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Abstract
Gridded carbon dioxide (CO2) emission inventories are usually required as prior information for deriving urban-
scale emissions from atmospheric CO2 monitoring data. However, existing global or national gridded inventories 
are inadequate for this purpose because of their failure to accurately resolve the spatial distribution of urban 
emissions, especially from point sources, at the city scale. To address this challenge, we developed a city-scale 
gridded CO2 emission inventory mode that spatially disaggregated sectorial CO2 emissions of a city to a high-
resolution grid. We compiled a series of sector-specific, high-resolution proxies for spatial disaggregation by 
integrating multiple open data, including remote sensing imagery and urban big data. As a demonstration, we 
applied the methodology to Chengdu, China, for a gridded CO2 emission inventory at a 1 km resolution for 2020. 
This inventory offered a clear and comprehensive depiction of the spatial distribution of CO2 emissions at the city 
scale, identified high-emission areas, and delivered essential scientific support and decision-making tools for 
effective carbon management. For example, compared to global or national inventories (e.g., EDGAR) that use 
population or GDP as proxy data for industrial emissions, this inventory provided more accurate locations of 
industrial point source emissions by including information on 50,000 industrial sources collected from open 
sources. The improved spatial distribution of the gridded inventory allows for more accurate and reliable flux 
inversion, establishing a robust data foundation for the development of CO2 concentration monitoring networks.

Keywords: Carbon dioxide, gridded emission inventory, city scale, city big data, carbon monitoring, spatial 
allocation
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INTRODUCTION
Global carbon dioxide (CO2) emissions have been rising at an alarming rate, driven primarily by fossil fuel 
consumption, industrial activities, and deforestation. These emissions contributed to global warming and 
resulting climate change, which posed a severe threat to ecosystems, economies, and human health 
worldwide[1]. Despite international society’s efforts to curb CO2 emissions, including agreements such as the 
Paris Agreement[2], global emissions continued to increase, with significant contributions from both 
developed and developing nations, emphasizing the need for immediate and sustained reductions in global 
CO2 emissions to mitigate the worst impacts of climate change[3,4]. In response, many countries were 
implementing ambitious policies and initiatives, such as transitioning to renewable energy sources, 
enhancing energy efficiency, promoting electric vehicles[5], and investing in carbon capture and storage 
technologies[6]. These measures are critical to meeting global climate targets and slowing the pace of climate 
change.

In this global context, China pledged in 2020 to strive for carbon peaking by 2030 and achieve carbon 
neutrality by 2060 in response to the escalating global warming crisis and the imperative to mitigate CO2 
emissions[7,8]. This commitment reflects China's active engagement in addressing climate change and 
underscores its dedication to sustainable development and environmental protection. As the world’s largest 
CO2 emitter, driven by rapid urbanization and industrialization, China recognizes the critical importance of 
developing city-specific emission reduction policies[9]. In alignment with this goal, the Ministry of Ecology 
and Environment of the People’s Republic of China launched the “Pilot Project for Carbon Monitoring and 
Assessment” in September 2021. This project aimed to implement pilot projects focusing on carbon 
monitoring and assessment in target cities and key industries to enhance the collaborative monitoring 
capability of pollution and carbon reduction. Chengdu, one of the 16 pilot cities, would concentrate on 
high-resolution and high-precision CO2 monitoring and assessment, establishing a comprehensive CO2 
concentration monitoring network.

Recognizing the central role of cities in achieving these ambitious goals, China’s carbon emission mitigation 
initiatives have focused on city areas, which were crucial participants in the realization of CO2 emissions 
control objectives[10-12]. As primary hubs for human activities, cities concentrate substantial population, 
exhibit high economic density, and display elevated energy consumption intensity, thereby emerging as a 
significant source of anthropogenic CO2 emissions[13]. From a global perspective, according to statistical 
analyses, Wei et al. (2021) stated that among the 167 cities or metropolitan areas across 53 countries, the top 
25 cities alone contributed to more than half of the global emissions[14]. Another survey from the 
International Energy Agency (IEA) estimated that city areas accounted for 71% of global energy 
consumption CO2 emissions[15]. In China, where rapid urbanization continued to drive population 
migration to cities, 40% of city residents consumed 75% of the total energy[16], leading to city environmental 
degradation, particularly in the thermal environment, due to increased fuel usage, material consumption, 
housing demand, and uncontrolled land use expansion[17-20]. Owing to their substantial energy consumption 
driven by construction, production, and economic growth, cities have become critical arenas for 
implementing emission-reduction strategies and are central to the global search for climate change 
mitigation solutions[21-24].

To establish city-scale carbon monitoring networks that can effectively guide regional CO2 emission 
reduction, CO2 emission flux inversion is essential. This inversion process not only helps identify specific 
emission sources but also provides key data for policymakers to implement effective emission reduction 
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strategies at the city scale. CO2 emission flux inversion relies on gridded emission inventories as prior 
information. These inventories provide the spatial resolution required to relate emissions to atmospheric 
concentrations using atmospheric transport models[9,25]. Large errors in the spatial distribution and sectoral 
categorization of these prior inventories would cause significant biases in the posterior estimates, which can 
further mislead the interpretation of the posterior results. Therefore, a gridded emission inventory that 
represents our best knowledge of the spatial distribution is required for successfully deriving city-scale 
carbon emissions from a carbon monitoring network.

