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Abstract
Aim: Circulating maternal MicroRNA (miRNA) is a promising source of biomarkers for antenatal diagnostics. 
NanoString nCounter is a popular global screening tool due to its simplicity and ease of use, but there is a lack of 
standardisation in analysis methods. We examined the effect of user-defined variables upon reported changes in 
maternal blood miRNA during pregnancy.

Methods: Total RNA was prepared from the maternal blood of pregnant and control rats. miRNA expression was 
profiled using Nanostring nCounter. Raw count data were processed using nSolver using different combinations of 
normalisation and background correction methods as well as various background thresholds. A panel of 14 
candidates in which changes were supported by multiple analysis workflows was selected for validation by RT-
qPCR. We then reverse-engineered the nSolver analysis to gain further insight.

Results: Thirty-one putative differentially expressed miRNAs were identified by nSolver. However, each analysis 
workflow produced a different set of reported biomarkers and none of them was common to all analysis methods. 
Four miRNAs with known roles in pregnancy (miR-183, miR-196c, miR-431, miR-450a) were validated. No single 
nSolver analysis workflow could successfully identify all four validated changes. Reverse engineering revealed 
errors in nSolver data processing which compound the inherent problems associated with background correction 

https://creativecommons.org/licenses/by/4.0/
https://www.oaepublish.com/evcna
https://orcid.org/0000-0002-7213-0547
https://orcid.org/0000-0002-3680-9384
https://orcid.org/0000-0002-1030-3721
https://dx.doi.org/10.20517/evcna.2024.38
https://dx.doi.org/10.20517/evcna.2024.38
http://crossmark.crossref.org/dialog/?doi=10.20517/evcna.2024.38&domain=pdf


Page 572                              Adamova et al. Extracell Vesicles Circ Nucleic Acids 2024;5:571-96 https://dx.doi.org/10.20517/ evcna.2024.38

and normalisation.

Conclusion: Our results suggest that user-defined variables greatly influence the output of the assay. This 
highlights the need for standardised nSolver data analysis methods and detailed reporting of these methods. We 
suggest that investigators in the future should not rely on a single analysis method to identify changes and should 
always validate screening results.

Keywords: Micro RNA, expression profiling, blood biomarker, pregnancy

INTRODUCTION
As many as 6% of births globally are affected by congenital disease[1]. The most prevalent of these is 
congenital heart disease (CHD), which affects 0.8% of newborns (in the UK)[2,3] and accounts for 10% of all 
infant deaths[4]. Antenatal detection improves clinical outcomes for these patients[5], yet current ultrasound-
based screening programmes are limited by imprecision[5] and poor detection rates[6,7].

MicroRNAs (miRNAs) are a family of small, non-coding RNAs that function in the post-transcriptional 
regulation of gene expression[8]. miRNA can be transported in the blood as a component of endocrine 
signalling mechanisms and is delivered to recipient cells either by trafficking within the cargo of 
extracellular vesicles or by protein carrier mechanisms[9]. Changes in levels of expression of miRNA 
circulating within maternal blood have been reported in a range of congenital diseases including CHD[10,11], 
Down’s Syndrome[12-14], foetal alcohol spectrum disorders[15], preeclampsia[16], small-for-gestational-age[17] 
and pre-term birth[18]. Extracellular vesicles have been shown to be transferred between foetal and maternal 
circulations across the placenta in rodent models[19-21], while clinical studies have demonstrated the presence 
of placental vesicle biomarkers in maternal blood[22] and changes in diseases such as preeclampsia[23]. Thus, 
circulating miRNA offers much promise as a biomarker for the development of non-invasive diagnostic 
tests for congenital disease. To achieve this potential, robust screening methods must be developed to 
overcome unresolved issues regarding reproducibility and accuracy[24-26].

There are currently three methods by which to perform a global assay of miRNA expression: amplification-
based methods, sequencing-based methods, and hybridisation-based methods[27]. Amplification-based 
methods, such as RT-qPCR, have the highest sensitivity[27] but are expensive and labour-intensive, making 
them generally inappropriate for global screening. Furthermore, amplification itself can introduce a source 
of error. Sequencing-based methods (RNA-seq)[28] provide an unbiased global screening tool, but this 
method is limited by the requirement for extensive bioinformatics processing and analysis of the raw data, 
which requires specialist training. Hybridisation-based assays such as Nanostring nCounter have the 
advantage of offering a simple, easy-to-use system for screening a relatively large but limited subset of 
miRNA (420 for rat, 827 for human)[29,30]. The amplification-free preparation, straightforward count-based 
output, and the ability to process data without the need for specialist bioinformatics training using 
proprietary software make the system attractive as a global screening tool for biomarker discovery.

A number of studies have used Nanostring nCounter to profile circulating maternal miRNA expression, but 
the field suffers from a lack of consistency in data processing methodology[14,17,31-40]. Although the process is 
automated by Nanostring’s proprietary nSolver software, a number of user-defined variables must be set. 
These include the method used to adjust for background correction, the stringency of this background 
correction and the method used to normalise samples. Commonly, researchers do not justify their choice of 
a given analysis method, while in some cases, details of the analysis methods are not provided in enough 
detail to replicate. As we demonstrate below, these variables greatly influence the output of the system.
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Analysis of circulating miRNA is complicated by two factors. Firstly, all assays produce a low level of noise, 
yet the low expression levels of many miRNAs in blood present a problem in distinguishing signals from 
noise. If the threshold is too high, then the real signal is lost, generating false negatives, while a threshold 
that is too low results in false positives due to genuine noise. nSolver offers two different methods by which 
background correction can be performed: background thresholding and background subtraction[41]. 
Background thresholding is the process of adjusting all counts that are below the calculated background 
level to bring them up to this threshold. Background subtraction is the process of reducing all counts by the 
background level. This latter is a useful technique when the estimates of counted transcripts above 
background noise are a key finding. However, background subtraction can result in overestimation of fold 
changes in low-expressing targets[42].

