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Abstract
Photoaging and carcinogenesis are facilitated by oxidative stress, inflammation, angiogenesis, and extracellular 
matrix (ECM) remodeling. Oxidative effects include DNA damage, membrane oxidation, lipid peroxidation, and 
alterations in the expression of p53 and antioxidant enzymes. The inflammatory and angiogenesis mediators 
include interleukin-1, tumor necrosis factor-α, interleukin-8, transforming growth factor-β, and vascular endothelial 
growth factor. ECM remodeling includes alterations in the expression and organization of collagen, elastin, matrix 
metalloproteinases, and elastase. 1α, 25-dihydroxy-vitamin D3 has antioxidant, anti-inflammatory, and ECM 
regulatory properties, and can counteract the processes that facilitate photoaging and carcinogenesis. This review 
provides an overview of the beneficial effects of vitamin D supplementation at a molecular level, followed by a brief 
discussion regarding its use as a supplement.
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INTRODUCTION
Vitamin D (VD) is a prohormone involved in a broad range of functions in the organism that has been 
shown to exert protective effects against several types of cancer[1] and skin aging[2], among others. In the 
human epidermis, exposure to sunlight - ultraviolet B radiation (UVB, 280-315 nm) - promotes the 
transformation of 7-dehydrocholesterol to previtamin D3, which undergoes thermal isomerization into 
cholecalciferol, also known as vitamin D3 [Figure 1]. Cholecalciferol is then hydroxylated in the liver to 25-
hydroxycholecalciferol or calcidiol, and further hydroxylated in the kidney into 1,25-dihydroxyvitamin D3 
or calcitriol, which is the biologically active form of VD[3]. Calcitriol, therefore, acts through an intracellular 
receptor, vitamin D receptor (VDR), which is ubiquitously expressed in most nucleated cells[4]. Calcitriol 
exerts antiproliferative, antiangiogenic, pro-differentiating, and antiapoptotic effects[5].

Recent research has identified an alternative vitamin D activation pathway through CYP11A1[6-8]. CYP11A1-
mediated metabolism of vitamin D results in the production of 20-hydroxyvitamin D and its 
hydroxymetabolites. These byproducts have antiproliferative, differentiative, and anti-inflammatory effects 
in skin cells, comparable or greater than those of calcitriol[9]. Additionally, these metabolites improve 
different defense mechanisms against UVB-induced DNA damage and oxidative stress[9,10]. Alternative 
nuclear receptors for vitamin D hydroxyderivaties have also been identified, such as retinoid-related orphan 
receptor (ROR) alpha and ROR gamma[11-13].

Both skin aging and cancer have been associated with increased cellular oxidative stress, the release of 
inflammatory and angiogenic mediators, and abnormal extracellular matrix (ECM) remodeling, among 
others[14-17]. Other non-classic effects of VD include cell growth suppression, apoptosis regulation, 
modulation of immune responses, control of differentiation, or antioxidant effect, among others[18], 
suggesting that VD might be of potential relevance in skin aging and cancer.

OXIDATIVE DAMAGE
Cellular oxidative stress arises when the levels of reactive oxygen species (ROS), including hydroxyl radicals, 
superoxide, or hydrogen peroxide, exceed the ability of endogenous antioxidants or antioxidant enzymes to 
quench them[19]. These antioxidant systems include glutathione, glutathione peroxidase, superoxide 
dismutase, and catalase[20,21]. Oxidative damage occurs during the intrinsic cutaneous aging phenomenon, 
and it is exacerbated by exposure of the skin to damaging physical or environmental pollutants such as 
ultraviolet (UV) radiation, heavy metals, or benzene derivatives[22-26]. UVA radiation (315-400 nm) reaches 
the dermis, causing DNA damage mainly through oxidative stress, whereas UVB (280-15 nm) reaches the 
epidermis and causes direct DNA damage as well as oxidative stress-related DNA damage[20,21,23,24,27]. In 
addition, exposure to pollutants also results in detrimental alterations through direct oxidative stress[25,26]. 
Intrinsic skin aging is also associated with diminished levels of steroidal hormones, among others, thus, 
resulting in the thinning and fine wrinkling of the skin[22]. Additionally, ROS produced by extrinsic 
damaging factors correlates with coarse wrinkling.