The Emission Database for Global Atmospheric Research (EDGAR) global emission inventory is often used 
as prior information due to its unique comprehensive global inventory, detailed spatial information at a fine 
resolution of 0.1° × 0.1°, and extensive data on greenhouse gas (GHG) emissions from energy production, 
industrial processes, waste disposal, and biomass burning since 1970[26-28]. These high-resolution data are 
important for accurately representing the spatial distribution of emissions in global atmospheric models and 
inversion studies[29]. However, several studies have demonstrated that EDGAR inventory, due to its biases in 
spatial information and emission estimates, could introduce substantial errors into posterior results when 
used as prior information. Hu et al. (2022) highlighted that the accuracy of power plant locations in the 
prior information has a substantial impact on the estimated city CO2 emissions flux in the study on CO2 
emissions in Nanchang, Jiangxi Province, China[30]. Maasakkers et al. (2019) discussed the impact of using 
EDGAR v4.3.2 inventory as prior emission inventories on inversion results of methane emissions using 
Greenhouse gases observing satellite (GOSAT) data[31]. Their study highlighted the discrepancies between 
prior inventory results, particularly noting the overestimation of methane emissions in certain regions, 
especially in China (coal emissions) and in the Middle East (oil and gas emissions)[31]. Lyon et al. (2015) 
demonstrated that the methane emission inventory constructed in that study for the Barnett Shale region 
exhibited significantly higher accuracy and detail compared to the EDGAR inventory[32]. Further, the low 
resolution of such inventories failed to capture the intricate pattern of CO2 emissions in city areas, leading 
to significant uncertainties in spatial distribution at the city scale[33,34]. Large-scale inventories, such as 
EDGAR inventory, typically use national emission factors and activity data. However, they often lack 
essential spatial information and rely instead on proxy data, such as GDP or population data, to represent 
emission distribution. This approach could result in significant discrepancies in capturing the actual spatial 
variability of emissions within cities. Compared to large-scale, low-resolution inventories, previous studies 
about high-resolution emission inventories tailored for city-scale or region-scale also had shortcomings. 
High spatial resolution is a key factor influencing the accuracy of emission inversion results[35]. Utilizing 
high-resolution proxy data for the direct spatial allocation of emissions is a common practice for the 
compilation of gridded emission inventories. However, most existing studies on gridded emission 
inventories have not comprehensively compiled emissions across all sectors, often focusing on key sectors 
such as industrial point sources and transportation sources[36-38] for GHG or air pollutant emissions. 
Additionally, several studies have relied on relatively homogeneous proxy data, primarily including 
nighttime light data, population distribution, or GDP distribution[39,40]. This limitation has hindered the use 
of the most appropriate proxy data for spatial allocation for each sector, thereby increasing the uncertainty 
of gridded emission inventories.

To address the shortcomings of existing inventories, this study focused on the development of a 
comprehensive, multi-sector gridded CO2 emission inventory for Chengdu at a 1 km resolution based on 
multiple open data sources. By integrating diverse proxy data with spatial allocation algorithms, this 
research offered a more refined description of spatial distribution characteristics of city CO2 emissions and 
provided a robust data foundation for city-scale carbon flux inversions. Moreover, this study contributed to 
the broader discourse on carbon management by highlighting the importance of high-resolution emission 
inventories in supporting local and regional climate policies.
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MATERIAL AND METHODS
Study area
Chengdu, the capital of Sichuan Province in southwestern China [Figure 1], is strategically located in the 
fertile Chengdu Plain, surrounded by mountains. With a population of over 20 million, it ranks among 
China's largest and most vibrant cities. While renowned for its advanced high-tech industries, Chengdu also 
hosts some high-emission sectors, such as cement manufacturing. Its extensive road network enhances 
regional connectivity and logistics but also contributes to significant traffic-related carbon emissions.

Data sources and data collection
As the foundation of this research, the data collection and screening process was particularly indispensable. 
To ensure the smooth progress of subsequent research, data collection was divided into two parts: tabular 
CO2 emission inventory and spatial proxy data. Additionally, only publicly available data were collected to 
facilitate the future dissemination and application of this methodology. Figure 2 illustrates the datasets 
required for this study, along with the corresponding spatial proxy data used for the spatial allocation of 
emission quantities across various sectors.