A second problem is a lack of established endogenous normalisers expressed at a stable level. In tissue 
samples, other species of small RNA with housekeeping functions such as mRNA splicing factors may be 
used, but these are not present in blood. This presents a unique challenge in the analysis of blood miRNA, 
necessitating either the use of an exogenous spike-in, identifying such stable endogenous normalisers within 
the test sample itself or performing a global averaging across all expressed miRNA. NanoString 
recommends using one of two methods for normalisation: these essentially involve normalising to a global 
average of all targets expressed above threshold in all samples (referred to as the total RNA method) or 
alternatively by identifying a small cohort of the most stably expressed targets to use as normalisers 
(referred to as the NormFinder method)[43].

In order to explore this problem, we designed a study in which we examined the ability of nCounter to 
detect changes in circulating miRNA between pregnant and control conditions in blood from rats. We 
identified key user-defined variables within the nSolver data processing workflow, which differed between 
published protocols, and examined the effect of each on the detected changes. Following validation of four 
changed miRNA by RT-qPCR, we then reverse-engineered the system to look in detail at the data 
processing steps performed by nSolver. Our results suggest that a single analysis workflow, as has been used 
in most published studies to date, is insufficient to identify all changes. We propose a method in which 
results from a number of analysis workflows are integrated.

METHODS
Blood collection from pregnant and control rats
The protocol for animal work described in this study was reviewed and approved by the Liverpool John 
Moores University Animal Welfare and Ethics Review Board in January 2020 (Ref: ID_PA/2023-3). Twelve 
Wistar female rats were divided into a control and a pregnant group of equal size (n = 6). The oestrous cycle 
of the pregnant group was monitored using daily vaginal smears. 100 µL of PBS containing the vaginal cell 
suspension was air-dried on a glass slide, stained with 0.1% Toluidine Blue and examined under a light 
microscope to determine the relative proportions of cell types. Proestrus was identified by high proportions 
of nucleated epithelial cells. Females in proestrus were paired overnight with a male. Pregnancy was 
confirmed by the presence of a mucosal plug in the cage and the presence of sperm in the vaginal smear. 
Pregnant rats were sacrificed at midday 14 days post mating (day E14.5) by Schedule 1 methods (CO2 
inhalation followed by cervical dislocation to ensure death). Blood samples were taken by post-mortem 
cardiac puncture performed immediately after confirmation of death using a 22-gauge needle inserted 5 
mm from the centre of the thorax, angled towards the animal’s chin and pushed 5-10 mm deep to penetrate 
the heart. Whole blood was withdrawn into 6 mL Ethylenediaminetetraacetic acid-treated tubes (Vacutest 
Kima, Arzergrande, Italy). Pregnancy was confirmed following blood collection by examination of the 
uterus. Blood was taken from age-matched non-pregnant controls by the same method.
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Preparation of platelet-free plasma
Whole rat blood was immediately centrifuged at 3,000 rpm (1,811 rcf) for 30 min at room temperature in an 
Eppendorf Centrifuge 5,810 R to pellet cells. The top layer (plasma) was then transferred into RNase-free 1.5 
mL microcentrifuge tubes and centrifuged at 13,000 rpm (14,549 rcf) for 30 min at 4 °C in a benchtop 
Eppendorf Centrifuge 5,418 to remove platelets. The supernatant was centrifuged a second time at 13,000 
rpm (14,549 rcf) for 5 min at 4 °C to ensure complete platelet removal and the supernatant was then 
transferred to a fresh tube. Plasma was stored at -80 °C.

Total RNA preparation
RNA was prepared using the method recommended by Nanostring[43]. A total of 1.5 mL of plasma was used. 
Total RNA was prepared using the Plasma/Serum RNA Purification Midi Kit (Norgen Biotek, Ontario, 
Canada) following the manufacturer’s protocol. 5 µL of a 200 pM solution of an exogenous spike-in miRNA 
control from rice (osa-miR-414) was added to each sample at the start of the protocol. Following 
purification, the volume of the sample was reduced to 20 µL using an Amicon Ultra-0.5 mL centrifugal filter 
(3 kDa cutoff) (Merck, Cork, Ireland). RNA samples were then stored at -80 °C.

Haemolysis control
Haemolysis was monitored prior to nCounter profiling by performing RT-qPCR (below) for the 
erythrocyte-specific miRNA miR-451a and the stably expressed miRNA, miR-23a. Non-haemolysed blood 
should have a 451/23 ratio < 5.

Nanostring nCounter miRNA profiling
Five µL of the total RNA preparation was used for nCounter profiling. Ligation of miRtags, hybridisation to 
probes, washing, immobilisation to solid substrate, scanning and data collection were performed by 
Liverpool University Centre for Genomic Medicine following the manufacturer’s recommendations. The 
Rat v1.5 miRNA codeset (Nanostring Technologies, Seattle, USA) was used for this analysis. Raw data have 
been uploaded to the Gene Expression Omnibus (GEO accession number: GSE267016).

nSolver miRNA data analysis
Raw count data obtained from nCounter were processed to obtain a list of potential changed miRNA using 
nSolver Analysis v4.0 (Nanostring Technologies, Seattle, USA). As described in the Results section, the 
analysis was performed using various combinations of normalisation method, background correction, and 
background levels.

Identification of control normalisers within the dataset
To identify a set of miRNA to be used for global normalisation with the “total miRNA” method, we used 
nSolver software. No positive control normalisation was performed and the background was set to the mean 
plus 1 standard deviation (mean + 1 SD) of the negative control probes. This value was subtracted from the 
raw count value. Any probe with expression above this threshold in all 12 rats was included in the “total 
miRNA” pool. To identify miRNA to use as normalisers for the NormFinder method, we used the 
NormFinder Excel plug-in[44] to identify the five most stably expressed (lowest variance) from the total 
miRNA pool. The two most stable miRNAs identified by Normfinder were used as normalisers for the 
validation of RT-qPCR.