In relation to carcinogenesis, numerous studies have demonstrated that ROS are able to induce mutagenesis 
through diverse mechanisms. In fact, nucleotides are highly susceptible to free radical damage, and their 
oxidation promotes base mispairing, leading to mutagenesis[28]. One of the best-characterized mutations 
caused by ROS is the conversion of guanine into thymine, as a result of guanine oxidation at the eighth 
position, resulting in 8-hydroxy-2’-deoxyguanine (8-OHdG) production[29]. This last nucleotide base tends 
to pair with adenine instead of cytosine, leading to mispairing and mutagenesis. These mutations have been 
extensively found in different types of skin tumors[30]. Furthermore, exposure to UV radiation has 
mutagenic effects beyond the time of exposure due to ROS production, leading to the so-called dark-
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Figure 1. Biosynthesis of active vitamin D.

cyclobutane pyrimidine dimers (CPD)[31]. ROS generated through UV radiation, superoxide and nitric 
oxide, undergo a series of reactions involving melanin fragments resulting from its photochemical 
degradation. Excited-state triplet carbonyls are formed, which transfer their energy to DNA bases leading to 
the formation of CPDs[32]. Additionally, oxidative DNA damage has been seen to be accentuated by the 
depletion of glutathione in fibroblasts and melanoma cells[33]. Moreover, oxidative stress can also induce 
lipid peroxidation and cell membrane damage that leads to the leakage of intracellular proteins to the 
exterior[34,35]. Active substances with antioxidant properties such as VD, lutein, P. leucotomos extract and 
H. lupulus extract beneficially regulate oxidative stress in dermal fibroblasts and melanoma cells[31,34-39].

VD is photoprotective as it inhibits UV radiation-mediated oxidative DNA damage[34,35], and induction of 
cellular skin defenses[40,41]. VD inhibits oxidative stress and tissue damage induced by exhaustive exercise 
and 2,2’-azino-di-(3-ethylbenzthiazoline sulphonate) oxidation in the presence of hydrogen peroxide and 
met-myoglobin[34,42]. It also inhibits oxidative DNA damage in non-irradiated or UV-radiated fibroblasts 
and melanoma cells; prevents membrane damage in UV-radiated fibroblasts and melanoma cells; decreases 
lipid peroxidation in non-irradiated and UVA-radiated fibroblasts; stimulates expression of superoxide 
dismutase in melanoma cells[34,35] [Figure 2]. These data emerged from in vitro experiments in which 
different treatment conditions were evaluated: non-irradiated, UVA-irradiated, or UVB-irradiated human 
dermal fibroblasts, and melanoma cells (American Type Culture Collection, ATCC) were incubated for 24 h 
in the presence of different doses of VD (0, 0.02, 0.2, or 2 μM). Cells were analyzed for products of oxidative 
damage and for membrane damage and lipid peroxidation. A competitive DNA/RNA oxidative damage 
ELISA kit (Cayman Chemical) revealed lower levels of 8-OHdG and 8-hydroxy-2’-guanine in VD-treated 
cells. The supernatants of VD-treated cells also displayed lower levels of lactate dehydrogenase, which is an 
indicator of membrane damage. Finally, a kit that enables hydroperoxide to oxidize ferrous to ferric ion, 
forming a colored adduct with xylenol orange {“3,3’-bis[N,N-bis(carboxymethyl)aminomethyl]o-
cresolsulfonephthalein, sodium salt”} revealed that VD decreased cellular lipid peroxidation. In summary, 
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Figure 2. Table summarizing the anti-photoaging and anti-photocarcinogenic effects of vitamin D. Green plus sign means upregulation; 
Red X denotes inhibition. IL-1: Interleukin-1; TNF-α: tumor necrosis factor-α; IL-8: interleukin-8; TGF-β: transforming growth factor-β; 
VEGF: vascular endothelial growth factor; MMP: matrix metalloproteinases; 8-OHdG: 8-hydroxy-2’-deoxyguanine; ECM: extracellular 
matrix.

these results showed that VD reduced the formation of 8-OHdG and CPDs caused by oxidative stress 
through the reduction of ROS in UV-irradiated skin explants, as well as other mutagenic alterations such as 
thymine dimers or 8-nitroguanosine[43].