The tabular CO2 emission inventory was sourced from the “China City Carbon Dioxide Emission Dataset 
(CCCED)”[41], which provides CO2 emissions from various sectors, including agriculture, services, industry, 
residential, and transportation. We selected appropriate spatial proxy data that match the characteristics of 
each sector for emission allocation. Detailed corresponding proxy data of each sector are listed in Table 1. 
Due to the lack of a distinct classification of industrial energy and industrial processing, the emissions for 
individual industry sectors could not be represented accurately, resulting in significant uncertainty in point 
source emissions. Consequently, it was necessary to reclassify the emission sectors. Detailed emission data 
processing and reclassification can be found in Supplementary Material Section 1. After reclassification, CO2 
emissions by each sector area are shown in Figure 3, where dashed circular arcs represent point source 
emissions, and solid circular arcs indicate non-point sources. According to CCCED, the total CO2 emissions 
of Chengdu in 2020 were 4.277 million tons. The transportation sector was the largest contributor, with 
emissions reaching 15.47 million tons, representing 36.2% of the total emissions. Due to the electrification 
transition of China’s railways transportation, emissions could be considered negligible. Air transportation 
emissions were estimated based on aviation fuel consumption; however, this method could not account for 
the fuel consumption for flights within Chengdu’s jurisdiction. Therefore, this study did not analyze air 
transportation emissions. The second and third largest emission sources were the industrial energy and 
industrial processing sectors, with emissions of 11.82 and 8.22 million tons, respectively, accounting for 
27.6% and 19.2% of the total emissions.

The selection of proxy data was influenced by the ease of data acquisition, the correlation between the proxy 
data and the emission sources, and the accuracy of the proxy data. The proxy data for point source 
emissions mainly included latitude and longitude coordinates and emission scale of emitting enterprises 
and service points of interest (POI). For non-point source emissions, the data included population 
distribution, land cover, and road networks.

As the proxy data of point sources, the location information of the enterprises and service POI were 
obtained from the API interface of the online map platform. Industrial point sources, as the major emission 
sources, included a total of 49,350 industrial POIs from the online map platform. These data contained 
three key attributes: name, type, and geographic coordinates. Subsequently, the registration information for 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202409/cf4019-SupplementaryMaterials.pdf


Page 5 of Wang et al. Carbon Footprints 2024;3:14 https://dx.doi.org/10.20517/cf.2024.19 19

Table 1. CO2 emission source classification and the proxy data for spatial allocation

CO2 emission source
Category Type

Emission type Proxy data

Industrial energyIndustry

Industrial processing

Service -

Point sources Latitude and longitude coordinates of emitting enterprise and service POI, 
enterprise size, etc.

Residential - Population distribution data

Agriculture - Land cover data

Road transportion Traffic network and rated traffic volume at all road levelsTransportation

Waterborne 
transportion

Non-point 
sources

Water distribution and ship routes

Figure 1. Geographical location of Chengdu city as a study area in China.

Figure 2. Correspondence between emission sectors and proxy data.
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Figure 3. Reclassified CO2 emissions by sectors, including 6 categories and 17 types.

these POIs was retrieved from TianYanCha[42], an enterprise information query platform. The detailed 
retrieval process is shown in Supplementary Material Section 2. A total of 5,335 emission point sources from 
relevant enterprises were obtained by screening the business scope of the enterprises.

The proxy data required for the spatial allocation of non-point source emissions [Table 2] encompassed 
population counts, nighttime light data, road networks, road traffic volume, waterways, ship tracking 
intelligence, and land cover. Population counts were downloaded from WorldPop Hub[43] with a spatial 
resolution of 100 m. Nighttime light data were obtained from VIIRS Nighttime Light[44]. The road networks 
and waterways obtained from OpenStreetMap (OSM)[45] were used to calculate “road density” and 
“waterways density”. Road traffic volume, obtained according to standards[46,47], was applied to calculate 
traffic density within each grid. Waterways supplemented with ship tracking intelligence[48] could identify 
the shipping routes accurately. Land cover data utilized for the spatial allocation of agricultural emissions 
were sourced from NASA MODIS production[49]. The detai led proxy data are shown in 
Supplementary Material Section 3.

Spatial allocation
The spatial allocation of CO2 was based on the ArcGIS platform. Firstly, grids with a spatial resolution of 
1 km were established over the study area. This resolution was selected to balance detail and computational 
efficiency, providing sufficient spatial accuracy to describe the heterogeneity in emissions while remaining 
manageable in terms of computational load. Observations from satellite imagery further supported this 
choice, confirming that the top 500 point sources, which account for 89.59% of total emissions, 
predominantly occupied areas smaller than 1 km2, with only a few extremely high-emission sources 
exceeding this size. Then, the data extraction function of ArcGIS was used to extract proxy data including 
population, road network, latitude and longitude of emission enterprises. Subsequently, the data statistics 
and management functions of ArcGIS were applied to allocate the emission from several sectors to the 
corresponding target grids in the following ways. By implementing these detailed procedures, we ensured a 
precise and systematic allocation of CO2 across the study area, enhancing the accuracy and reliability of the 
grided emission inventory.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202409/cf4019-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202409/cf4019-SupplementaryMaterials.pdf
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Table 2. The proxy data and related data used in this study and their sources.