Multivariate analysis
Principal component analysis (PCA) was performed on the 14 analysis workflows using the R Shiny 
opensource package (https://mikies21.shinyapps.io/shinybeetlenmr/) with the aim to compare the global 
plasma miRNA expression of the pregnant rats to that of the non-pregnant controls.

https://mikies21.shinyapps.io/shinybeetlenmr/
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RT-qPCR
Reverse transcription and SYBR green-based quantitative PCR were performed using the miRcury Locked 
nucleic acid (LNA) miRNA PCR Assay system (Qiagen, Manchester, UK). A UniSp6 spike-in control (0.075 
fmoles) was added prior to reverse transcription. 0.5 µL (equivalent to 40 µL plasma) of the 20 µL total RNA 
preparation was reverse-transcribed in a volume of 10 µL. During reverse transcription, a poly(A) tail is 
ligated to the miRNA and cDNA is synthesized using a Poly(T) primer with a 3’ degenerate anchor and a 5’ 
universal tag. The resulting cDNA was diluted 1:30 in water and 3 µL used for each qPCR reaction. This 
cDNA template was then amplified using two miRNA-specific primers [Table 1] which contain locked 
nucleic acid providing specificity down to 1 nucleotide. Quality control steps were performed on a Rotor-
Gene Q real-time cycler (Qiagen). Thresholds were set in the exponential phase of the amplification plot at 
0.01 fluorescence (ΔRn) for all miRNA targets. Technical validation of candidate plasma miRNAs was 
performed on an Applied Biosystems 7,500 machine using ROX as a passive reference dye. Thresholds for 
each miRNA used to determine the quantification cycle (Cq) values were automatically set in the 
exponential phase of the amplification plot and baselines were manually positioned at approximately 2 
cycles prior to the first visible amplification. The raw Cq values were normalised to two stably expressed 
endogenous normalisers identified using the NormFinder algorithm (miR-20a, miR-27b).

In silico reanalysis of nSolver data
To further understand NanoString nCounter Technology, a recalculation was performed using Microsoft 
Excel. Following the information provided in the NanoString tech notes[42], recalculation of background 
correction, positive control normalisation, and content normalisation was performed. It was possible to 
obtain nSolver outputs for intermediate steps in the analysis, and in this way, it was possible to carefully 
match these recalculated values to the nSolver outputs. This enabled the correct order of steps performed by 
the nCounter analysis software to be identified. Once the correct order was identified, the different 
workflows were recalculated for the final 3 validated miRNA targets.

Statistics
Nanostring nCounter compares the final calculated expression values between groups using Welch’s t-test. 
To mimic nSolver, a Welch’s t-test was also used for the in-silico recalculation analysis. For RT-qPCR 
validation of candidate changes, data were tested for normality using the Shapiro-Wilk test. For normally 
distributed data, an unpaired Student’s t-test was used to compare two groups, while for non-parametric 
results, a Mann-Whitney U test was used. In all tests, a P-value of < 0.05 was considered to be statistically 
significant.

RESULTS
Experimental design to evaluate Nanostring nCounter analysis
The Nanostring nCounter is a hybridisation-based assay in which a panel of fluorescently-labelled probes is 
used to assay miRNA expression [Figure 1A and B]. The codeset consists of test probes for 420 endogenous 
rat miRNA (827 in the human assay), together with a number of control probes [Figure 1C], the function of 
which will be described below. The raw output of a nCounter assay consists of counts for each probe. These 
raw counts are processed using nSolver software with user-selected variables that vary according to the 
study [Figure 1D].

We tested the workflow of NanoString miRNA analysis using a rat pregnancy scenario. Rats were chosen as 
our animal model of choice due to their short gestation time and the ability to obtain sufficient blood for 
analysis. We used a 6 × 6 experimental design in which 6 plasma samples from pregnant rats were compared 
to 6 controls. This number was chosen because 12 samples can be run together on a single nCounter 
cartridge, reducing technical variance.
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Table 1. Primers used in miRcury RT-qPCR assays

Function miRNA miRbase accession Qiagen assay number miRNA Sequence (5’-3’)

osa-miR-414 MIMAT0001330 ZP00007870 UCAUCCUCAUCAUCAUCGUCC Spike-ins

UniSp6 n/a Proprietary

hsa-miR-191-5P MIMAT0000440 ZP00000368 CAACGGAAUCCCAAAAGCAGCUG 

hsa-miR-103-3p MIMAT0000101 YP00204063 AGCAGCAUUGUACAGGGCUAUGA

RNA Purification QC

hsa-miR-23a-3p MIMAT0000078 ZP00000478 AUCACAUUGCCAGGGAUUUCC

Haemolysis QC hsa-miR-451a MI0001729 ZP00001151 AAACCGUUACCAUUACUGAGUU 

hsa-miR-20a-5p MIMAT0000075 YP00204292 UAAAGUGCUUAUAGUGCAGGUAGNormalisers

hsa-miR-27b-3p MIMAT0000419 YP00205915 UUCACAGUGGCUAAGUUCUGC

hsa-let-7b-5p MIMAT0000063 YP00204750 UGAGGUAGUAGGUUGUGUGGUU

hsa-let-7d-5p MIMAT0000065 YP00204124 AGAGGUAGUAGGUUGCAUAGUU

hsa-miR-125a-5p MIMAT0000443 YP00204339 UCCCUGAGACCCUUUAACCUGUGA

hsa-miR-132-3p MIMAT0000838 YP00206035 UAACAGUCUACAGCCAUGGUCG

hsa-miR-133a-3p MIMAT0000427 YP00204788 UUUGGUCCCCUUCAACCAGCUG

hsa-miR-183-5p MIMAT0000261 YP00206030 UAUGGCACUGGUAGAAUUCACU

hsa-miR-423-3p MIMAT0005313 YP00204488 AGCUCGGUCUGAGGCCCCUCAGU

hsa-miR-431-5p MIMAT0001625 YP00204737 UGUCUUGCAGGCCGUCAUGCA

mmu-miR-872-5p MIMAT0005282 YP00205481 AAGGUUACUUGUUAGUUCAGG

rno-miR-1224 MIMAT0012827 Custom GUGAGGACUGGGGAGGUGGAG

rno-miR-196c-5p MIMAT0005303 Custom UAGGUAGUUUCGUGUUGUUGGG

rno-miR-3563-5p 
(rno-mir-299b)

