some limitations. For example, in some extremely
complex and dynamic environments, the algorithm may need to further adapt and optimize. Future research
will focus on extending the algorithm to multi-objective optimization problems, considering multiple factors
such as coverage, energy consumption, and latency simultaneously. Additionally, the application of DGMOA
in real-world industrial scenarios will be explored, aiming to validate and improve its practical effectiveness
and provide more valuable solutions for industrial applications.
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