Data Name Data source Description

Population counts chn_ppp_2020 WorldPop Hub[43] GeoTIFF, 100 m

Nighttime light data VNL_v2_npp_2020 VIIRS Nighttime Light[44] GeoTIFF, 15 arc second (~500 m at the Equator)

Road networks osm_roads OpenStreetMap[45] Shapefile

Road traffic volume - Code for Design of Urban Road Engineering[46] 
Technical Standard of Highway Engineering[47]

Average daily traffic for roads at all levels

Waterways osm_waterways OpenStreetMap[45] Shapefile

Ship tracking intelligence - MarineTraffic[48] Global ship real-time position information

Land cover MCD12Q1.A2020 NASA MODIS production[49] Hierarchical data format 4 file, 500 m

(1) Spatial allocation of point source emissions

For point source emissions, the spatial allocation process involved several key steps, as shown in Figure 4A. 
Latitude and longitude information was directly used to pinpoint the location of the emission source and 
allocate the emissions to the corresponding target grids. However, during the spatial allocation process, 
challenges arose with several large industrial facilities that occupy extensive areas, which made it difficult to 
accurately allocate specific emission points. Therefore, further processing was required for such emissions 
from large-scale and broad-footprint factories. To address this, the top 500 point sources mentioned above 
were manually screened to ensure accurate location identification for high-emission sources.

Given that most large enterprises had multiple emission sources, it was complex to determine the exact 
location of each emission source. Therefore, it was assumed that emissions were uniformly distributed 
within the factory area. Based on this assumption, for factories spanning multiple grids, the process began 
with identifying point source locations on the map using latitude and longitude coordinates, followed by 
delineating enterprise boundaries with satellite imagery, as shown in Step 1 in Figure 4A. Then, spatial data 
overlay analysis was used to disaggregate the enterprise across the corresponding grids, determining the 
location and quantity of grids in which the enterprise was located. Finally, emissions were evenly allocated 
across these intersecting grids, as shown in Step 2 in Figure 4A. If there were multiple point sources within a 
single grid, their emissions would be summed up. This method effectively solved the problem of spatial 
allocation posed by multiple point sources in large enterprises, ensuring the accurate distribution of 
emissions to target grids.

(2) Spatial allocation of non-point source emissions

Non-point source emissions were allocated using spatial proxy data, including population distribution, road 
traffic density, and agricultural land distribution as weight factors. To ensure effective spatial allocation of 
these emissions, the proxy data needed to be preprocessed.

For instance, this study focused on preprocessing population distribution data, which served as a proxy for 
resident emissions. The WorldPop population data was utilized initially; however, it displayed noticeable 
inconsistencies, particularly in city centers, where the data showed jagged distribution patterns that did not 
accurately reflect the actual population distribution. To address this issue, nighttime light data, which could 
partially reflect population distribution, was employed as a correction variable. The preprocessing involved 
setting the population data as the dependent variable and nighttime light data as the independent variable. 
A random forest model was then applied to fit these variables and develop an appropriate model for 
correction. The random forest model yielded a coefficient of determination (R2) of 0.8665, indicating a 
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Figure 4. The spatial allocation methods of point source (A) and non-point source (B) CO2 emission.

strong correlation between the population distribution and nighttime light data. Using this model, the 
population distribution data were corrected and refined to more accurately represent resident emissions. 
Further detailed preprocessing of non-point source emissions for various sectors is provided in 
Supplementary Material Section 4.

These proxy data were used to proportionally allocate emissions to the target grids by assigning emission 
values based on the relative densities indicated by each proxy. The spatial allocation method for non-point 
sources is illustrated in Figure 4B. For instance, areas with higher population density, road traffic density, or 
agricultural activity were allocated higher emission values compared to areas with lower densities. This 
approach ensured that emissions were distributed in a manner that reflected the underlying spatial 
characteristics of each proxy data type. Consequently, the emissions were accurately apportioned across the 
grid cells, aligning with the distribution patterns of the proxy data and providing a more precise 
representation of emissions in the target grids.

Proxy data uncertainty analysis
The construction of gridded CO2 emission inventory involved an estimation process based on proxy data, 
and it was, therefore, key to analyzing the proxy data uncertainty. The uncertainty typically stemmed from 
spatial uncertainty, insufficient representativeness, or lack of proxy data[50]. The characterization of the 
proxy data uncertainty in gridded inventories focused on two aspects, i.e., the proxy data uncertainty of 
point source emissions and non-point source emissions. In this study, it was assumed that these two types 
of uncertainty were independent of each other and could be aggregated by the error transfer algorithm to 
summarize the overall proxy data uncertainty. This study conducted uncertainty estimation and analysis for 
the four highest-emission sectors, including two point source sectors, industrial energy and industrial 
processing, and two non-point source sectors, transportation and residents.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202409/cf4019-SupplementaryMaterials.pdf
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For point source emissions, the proxy data uncertainty could be set to 0 because of the manual geographic 
identification of high-emission point source emissions one by one in this study. The proxy data uncertainty 
of non-point source emissions was mainly concentrated in residential emissions and transportation 
emissions. The proxy data uncertainty of transportation emissions was determined by the drift value of 
traffic volume, which was set to ±5% of road traffic volume. For the latter, we estimated by the grid drift 
method[51]. The target grid was moved by 10% of the grid length in the direction of south, north, east, and 
west, resulting in four drifted grids. Subsequently, we calculated the weighted sum by applying a ratio of 
90% of the target grid’s population and 10% of the adjacent grid’s population in each drifted grid. This 
process yielded the weighted population data for the four drifted girds, from which the standard deviation 
of population data was computed as the proxy data uncertainty for the target grid.