MIMAT0017833 Custom CGGUUUACCGUCCCACAUAC

rno-miR-3573-5p MIMAT0017856 Custom UGAGGGGCAGUGAUAGAAAGGA

Test probes

rno-miR-450a MIMAT0001547 Custom UUUUGCGAUGUGUUCCUAAUGU

Note that in some cases, the human (hsa) or mouse (mmu) miRNA has an identical sequence to that in the rat (rno), and therefore, these primers 
may be used.

In the sample preparation phase [Figure 1D upper box], timed rat matings were performed, maternal blood 
was collected, and total RNA was prepared from platelet-free plasma. Pre-hybridisation quality control was 
performed by RT-qPCR for RNA preparation and to verify that the level of haemolysis was below an 
acceptable threshold.

Data processing following hybridisation to the nCounter is a key step [Figure 1D middle box]. A number of 
post-hybridisation quality control metrics were examined to verify successful hybridisation. A set of 
endogenous normalisers were identified within the dataset using two methods - the total RNA and 
Normfinder methods. Raw count data were then processed using nSolver. As described below, this process 
involves a number of user-defined steps including background correction (by either thresholding or 
subtraction) at a user-defined background level. Two normalisation steps are performed: the first is a 
technical normalisation to control for different hybridisation efficiencies within the assay, while the second 
content normalisation utilises the total RNA and Normfinder endogenous normalisers. Following 
processing, we performed some post-hoc quality control assays for haemolysis and platelet contamination. 
We then performed both multivariate analysis to look at global trends in the data and univariate analysis to 
identify specific miRNA differentially expressed between conditions.

In the validation phase [Figure 1D], we first validated candidate changed miRNAs by RT-qPCR before lastly 
performing an in silico analysis of validated miRNA to understand precisely how these changes were 
identified by the software.
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Figure 1. Overview of the experiment. miRNA: MicroRNA; A and B: principle of the Nanostring nCounter assay; A: miRNAs (green) are 
too short for standard probe attachment. To overcome this, a temporary bridging oligo (purple) is used to extend the length of each 
miRNA through the attachment of a DNA-based miRtag (orange) by splinted ligation; B: during the hybridisation step, the extended 
miRNA: miRtag is hybridised to a biotin-tagged capture probe (yellow) and a reporter probe (blue) carrying a unique fluorescent 
barcode tag (6 coloured circles). After washing, the target/probe complexes are immobilised to a solid substrate using the biotin tag 
and data recorded from the barcode as individual counts; C: set-up of the rat v1.5 miRNA codeset, which contains probes for 420 rat 
miRNAs as well as positive, negative and ligation controls, exogenous spike-in controls and housekeeping mRNA probes; D: flowchart to 
illustrate the workflow described in this paper. Figure made with Biorender.

Rat mating and RNA preparation
A pregnant group of 6 rats of various ages was compared to an age-matched control group of 6 rats [Table 2 
and Figure 1 upper box]. Each cohort consisted of 4 younger rats (103-112 days old) and two older rats 
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Table 2. Animals used in this study

Pregnant group Control group

Rat code Age at blood collection (days) Weight on day 0.5  
(g)

Weight gain by day 14.5 (%) Rat code Age at blood collection (days)

R11 103 261 34 R5 239

R14 104 267 21 R8 269

R9 269 263 25 R20 110

R12 373 361 15 R22 111

R18 110 259 18 R23 112

R19 110 265 25 R24 112

Mean 193 279 23 Mean 159

SD 122 40 7 SD 74

(239-373 days).

Timed matings were set up [Figure 2] and post-mortem blood was taken at embryonic day E14.5 from the 
pregnant group and matched controls and total RNA was prepared from 1.5mL platelet-free plasma using 
the method recommended by NanoString for assaying circulating miRNA in plasma[43].

Pre-hybridisation quality control
It is not possible to quantify plasma RNA using a standard spectrophotometer because it is below the level 
of detection. Therefore, to validate successful RNA preparation prior to screening [Figure 1D upper box], 
quality control was performed by RT-qPCR using a panel of probes. The chosen probes included primers 
for two exogenous spike-ins (osa-miR-414, added to the RNA preparations and UniSP6, added during 
reverse transcription) and 3 primers for endogenous miRNAs previously reported to be strongly expressed 
in plasma (miR-191-5p, miR-103-3p, miR-23a-3p)[46,47].

All miRNAs were detected in all 12 samples, demonstrating successful RNA preparation and successful 
reverse transcription [Figure 3]. As expected, the reverse transcription spike-in UniSp6 gave the lowest Cq 
values [Figure 3A], indicating the highest expression levels, while the osa-miR-414 spike-in gave the highest 
Cq values [Figure 3B]. The two spike-ins also had the lowest variance within each group and this variance 
was largely consistent between groups [Figure 3F]. The three endogenous miRNAs tested had the highest 
variance, and in all cases, the variance was higher in the pregnant than in the control group [Figure 3C-F].