INFLAMMATION
Exposure of the skin to UV radiation or environmental pollutants initially causes localized inflammatory 
response involving innate immunity, and later adaptive immunity involving the T- and B-lymphocytes[44-48]. 
The initial inflammation results in the release of cytokines, such as interleukins (IL) and tumor necrosis 
factor (TNF)[45]. These cytokines activate I-κB kinase, which activates the NF-κB transcriptional factor, 
amplifying the expression of inflammatory mediators[44]. The activation of adaptive immunity causes the 
release of Th2 cytokines, such as IL-4, which drives the activation of Janus tyrosine kinases, induces 
dimerization of signal transducers of transcription, and increased expression of additional inflammatory 
mediators, such as Immunoglobulin E (IgE)[44-48]. IgE antibodies cause the release of histamine and other 
inflammatory mediators from basophils and mast cells[48].
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Cellular inflammation is also associated with increased production of angiogenic factors, such as vascular 
endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and IL-8[20,21]. VEGF binds to 
receptor tyrosine kinase to activate the mitogen-activated protein kinase (MAPK) pathway and thereby the 
activation of several transcription factors such as c-fos[34]. TGF-β binds to its receptors to activate SMADs 
that regulate the expression of cell cycle and the ECM[34]. Finally, IL-8 binds to its chemokine receptors and 
mediates its effects through several means, including the increase in intracellular calcium levels[44,45].

Both innate and adaptive immunity are regulated by VD[49]. VD deficiency, as well as that of its receptor, is 
associated with inflammation, increased serum levels of inflammatory factors, and inflammatory 
diseases[50,51]. VD supplementation inhibits the activity of NF-κB in peritoneal macrophages[52]. VD inhibits 
angiogenesis in vivo and in vitro by decreasing IL-8 expression in human fibroblasts[53,54]. It also decreases 
the levels of IL-1 and IL-8 in UVA-irradiated fibroblasts, but not in UVB-irradiated or non-irradiated 
fibroblasts, suggesting that VD specifically curbs inflammatory reactions to UVA exposure[34]. Additionally, 
VD inhibits the expression of the inflammatory mediators IL-1 and TNF-α, and the angiogenesis factors 
TGF-β and VEGF at protein and mRNA levels in melanoma cells, implicating transcriptional regulation[35]. 
The stated conclusions on the effects of VD on the inflammatory factors have been determined through in 
vitro experiments, in which non-irradiated, UVA-radiated, or UVB-radiated human dermal fibroblasts, and 
melanoma cells were incubated with different concentrations of VD[34,35]. The culture media were examined 
by ELISA for protein levels of the inflammatory and angiogenic factors IL-1, IL-8, TNF-α, TGF-β, and 
VEGF. mRNA levels of these inflammatory and angiogenic factors were measured by reverse transcriptase-
quantitative polymerase chain reaction (RT-qPCR).

Cell viability
Cellular oxidative damage causes cell death through the intrinsic apoptosis pathway[55], whereas 
inflammatory players cause cell death via extrinsic apoptosis[56]. Conversely, oxidative effects and 
inflammatory mediators facilitate resistance to cell death through mutations in protooncogenes or tumor 
suppressor genes, or through the activation of the protein kinase B (PKB) pathway.

DNA damage activates ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3-
related protein), leading to p53 activation[44,57,58]. Then p53 activates the pro-apoptotic factor Bax, allowing 
the release of cytochrome C into the cytoplasm and the subsequent activation of caspases[35,44]. Also, the 
increase in p53 activity activates p21 triggering its binding to cyclin-dependent kinases to cause cell cycle 
arrest[44]. Conversely, mutations in p53, due to oxidative damage, facilitate carcinogenesis[59].