After separately calculating the proxy data uncertainties of point and non-point sources, the uncertainties of 
the above emissions were aggregated by using the error transfer algorithm, resulting in the proxy data 
uncertainty of inventory.

RESULTS
Gridded CO2 emission inventory and results analysis
The spatial allocation results of the CO2 emission inventory for 2020 in Chengdu, namely the high-
resolution emission inventory of Chengdu (HEI-CD), are shown in Figure 5A. This figure illustrates the 
spatial distribution of emission intensity within the study area. Different colored grids represent varying 
levels of emission intensity, measured in tons per square kilometer per year (t·km2·yr-1). Red areas indicate 
the highest emission intensity, while blue areas indicate the lowest.

In the study area, three high-emission areas are identified [Figure 5B]: the city center, the northwest corner, 
and the eastern part of the study area. The combined emissions from these three high-emission areas total 
16,112 kt, accounting for 42.1% of the total emissions of Chengdu. Region 1, which represents emission 
intensity in the city center, includes five districts: Qingyang District, Wuhou District, Jinniu District, 
Chenghua District, and Jinjiang District. The total emissions amount to 4,177 kt. This region has a dense 
population, a well-developed road network, and numerous service facilities, with emissions primarily from 
transportation and residents. Region 2, located in the northwest corner of the city, mainly includes 
Dujiangyan City and Pengzhou. City. The emissions for this region amount to 8,164 kt, accounting for 
approximately 21.3% of the total emissions. This area contains a large number of chemical enterprises and 
several building materials enterprises, with cement manufacturing plants being the primary source of CO2 
emissions. The cement manufacturing process requires the combustion of large amounts of coal to calcine 
limestone. Coal combustion produces significant amounts of CO2, and the thermal decomposition of 
limestone also generates substantial CO2 emissions. The cement industry has become a major global source 
of CO2 emissions, with fuel combustion accounting for 35% and the calcination process for approximately 
52%[52]. Lafarge Cement Co., Ltd., the largest single emission source in Chengdu, is located in Dujiangyan 
City, with annual emissions reaching up to 3,771 kt. Region 3 is situated on the eastern side of the city 
center, within the territory of Jintang County. The total emissions for this region amount to 3,827 kt, 
accounting for 10%. The only thermal power plant, Jintang Power Generation Co., Ltd., is located in this 
region, contributing 3,565 kt of emissions, all originating from fossil fuel combustion.

Chengdu currently comprises 20 district- and county-level administrative units, along with 371 township- 
and subdistrict-level administrative units. The emission intensity and quantity for each district, county, 
county-level city, township, town, and subdistrict are shown in Figure 5C, with the emission quantity of 
town-level administrative units represented by a color bar and the emission intensity of district-level units 
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Figure 5. Gridded CO2 emission inventory compilation results and analysis: (A) Gridded CO2 emission for Chengdu in 2020; (B) Spatial 
distribution and local enlargement of high-emission areas; (C) Emission quantity of town-level administrative units and emission 
intensity of district-level administrative units.

depicted by histograms. The top five districts with the highest emission intensities are located in the city 
center: Qingyang District, Wuhou District, Jinniu District, Chenghua District, and Jinjiang District. Their 
emission intensities, ranked from highest to lowest, all exceed 5 kt·km-2·yr-1. Specifically, Qingyang District 
has the highest intensity at 10.82 kt·km-2·yr-1, followed by Wuhou District at 10.16 kt·km-2·yr-1. In contrast, 
the three districts with the lowest emission intensities are Pujiang County (0.76 kt·km-2·yr-1), Qionglai City 
(0.52 kt·km-2·yr-1), and Jianyang City (0.45 kt·km-2·yr-1), all recording values below 1 kt·km2·yr-1. From the 
spatial distribution perspective, it is obvious that emission intensity increases closer to the city center and 
decreases with far distance. Furthermore, emissions in the southern region are notably lower compared to 
those in the northern region. Based on the emission quantity analysis, the emission levels in the five city 
central districts are significantly lower than those in the surrounding areas. In particular, Jinjiang District 
has the lowest emissions among the 20 districts, totaling only 406.5 kt·yr-1. Conversely, Dujiangyan City 
exhibits the highest emissions at 4,832.6 kt·yr-1, followed by Jintang County with emissions totaling 
4,281.3 kt·yr-1. Importantly, these two areas are also where the aforementioned high-emission point sources 
are located. This demonstrates that the high-emission point source distribution, particularly cement 
manufacturing plants and thermal power plants, determines whether an administrative area is characterized 
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by high emissions. Factors such as population and road network density influence emission intensity, 
particularly in the city center. Despite lower total emissions, the city center exhibits higher emission 
intensity, indicating a larger number of emissions per unit area.