Red blood cells are known to carry specific miRNAs, and therefore, any haemolysis during sample 
preparation can alter miRNA expression in samples, masking any real difference between groups[47-49]. To 
monitor the level of haemolysis of the 12 samples, we used a miRNA-based method developed by Blondal et 
al. at Exiqon[47], which has been shown to be more sensitive than haemoglobin-based analysis methods with 
a sensitivity down to 0.001% haemolysis[50]. Blondal’s method compares the relative expression of the 
erythrocyte-specific miRNA miR-451a to a stable reference miRNA, miR-23a-3p [Figure 3C], with a ratio 
greater than 5 fold, indicating likely haemolysis. All samples showed a ratio well below this threshold 
[Figure 4].

nCounter assay
Following RNA preparation and quality control, samples were assayed using the Nanostring nCounter with 
a Rat v1.5 miRNA codeset [Figure 1A-C and Figure 1D upper box].
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Figure 2. Rat oestrus cycle and mating monitoring. ACE: Anucleated cornified epithelial cell; NEC: nucleated epithelial cell; L: leukocyte; 
A-E: images show rat vaginal smears stained with toluidine blue to label DNA; F: graphical representation of the 4-5 day long rat oestrus 
cycle representing the proportions of cell types present in each phase. F is adapted from[45].

Figure 3. RNA preparation quality control - detection of spike in controls and stably expressed plasma miRNA. Thresholds were set in 
the exponential phase of amplification (0.01 ΔRn) and the same threshold was used for each miRNA. miRNA: MicroRNA; A-E: graphs 
show the quantification cycle (Cq) of the indicated miRNA for each of the 12 rats; F: table to show the percentage coefficient of variance 
of Cq value for each probe within each group. Single technical replicate per rat due to limited sample availability, 6 biological replicates 
per group as show.
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Figure 4. Haemolysis analysis quality control. The graph shows the ratio of miR-23-3p expression divided by miR-451a expression 
calculated from the difference in Cq values. Cq: Quantification cycle. The threshold indicates a ratio of 5, which is considered to indicate 
haemolysis. Single technical replicate per rat due to limited sample availability, 6 biological replicates per group as shown. Thus, sample 
preparation [Figure 1D upper box] was successful and all samples passed quality control.

Post-hybridisation quality control
The first step in the data processing phase [Figure 1D middle box] was the post-hybridisation quality 
control. This was performed using readouts from the control probes included in the codeset [Figure 1C]. 
These metrics indicated no technical issues with nCounter hybridisation [Supplementary Table 1]. Imaging 
quality control  is a measure of the proportion of fields of view for which imaging was successful over those 
attempted. The recommended minimum threshold is 75%; all of our data obtained a value of 99%. Binding 
density is a measure of image saturation that can interfere with probe detection. All our samples were 
within the range of 0.14-0.17, at the lower end of the acceptable saturation range of 0.1-2.25. Positive control 
linearity quality control (QC) is a regression number calculated from the count data of the positive control 
probes, which have a known linear concentration range from 128 fM to 0.125 fM. Our samples have a 
regression value of 0.98-0.99, above the 0.95 threshold. The limit of detection QC compares the count of the 
positive control probe Pos_F present at 0.5 fM to the count for the negative control probes. This count 
should be higher than the mean plus two standard deviations (mean + 2 SD) of the negative control probes [
Supplementary Table 2] and this was found to be the case for all samples. Similarly, the ligation QC checks 
that the count for synthetic spike-ins is above the negative control counts.

The assay contains probes for 5 exogenous spike-in miRNA controls [Figure 1C]. We used one of the five in 
our assay (osa-miR-414), adding this during RNA preparation. osa-miR-414 gave an average count of 20 
across all samples in unprocessed data (data not shown). This was expressed above mean + 2 SD of the 
negative control probes in only 5 of the 12 rats, while in 4 rats, the count was below the negative control 
mean. Of note, the mean count data for another exogenous miRNA probe (ath-miR159a, for which we did 
not add a spike-in) gave the same mean count. Thus, we concluded that the osa-miR-414 spike-in was 
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below the level of detection and could not be used to monitor RNA preparation variation. We did not use 
this in further analysis.

Effect of background subtraction on probe count
Before performing the main analysis to identify differentially expressed miRNA, we first wanted to 
understand the effect of user-defined data processing options within nSolver software [Figure 1D middle 
box]. To do this, we used the workflow shown in Figure 5A. We examined the probe count data: the 
number of probes giving a detectable signal across the 12 rat samples.

The Rat v1.5 miRNA codeset contains probes for 420 endogenous miRNAs (about half the number on the 
human codeset, in Figure 1C). The majority of probes gave a signal (count ≥ 2) in unprocessed raw count 
data prior to any background correction or normalisation. Only 14 probes failed to give a signal in any 
sample [Figure 5B black line]. Most of the remaining 406 probes could be detected in 8 of the 12 rat 
samples. The number of probes that could be detected in 9 or more rats dropped off, but 284 probes could 
be detected in all 12 rat samples [Figure 5B black line].

In common with any assay, a small percentage of counts for each target in a NanoString codeset will 
represent false positives due to non-specific binding. This can be problematic for the analysis of circulating 
miRNA due to the low expression levels. The background level is determined using 8 negative control 
probes present in the assay designed to recognise engineered RNA sequences that are not found in the 
biological sample [Figure 1C]. The background level set is calculated from the mean count of these negative 
controls. However, the level of stringency used in different published studies varies greatly, from simply 
using the mean value to using the mean and two standard deviations. The balance between false positive 
and false negative target occurrences will depend on this stringency.

We looked at the effect of applying a background subtraction on the number of probes that could be 
detected. When a background level set at the mean of the negative control probes [Supplementary Table 2] 
was applied to our dataset, the number of detected probes was substantially reduced [Figure 5B red line]. 
Only 229 probes could be detected in 1 or more rats, and this number dropped until only 63 probes gave a 
count of 2 or more for all 12 rat samples. Applying a more stringent background threshold further reduced 
the number of probes detected. With background at mean + 1 SD, only 36 probes were detected in all 12 
rats [Figure 5B green line], with only 31 at mean + 2 SD [Figure 5B blue line].

Thus, applying a background subtraction substantially reduces the number of probes in the analysis, 
potentially leading to false negatives in the output.