Inflammatory cytokines are implicated in the extrinsic apoptotic pathway by activating Fas-associated death 
domain and TNF receptor-associated death domain. These cause the release of Bax from Bcl-2 
(antiapoptotic protein) in the mitochondrial membrane and, therefore, the activation of the caspases[44,60]. 
Conversely, activation of the PKB pathway retains the binding of Bcl-2 to Bax in the resistance to 
apoptosis[44,60].

VD increases the viability of UVB radiated fibroblasts and the p53 promoter activity in melanoma cells, 
suggesting cell-specific protective effects [Figure 2][34,35]. VDR knock-out mice display reduced expression of 
p53 and premature aging[61]. The supplementation of VD results in an increase of p53 expression and 
photoprotection[62]. p53 promoter activity has been assessed by co-transfecting cells with p53 promoter 
cDNA linked to firefly luciferase and thymidine kinase (TK) promoter linked to renilla luciferase (to 
normalize transfection efficiency) and measuring luciferase activity following supplementation with VD[35].



Page 6 of Philips et al. Plast Aesthet Res 2022;9:4 https://dx.doi.org/10.20517/2347-9264.2021.8310

EXTRACELLULAR MATRIX REMODELING
Oxidative damage and inflammation are associated with increased ECM remodeling, promoting skin 
wrinkling and cancer progression[63]. There is a coordinated regulation between inflammatory mediators 
and the ECM proteins[63,64]. The primary structural ECM proteins are collagen and elastin, and the primary 
ECM remodeling or degrading enzymes are matrix metalloproteinases (MMP) and elastase. A loss of 
collagen and an increase in MMPs/elastases is associated with skin aging and cancer. Intrinsic aging is 
associated with loss of elastin, whereas photoaging is associated with solar elastosis[65,66]. The action of MMPs 
is based on substrate specificity or the elements in its promoters. Therefore, different MMPs can be found. 
Based on substrate specificity, MPPs can be classified as: interstitial collagenases that cleave the fibrillar 
collagens (predominantly MMP-1), the gelatinases (MMP-2 and MMP-9), and stromelysins (MMP-3 and 
MMP-10) that cleave primarily the basement membrane, the membrane-type MMPs that cleave pro-MMPs, 
and the other MMPs such as metalloelastase (MMP-12) that cleaves the basement membrane and elastin[65]. 
MMPs are alternatively also classified according to their regulatory promoter elements: group I that contain 
TATA box and activator protein-1 (AP-1 site); group II, which bears no AP-1 site; and group III, which 
display no TATA box or AP-1 sites[66]. The transcription factor AP-1 is stimulated by the MAPK pathway, 
which is activated by cellular inflammation and angiogenesis[44]. MMP activity is inhibited by the tissue 
inhibitors of matrix metalloproteinases (TIMP). The four TIMPs (TIMP-1, -2, -3, -4) bind to all of the 
MMPs, though TIMP-1 has a preference for MMP-1 and TIMP-2 to MMP-2[67]. The TIMP-1 and TIMP-3 
are inducible, TIMP-2 is constitutive, and TIMP-4 exhibits tissue specificity[67]. ECM remodeling is 
associated with increased expression of MMPs and elastase, and reduced expression of TIMPs and 
collagen[67].

VD improves ECM proteins regulation in fibroblasts and melanoma cells[34,35] [Figure 2]. VD promotes the 
expression of collagen, whereas it inhibits the expression of elastin[68,69]. VD stimulates the expression of 
collagen by transcriptional mechanism, in non-irradiated and UVA-irradiated fibroblasts, though not in 
UVB-irradiated fibroblasts[35]. In UVA-irradiated fibroblasts, VD also stimulates heat shock protein-47 
(HSP-47), a chaperone involved in the formation of collagen fibers, but again not in non-irradiated and 
UVB-irradiated fibroblasts[35]. VD also inhibits elastin promoter activity in non-irradiated and UV-
irradiated fibroblasts[35]. It has also been described that VD inhibits elastase activity directly and its 
expression in non-irradiated, and UVA-irradiated fibroblasts, though not in UVB-irradiated fibroblasts[35]. 
Elastase activity can be measured by incubating the enzyme with VD followed by the addition of its 
substrate, whose degradation to a colored product can be followed by spectrophotometrically (Elastin 
Products Co)[35]. VD also inhibits MMP-1 and MMP-2 protein levels in melanoma cells[33].