Spatial distribution characteristics of CO2 emissions by sector
The spatial distribution characteristics of emissions from various sectors are presented in Figure 6. 
Figure 6A-C depict the spatial distribution of point source emissions for industrial energy emissions, 
industrial processing emissions, and service emissions, respectively. Due to the high density of point sources 
in industrial energy and service emissions, these were subjected to gridding. The industrial energy emissions 
comprise a total of 5,335 point source emissions. High-emission point sources are primarily concentrated in 
the areas surrounding the city center. Shuangliu District has the highest number of point sources, totaling 
646, followed by Pidu District with 598 and the adjacent Xindu District with 538. Analysis of industrial 
energy emissions by district reveals that Jintang County, which hosts Jintang Power Generation Co., Ltd., 
has the highest emissions at 3,727 kt·yr-1. In contrast, Shuangliu District, despite having the largest number 
of point sources, has emissions of only 627 kt·yr-1, ranking seventh. This indicates that the key determinant 
of regional industrial energy emissions is not the number of emitting enterprises but the industrial structure 
of this region. In contrast to industrial energy emissions, the number of point sources for industrial 
processing emissions is significantly lower. There are five point sources from the cement production 
process, two from the limestone production process, and four from the steel production process. The 
cement production process is the largest contributor to emissions of this type. The top three emitters are 
Lafarge Cement Co., Ltd. with 3,276 kt·yr-1, Guihua Plant of Lanfeng Cement Co., Ltd. with 2,294 kt, and 
dan Xianming Xiling Cement Co., Ltd with 1,261 kt·yr-1. The emissions from the limestone production 
process are similar to those from the cement production process. However, due to the lower production 
volume of limestone compared to cement, the emissions are significantly lower than that of cement. Service 
emissions are more widely distributed, primarily concentrated in the city center and the central areas of the 
various subordinate cities and counties. The total number of service point sources is approximately 66,000.

The spatial distribution characteristics of non-point source emissions, which are indicated in Figure 6D, 
Figure 4E and F, mainly arise from residents, agriculture, and transportation emissions. The spatial 
distribution of residents’ emissions [Figure 6D] is entirely dependent on the population distribution. High-
emission areas are concentrated in the city center, with the highest emission intensity reaching 
8,655 kt·km-2·yr-1. Agriculture emissions [Figure 6E] are predominantly found in the plain areas on the 
outskirts of the urban, mainly on the southern and eastern sides. The western region, affected by the 
Qinghai-Tibet Plateau, is mostly mountainous terrain and unsuitable for agricultural cultivation, thus 
resulting in virtually no agriculture emissions. Transportation emissions [Figure 6F], as a major non-point 
source, are widely distributed, with the highest emission intensity reaching 13,964 kt·km-2·yr-1. They are 
influenced by road network density and traffic volume. Highways have high traffic volume but lower road 
network density, resulting in lower emission intensity compared to secondary roads with higher road 
network density in the city center. The distribution characteristics conform to the pattern of high emission 
intensity in the city center, radiating outward.

Estimation and analysis of proxy data uncertainty
Due to the lack of uncertainty estimation in the tabular inventory provided by CCCED, this study only 
addressed uncertainties resulting from proxy data deficiencies. The primary focus focused on the 
uncertainties associated with four major emission sectors: industrial energy, industrial processing, 
transportation, and residents. For the first two sectors, the locations of high-emission point sources were 
manually verified, ensuring the location information was absolutely accurate and resulting in the 
uncertainty of 0 for industrial energy and industrial processing proxy data.
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Figure 6. Spatial allocation of emissions by each sector: (A) Industrial energy emission; (B) Industrial processing emission; (C) Service 
emission; (D) Residents emission; (E) Agriculture emission; (F) Transportation emission.

The uncertainties for the two main non-point source emissions were estimated using the method described 
in previous sections. They were aggregated to obtain absolute [Figure 7A] and relative [Figure 7B] proxy 
data uncertainties. The analysis revealed a strong correlation between the spatial distribution of absolute 
uncertainty and emissions, with higher uncertainty in high-emission areas and lower uncertainties in low-
emission areas. The highest uncertainty recorded was 712 t. The relative uncertainty distribution indicated 
lower values in the city center and higher values in suburban areas. Overall, the uncertainty across the study 
area was relatively low and fell within acceptable limits.

Comparison results and analysis of gridded emission inventories
The processed HEI-CD model was compared and analyzed against the widely used EDGAR inventory, 
which was commonly applied in city-scale CO2 emission inversion. Due to the substantial variance in spatial 
resolution between the two inventories, with the HEI-CD model operating at a resolution of 1 km and 
EDGAR inventory at 0.1° (approximately 9.6 km at Chengdu’s latitude), direct overlay comparison was 
unfeasible. To facilitate comparison, the HEI-CD model would be upscaled and resampled onto grids with a 
resolution of 0.1°, aligning with the spatial resolution of the EDGAR inventory. This process would yield a 
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Figure 7. Spatial distribution characteristics of absolute (A) and relative (B) Uncertainties in proxy data.