Effect of positive control normalisation on probe count
We next looked at the effect of normalising the data after background subtraction [Figure 1D and 
Figure 5A, C and D].

nSolver incorporates two normalisation steps to reduce sample variability. Positive control normalisation is 
used to control for any technical variation between samples. Samples are normalised using the readouts 
from 6 positive control probes spiked into the reaction mix at different concentrations [Figure 1C and 
Supplementary Table 3]. These count data are used to calculate a normalisation conversion factor, which we 
found varied from 0.78 to 1.19, and this is applied to the count data for all probes within a sample.
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Figure 5. Effect of background correction and normalisation on probe count. SD: Standard deviation; A: flowchart to illustrate the order 
of data processing in this analysis. Raw count data were first subjected to background subtraction at one of three thresholds (mean, 
mean + 1 SD, mean + 2SD), they were then normalised using positive control probes before undergoing content normalisation by either 
the total RNA or Normfinder method; B: effect of background subtraction, the graph shows the number of probes with a count above 2 
that were detected in the 12 rat samples. The unprocessed raw count data are shown at the top (black line), followed by processed data 
using 3 background thresholds (red, blue, green); C: in our analysis, a panel of 36 probes was used as normalisers for the total RNA 
method, a subset of 5 of the most stable of these was used for Normfinder normalisation; D: effect of normalisation, data plotted as 
shown in c. The unprocessed raw count data are shown at the top (black line). All processed data use a background threshold of mean + 
2 SD (blue). Green line shows the effect of applying positive control normalisation to the background subtracted data, while gold and 
orange lines show the effect upon these data of subsequent content normalisation by total RNA and Normfinder methods, respectively.

Applying this positive control normalisation to the dataset (background: mean + 2 SD) increased the 
number of probes above the threshold [Figure 5D green line]. All 420 probes were detectable in 5 or more 
rats, a number higher than for the raw count data (406). There was then a dramatic drop-off, with only 152 
probes being detectable in 6 or more rats, followed by a more gradual decline in the number detected in 
more rats [Figure 5D green line].

Identification of endogenous normalisers
The second normalisation step is based on endogenous expression and is known as content normalisation. 
NanoString recommends using one of two methods for content normalisation: these essentially involve 
normalising to a global average of all targets expressed above the threshold in all samples (referred to as the 
total RNA method) or alternatively identifying a small group of stably expressed targets within the cohort to 
use as normalisers (referred to as the NormFinder method)[43,44].

To identify a set of probes to use as normalisers for the total RNA method, we applied a background 
subtraction of mean + 1 SD of negative control probes without positive control normalisation (the method 
recommended by Nanostring[43]). Thirty-six probes were expressed above this threshold in all 12 rats [
Figure 5C and Supplementary Table 4]. Nanostring recommends removing any probe expressed below 50, 
but we did not do this because this would have reduced the cohort to only 20 probes. The most highly 
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expressed normaliser, rno-miR-122, had an average expression of 1,786 counts, while the lowest, rno-miR-
448 had an average expression of just 6 counts. We noted that this cohort included the red blood cell-
specific miR-451, as well as miR-23a, but did not include either miR-191-5p or miR-103-3p [compare 
Supplementary Table 4  to Figure 2].

To identify a set of probes to use as normalisers for the Normfinder method, we used Normfinder to 
calculate the stability values of these 36 total RNA probes and selected the 5 most stable [Figure 5C and 
Supplementary Table 5].

Effect of content normalisation on probe count
We calculated that the total RNA normalisation conversion factor ranged from 0.49 to 1.63 for each rat, 
with the control cohort exhibiting greater stability and the larger conversion factors being applied to the 
pregnant group. Removing miR-451 (possible contaminant from red blood cells) from the cohort altered 
the conversion factor by an average of 0.02 and a maximum of 0.05 (data not shown). We calculated that the 
Normfinder normalisation conversion factor ranged from 0.14 to 3.2, and again the larger conversion 
factors were applied to the pregnant group.

Applying content normalisation as well as positive control normalisation to the dataset [Figure 5A] had the 
effect of further increasing the number of probes above the threshold [Figure 5D]. Using total RNA 
normalisation resulted in all 420 probes being detected in 8 rats and 53 probes above the threshold in all 12 
rats. Using Normfinder, all probes were detected in 10 or more rats and 86 in all [Figure 5D].

This analysis suggests that some probes below the level of detectability have been brought above the 
threshold by the normalisation factor conversion, potentially leading to false positives in the dataset.

nSolver data processing
Having looked at the effect of background correction and normalisation on probe counts, we next 
developed workflows to process our raw count data using nSolver. We developed a total of 14 different 
analysis workflows [Figure 6 and Table 3]. Each workflow uses a different combination of user-defined 
variables within the nSolver. These are: the method of background correction (none, subtraction or 
thresholding) [Figure 6 green boxes], the stringency of the background level set [(mean of negative control 
probes, mean + 1 SD or mean + 2 SD) Figure 6 blue boxes], and the method of content normalisation (total 
RNA or Normfinder) [Figure 6 purple boxes].

The outputs from each of these 14 workflows were analysed using both multivariate (to visualise general 
trends in the data) and univariate methods (to identify differentially expressed miRNA) [Figure 1D middle 
box].

Multivariate analysis
We first looked at general trends in the data by performing an unsupervised PCA. Large datasets are often 
difficult to interpret and PCA plots are a common tool used to reduce the size of such datasets, increasing 
interpretability while minimizing information loss without discarding any data points[51]. A PCA plot shows 
clusters of samples based on their similarity, projecting them into a 2D space to visualize any general trends 
in the data without knowing any a priori assumptions.

The data revealed clustering and low separation of the two groups, indicating a lack of global differences 
[Figure 7]. In all cases, the variance of the pregnant group was larger than that of the control. Amongst the 
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Table 3. nSolver data processing workflows used in this analysis

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Background correction N N S S S S S S T T T T T T

Stringency N N 2 1 M 2 1 M 2 1 M 2 1 M

Normalisation NF TR NF NF NF TR TR TR NF NF NF TR TR TR

14 different nSolver analysis workflows were used in this study to process raw count data numbered 1-14. Background Correction, N: none; S: 
subtraction; T: thresholding. Stringency, N: not applicable; 2: mean + 2 standard deviations; 1: mean + 1 standard deviation; M: mean. 
Normalisation, NF: normfinder; TR: total RNA method.