The stated conclusions on the effects of VD on the extracellular matrix remodeling were determined 
through in vitro experiments, in which non-irradiated, UVA-irradiated, or UVB-irradiated human dermal 
fibroblasts, and melanoma cells were incubated for 24 h with different concentrations of VD, and 
expression of different proteins was measured by RT-qPCR and/or ELISA. Protein levels of type I collagen, 
elastin, MMP-1, and MMP-2 were measured in the media, and protein levels of HSP-47 were measured in 
cells using ELISA. The RT-qPCR was used to measure mRNA levels of MMP-1 and MMP-2. Fibroblasts 
were co-transfected with COL1α1 promoter-firefly luciferase or elastin promoter-firefly luciferase and TK 
promoter-Renilla luciferase plasmids for 24 h, prior to the dosing with UV radiation and/or VD; and firefly 
and renilla luciferase activities were measured sequentially to determine the normalized type I collagen or 
elastin promoter activities. Melanoma cells were co-transfected with the MMP-1 promoter-
chloramphenicol acetyltransferase (CAT) plasmid and RSV2-β Galactosidase (β-GAL) prior to incubation 
with or without VD, and the cells were examined for CAT expression and β-GAL activity to determine the 
normalized MMP-1 promoter activity. Collectively, VD strengthens the ECM and is beneficial to the 



Page 7 of Philips et al. Plast Aesthet Res 2022;9:4 https://dx.doi.org/10.20517/2347-9264.2021.83 10

prevention of photoaging and carcinogenesis.

CONCLUSION
VD facilitates skin health through its action on dermal fibroblasts and/or melanoma cells by preventing 
oxidative DNA damage, membrane damage, and lipid peroxidation, and by stimulating superoxide 
dismutase expression ameliorating the effects of oxidative stress[34,35]. In addition, VD reduced the expression 
of IL-1, TNF-α, IL-8, TGF-β, and VEGF, decreasing inflammation[35,53,54] and also preventing cell death in 
UVB-irradiated fibroblasts, increasing p53 promoter activity[34,35]. At the extracellular level, VD stimulated 
the expression of type I collagen and inhibited elastase, elastin, and MMPs, particularly MPP-1 and MPP-2, 
with beneficial ECM effects[68,69].

In summary, the data reviewed here suggested that VD supported the maintenance of skin health with anti-
aging[70] and anti-carcinogenic effects. The currently recommended doses of VD (as cholecalciferol, D3) are 
400 units (1 unit = 0.025 μg VD) for children until one year of age, 600 units for people ranging from 1 year 
through 70 years of age, and 800 for people over 70 years of age[28,71,72]. The physiological dose of VD is 2.5-
10 μg (1 μg = 40 units), and the pharmacological dose of VD (as cholecalciferol, D3, or ergocalciferol, D2) is 
0.625-5 mg for 1-3 months to treat VD deficiency[73]. The other commonly used VD metabolites or analogs, 
paricalcitol, doxercalciferol, and calcitriol, are used to treat secondary hyperparathyroidism[47]. The current 
research on VD effects strongly advocates for dietary supplementation with VD. Further, the anti-
photoaging and anti-carcinogenic effects of VD could be potentiated by non-steroidal anti-inflammatory 
drugs (NSAIDs). The cyclooxygenase-2/prostaglandin E2 pathway, which is inhibited by NSAIDs, has been 
implicated in the etiology of cancer, along with the inflammatory cytokines. Piroxicam and Diclofenac 
(NSAIDs) inhibit MMP-2 activity in a fibrosarcoma cell line. Both NSAIDS are suitable for field 
cancerization treatment of actinic keratosis. It is inferred that the combination of Diclofenac, or other 
NSAIDS, with VD, would provide added benefit.
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