HEI-CD model with a 0.1° resolution [Figure 8A], enabling a valid comparison with the EDGAR inventory 
[Figure 8B]. To compare the two inventories, the difference is shown in Figure 8C, where red areas indicate 
higher emissions in the HEI-CD model and blue areas indicate higher emissions in the EDGAR inventory.

The spatial distribution of the HEI-CD model was broadly similar to that of the EDGAR inventory. Both 
inventories exhibited a spatial distribution pattern where emissions were generally higher in the city center 
than in the surrounding areas. However, the surrounding areas showed several high-emission point sources. 
Both accurately characterized the high-emission characteristics of the Lafarge Cement Co., Ltd. However, 
the HEI-CD model slightly underestimated emissions in this area compared to the EDGAR inventory, likely 
due to the more comprehensive point source information in the HEI-CD model, resulting in a lower 
allocation of emissions to this region.

In the western side of the study area, the HEI-CD model identified two high-emission areas, indicating that 
the EDGAR inventory lacked accurate point source data for this region, thus failing to accurately represent 
emissions here. Conversely, on the southern side, the EDGAR inventory overestimated emissions. Visual 
inspection did not identify potential high-emission sources, suggesting a likely overestimation by EDGAR 
in this area. In the area where the Jintang Power Generation Co., Ltd. was located, EDGAR inventory 
incorrectly represented the location of the power plant, resulting in discrepancies in high-emission areas. In 
the city center, the EDGAR inventory also slightly overestimated emissions compared to the HEI-CD 
model.

A histogram [Figure 8D] was generated through quantitative statistical analysis of the differences between 
the HEI-CD model and the EDGAR inventory. The histogram revealed that the majority of the emission 
differences were centered around the median value of -7.04 kt, with the highest count reaching 120. This 
suggested that most points exhibited a small negative emission difference, indicating that the emission 
intensities were closely aligned in most areas. It also implied that the HEI-CD model generally estimated 
slightly lower emissions than the EDGAR inventory.

DISCUSSION
Interpretation of study results
This study successfully developed a high-resolution, city-scale gridded CO2 emission inventory for 
Chengdu, providing a detailed spatial distribution of emissions across various sectors. The analysis 
identified three primary high-emission areas: the densely populated city center, the industrially active 
northwest region, and the energy-intensive eastern area. Together, these regions accounted for over 40% of 
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Figure 8. Comparison and results between HEI-CD model and EDGAR inventory: (A) Regirded HEI-CD model with 0.1° spatial 
resolution; (B) EDGAR inventory for study area; (C) Difference HEI-CD model and EDGAR inventory; (D) Frequency histogram of 
difference for each grid.

total CO2 emissions, with significant contributions from industrial processing, transportation and power 
production.

The finding highlighted the importance of incorporating high resolution in emission inventories, 
particularly in city environments where emission sources are concentrated and diverse. By integrating 
multiple open data sources and employing a spatial allocation algorithm, this study offered an accurate and 
reliable prior inventory for CO2 emission flux inversion in urban carbon monitoring, laying the groundwork 
for effective policy interventions.

Policy implications and urban carbon reduction strategies
This study offered a valuable tool for policymakers aiming to address urban carbon emissions at a detailed 
level. The high-resolution gridded CO2 emission inventory for Chengdu reveals specific high-emission 
zones, particularly in industrial and densely populated city areas. Such spatial precision allowed for more 
targeted policy interventions, which were essential for effective carbon reduction in rapidly urbanized cities 
including Chengdu. Unlike traditional broad-based policies that lack spatial specificity, the results suggested 
that local management, such as enhancing energy efficiency in industrial sectors and improving urban 
transport infrastructure, could significantly contribute to the carbon reduction goals. It was necessary for 
Chengdu and similar cities to adopt a multifaceted approach to carbon reduction, considering both 
regulatory measures and incentives for the adoption of green technologies. This approach included stricter 
emissions standards, subsidies for clean energy technologies, and investments in public transportation 
infrastructure. Moreover, this study underscored the importance of continuously monitoring and updating 
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emission inventories to keep pace with the dynamic changes in city development and industrial activities, 
while also ensuring that future developments align with the long-term sustainability objectives.

Comparison with EDGAR inventory
The comparison between the HEI-CD model and the widely used EDGAR inventory revealed both the 
strengths and limitations of each approach. The EDGAR inventory, with its global coverage and long-term 
data records, was invaluable for large-scale atmospheric modeling and international climate assessments, 
making it particularly suitable for CO2 emission flux inversions at global or national levels. However, its 
relatively low spatial resolution (0.1° × 0.1°) limited the applicability for city-scale or high-resolution 
inversions, where detailed spatial information was crucial for accurately mapping emissions and informing 
policy decisions.