Figure 6. nSolver data processing workflows used in this analysis. Visual representation of the 14 different nSolver analysis workflows 
used in this study to process raw count data. These differed in the method of background correction (green), background level 
stringencies (light blue), and normalisation methods (purple), as indicated.

14 analysis workflows, two clear patterns emerged corresponding to the Normfinder and total RNA content 
normalisation options. Normfinder processed data clustered more closely together and the two groups 
overlapped. In contrast, the total RNA processed data showed a broader spread and the control group was 
entirely contained within the larger pregnant group.

Identification of differentially expressed miRNA by nSolver data analysis
We then used the output from all 14 workflows [Figure 6 and Table 3] in order to generate a list of putative 
differentially expressed miRNA [Figure 1D middle box]. The results were interesting. The 14 analysis 
workflows generated a total of 31 changed miRNAs [Table 4]. 10 miRNAs were enriched in pregnant rats, 
while 21 were higher in controls. No single miRNA was identified by all workflows and the most commonly 
identified target, miR-1224, was identified in only 7 of the 14 workflows. Furthermore, nearly half of the 
changes (14 miRNAs) were identified by only a single method. There was no clear pattern to the results: 
neither NormFinder (21 hits) nor the total miRNA (21 hits) method was clearly better than the other; the 
same was true for background thresholding (19 hits), subtraction (14 hits), or no background (8 hits). 
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Figure 7. Multivariate analysis of nSolver processed data. Graphs show unsupervised PCA for each of the 14 nSolver workflows. A spot is 
shown for each rat and an ellipse shows the variation within each group. Green shows the control group and orange the pregnant. PCA: 
Principal component analysis.

Furthermore, changing the background stringency level often resulted in a different set of targets being 
identified.

Post-hoc analysis of haemoglobin and platelet contamination
To eliminate any possibility that our results could be biased by either red blood cell- or platelet-derived 
miRNA, we re-examined our data [Figure 1D middle].

Pre-hybridisation quality control demonstrated all of our samples are well below the haemolysis threshold 
determined by Blondal [Figure 4]. However, we noted that this analysis is dependent on the use of miR-23a 
as a sample normaliser. This miRNA exhibited the highest coefficient of variance of those tested [Figure 3C 
and F], and is not one of the most stable miRNA identified by Normfinder [Supplementary Table 5]. This 
suggests that miR-23a may not be a suitable endogenous normaliser. Therefore, we examined the expression 
data for miR-451a using our 14 nSolver workflows incorporating the total RNA and Normfinder 
endogenous normalisers. None of these workflows revealed a significant change in miR-451a  [Table 3], 
indicating haemolysis was not a problem and providing confidence in the pre-hybridisation quality control 
data.

Platelets are a second potential source of contamination in blood samples, particularly in serum, as platelets 
are known to release miRNA within extracellular vesicles during clotting. While numerous studies support 
the hypothesis that miR-451a is strongly and specifically expressed in red blood cells[52], there is less 
consensus on specific markers of platelet contamination. Sunderland et al.[53] compared the data reported in 
8 studies to establish the most consistently reported miRNA highly expressed in platelets. They report 
considerable variation between individual studies but report the top 5 as miR-126-3p, miR-191-5p, miR-16-
5p, miR-24-3p, and miR-223-3p. Teruel-Montoya[54] compared miRNA expression levels between platelets 
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Table 4. Putative changed miRNA identified by NanoString global screening

Method

miRNA Freq Enriched in group 1 2 3 4 5 6 7 8 9 10 11 12 13 14

miR-1224 7 Pregnant X X X X X X X

miR-431 6 Control X X X X X X

miR-3563-5p 5 Control X X X X X

miR-3573-5p 4 Control X X X X

miR-132 3 Control X X X

miR-872 3 Pregnant X X X

miR-125a-5p 3 Control X X X

miR-7d 3 Control X X X

miR-183 2 Pregnant X X

miR-7b 2 Control X X

miR-199a-3p 2 Control X X

miR-99a 2 Control X X

miR-450a 2 Pregnant X X

miR-196c 2 Control X X

miR-3580-3p 2 Inconsistent X X

miR-423 2 Pregnant X X

miR-26a 1 Pregnant X

miR-344a 1 Control X

miR-134 1 Pregnant X

miR-339-5p 1 Control X

miR-741-5p 1 Control X

miR-127 1 Control X

miR-19b 1 Pregnant X

miR-147 1 Control X

miR-93 1 Control X

miR-133a 1 Control X

miR-411 1 Control X

miR-3569 1 Control X

miR-301a 1 Control X

miR-350 1 Control X

miR-30a 1 Pregnant X

Each of the 14 nSolver analysis workflows is represented by a column and an X in that column signifies that the indicated miRNA was found to be significantly changed by that workflow. miRNAs are ranked by the 
frequency of occurrence across workflows. miRNA: MicroRNA; NF: normfinder method; TR: total RNA method; 1sd: mean + 1 standard deviation; 2sd: mean + 2 standard deviations.
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and blood cell types, revealing that not all of those identified by Sunderland are specific to platelets. For example, miR-223-3p was shown to be expressed in 
granulocytes. Taken together, these studies point to miR-126-3p being a strongly expressed largely-specific marker of platelets (although it has also been 
reported to be expressed in endothelium lining blood vessels[55]).

We, therefore, examined the expression of miR-126 within our nCounter data. miR-126 was not found to be significantly different between cohorts by any of 
the 14 nSolver workflows [Table 3], indicating no contamination from platelets.