In contrast, the HEI-CD model offered a much higher spatial resolution (1 km × 1 km), which was better 
suited for small-scale inversions, especially at the city scale. The improved accuracy in point source 
information, as provided by the HEI-CD model, significantly enhanced the quality of inversion by more 
precisely capturing the spatial variability of emissions. This high resolution enabled more accurate 
identification of emission hotspots and a more detailed understanding of the spatial distribution of 
emissions within the city, ultimately leading to reliable results in atmospheric modeling.

However, the higher resolution in the HEI-CD model requires detailed and often harder-to-obtain data, and 
the reliance on proxy data can introduce uncertainties due to variations in data choice, quality and 
availability. Nevertheless, for urban carbon monitoring and management, the HEI-CD model represents a 
substantial improvement over broader-scale inventories like EDGAR, offering a tailored approach to local 
emission reduction efforts.

Improvement relative to previous studies
This study achieved high-resolution gridded CO2 emission inventories by integrating multiple open data 
sources for spatial proxies. Unlike previous studies that relied on relatively homogeneous proxy data (e.g., 
nighttime lights[40] or NDVI[53]), this study used diverse, sector-specific, high-resolution proxy data, 
including population distribution, road networks, and industrial point sources, to describe city CO2 
emissions with greater detail and accuracy.

Compared to global-scale inventories like EDGAR which was suited for broader scales, this inventory at the 
city scale provided a detailed view of city emissions, improving hotspot identification, enhancing the ability 
of CO2 emission flux inversion, and supporting better-informed policy decisions. Similarly, previous 
studies, like the Vulcan inventory by Gurney et al. (2009)[54] and vehicle emission inventory by Cai et al. 
(2020)[55] and Sun et al. (2021)[36], either focus on specific sectors or lack the comprehensive integration of 
sector-specific data that our study achieves. The sector-specific spatial allocation strategy employed here 
reduces uncertainties by tailoring methods to the unique characteristics of each sector, providing a more 
accurate foundation for CO2 monitoring and mitigation efforts.

Study limitations and future directions
Despite the advancements presented in this study, several limitations warrant discussion. First, the reliance 
on proxy data for non-point sources, such as residents and agriculture emissions, introduces uncertainty 
into the inventory. While efforts have been made to minimize uncertainties through careful data selection 
and processing, the inherent variability in proxy data quality remains challenging. Future research should 
explore the integration of high-resolution and representative data sources, such as smart city infrastructure 
data or detailed land-use records based on remote sensing technologies, to further refine the accuracy of 
emission inventories.
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Another limitation was the exclusion of certain low-emission sources, such as aviation and some industries, 
due to data availability constraints. This omission means that the inventory may not fully capture all city 
emissions, potentially leading to an underestimation of the total carbon footprint. To address this, future 
studies should aim to include a broader range of emission sources by leveraging new data collection 
methods or collaborating with industry stakeholders to gain access to proprietary data.

Looking forward, there is a clear need for the development of validating systems and automated methods 
for updating the inventory. The dynamic nature of city environments, characterized by ongoing industrial 
activities, transportation network changes, and population shifts, necessitates the ability to frequently 
update emission inventories. Automation could involve the use of machine learning algorithms to 
continuously refine spatial allocation models or the deployment of sensor networks to provide real-time 
emission data.

In addition to automation, the validation systems of the emission inventory should become a focal point in 
future work. This involves using the compiled gridded emission inventory as a prior inventory in 
atmospheric transport models to simulate CO2 concentrations. By combining simulated concentrations with 
observed concentrations, a posterior inventory that better reflects actual emission distributions can be 
inversed through a Bayesian inversion framework. Such comparisons will allow for the identification of 
biases and discrepancies in the prior inventory, leading to accurate and optimized emission estimates. This 
continuous loop of validation and optimization is critical for maintaining the relevance and accuracy of 
inventories, ensuring that it effectively supports urban carbon reduction policies.

These advancements, both in automation and validation, will be crucial in enhancing the utility of the 
inventory in cities like Chengdu toward their carbon neutrality goals. As city environments continue to 
evolve, the ability to dynamically update and validate emission inventories will be essential for effective 
carbon management.

CONCLUSION
This study developed a detailed gridded CO2 emission inventory for Chengdu, which is tailored for city-
scale CO2 emission flux inversions. By integrating multiple open data sources and employing a spatial 
allocation algorithm, the inventory provided a detailed and accurate spatial description of CO2 emissions 
across various sectors. The analysis identified key high-emission areas, particularly in the densely populated 
city center, the industrially active northwest region, and the energy-intensive eastern area, collectively 
accounting for a significant portion of total emissions.

Compared to the EDGAR inventory, the HEI-CD model offered greater spatial resolution and precise point 
source information, which was better suited for urban carbon monitoring and policy-making at the city 
scale. The inventory will not only support the accurate inversion of CO2 emission flux but also serve as a 
crucial tool for guiding effective carbon reduction strategies.

Future work should focus on further refining the inventory through the introduction of additional data 
sources, enhancing validation systems, and ensuring adaptability to the dynamic nature of city 
environments. This will solidify its role in supporting Chengdu and similar cities in their efforts toward 
carbon neutrality.
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