RT-qPCR validation of candidate changes
Technical validation of a subset of candidate miRNAs identified in the above nSolver analysis was performed using RT-qPCR [Figure 1D lower box]. The 
miRNA chosen for validation were the 14 most commonly repeating candidates amongst the 14 analysis workflows. This included all 8 miRNA candidates 
identified by 3 or more workflows, together with a selection of those identified by 2 workflows (miR-183, miR-7b, miR-450a, miR-196c, miR-423) and one of 
the miRNAs identified in only a single workflow (miR-133a), chosen because it appears to be highly expressed. The probe for miR-3563-5p did not produce a 
detectable signal, and therefore, this miRNA was excluded from the analysis.

Although RT-qPCR is commonly used to validate genomics assay results, it should be noted that the results obtained from such an assay are themselves 
influenced by user-defined variables in much the same way as the nSolver analysis described above.

We used a variant of the standard 2-ΔΔCT method[56]. In this method, a threshold is defined during the exponential phase of amplification and the point at which 
the amplification curve for a given probe crosses this threshold is called the quantification cycle (Cq, formerly known as cycle threshold, Ct). The Cq value of 
each test miRNA is compared to that of a reference miRNA to control for differences in the amount of starting material. As noted above, one problem 
encountered when analysing plasma miRNA is the lack of established endogenous normalisers expressed at a stable level. The choice of this reference gene is, 
therefore, one user-defined variable that may influence the output. We chose as our “reference gene” the mean of two miRNAs identified to be the most stable 
within the nSolver raw dataset by NormFinder analysis (the probes for miR-20a/miR-20b-5p and miR-27b) [Supplementary Table 5], a method that has been 
used previously in such assays[17].

The miRcury RT-qPCR kit includes a synthetic spike-in (UniSP6) to control for potential technical variation due to differences in reverse transcription 
efficiency. We looked at the effect of subtracting the UniSP6 Cq value from all probe Cq values prior to subtracting the reference gene Cq from the test probe 
Cq, but found that the resulting ΔCq values were identical to those obtained by simply subtracting the reference Cq from the test probe Cq (data not shown).
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There is disagreement in the literature as to whether statistical analysis should be performed on the ΔCq 
values (which are base 2 logarithmic numbers) or on the log-transformed 2-ΔCq numbers (which are 
linear)[57,58]. We observed that different results could be obtained from these two options; therefore, this 
represents another user-defined variable that may influence the output.

Another variable is the choice of parametric vs. non-parametric statistics. An assumption of a parametric 
test such as a t-test is that the data are normally distributed, and thus, any probes for which data points are 
not normally distributed must be assessed using the non-parametric Mann–Whitney or Wilcoxon test. 
However, these tests are not directly comparable, and within a dataset, there may be a mix of parametric 
and non-parametric distributions for individual probes. We used the Shapiro Wilk test to determine 
whether the data for each probe/group were normally distributed and then selected as appropriate a t-test or 
a Mann–Whitney test.

Finally, another user-defined variable is the level of stringency, determined here by the choice of two-tailed 
or one-tailed statistics.

We began by performing the analysis using the ΔCq values [Figure 8A]. The Shapiro-Wilk test of normality 
indicated that ΔCq values were normally distributed in control rats for all probes. In the case of pregnant 
rats, all except probe miR-196c were normally distributed. Therefore, the data for miR-196c were tested 
using a Mann-Whitney test and the remaining probes were tested using a t-test. The results revealed 4 
significant changes with a P-value below the threshold of 0.05 when a one-tailed test was performed; this 
was reduced to 3 significant changes if a two-tailed test was applied [Table 5 and Figure 8A].

We then analysed the log-transformed 2-ΔCq values. When plotted on a linear rather than a log scale 
[Figure 8B], outliers are further from the mean value, and as a result, fewer probes showed a normal Cq 
distribution. Five probes were analysed using a Mann-Whitney test and the remaining 8 using a t-test. P-
values obtained for all probes using a t-test were higher than those obtained when analysing ΔCq values, 
while P-values for the Mann-Whitney test, which ranks data points rather than looking at the actual values, 
were unchanged [Table 5]. As a result, only 2 probes were found to have P -values below the 0.05 threshold 
when analysed with a two-tailed test, but the same 4 probes were found to be significant when using one-
tailed statistics [Table 5].

Finally, we divided the 2-ΔCq values of the pregnant group by that of the control group to obtain fold change 
values [Table 5 and Figure 8C]. Of the 13 tested miRNAs, 9 (miR-183, miR-1224, miR-450a, miR-423, miR-
7b, miR-7d, miR-133a, miR-125a-5p, miR-132) showed a change in the same direction as that detected by 
the NanoString assay [Figure 8C]. Surprisingly, 4 miRNAs exhibited the opposite effect (miR-196c, miR-
431, miR-872, miR-3573-5p; Fig 8c), and this includes 2 of the validated changes (miR-196c, miR-431). It is 
also noteworthy that one of the validated changes, miR-450a, is one of the cohort of 36 miRNAs used to 
normalise the nSolver data by the total RNA method [Supplementary Table 4].

Thus, the technical validation revealed that only a minority of the putative differentially expressed miRNAs 
identified by nSolver analysis were confirmed.

In silico recalculation analysis of nSolver workflow data processing
The validation analysis presented above did not immediately suggest an optimal nSolver analysis workflow. 
None of the 14 workflows alone was sufficient to identify all 4 validated changes [Figure 8D]. miR-431 was 
identified in a total of 6 workflows, ranking as the second most significantly changed miRNA in our analysis 
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Table 5. Four miRNA changes were validated by RTqPCR  

     
Probe

           
Fold change

      ΔCq values 2-ΔCq values

Two-tailed One-tailed Two-tailed One-tailed

miR-183 8.08 +/- 5.75 t-test, P = 0.0017 t-test, P = 0.0009 t-test, P = 0.0290 t-test, P = 0.0145

miR-196c 13.30 +/- 25.25 MW,
P = 0.0020

MW,  
P = 0.0010

MW, P = 0.0020 MW, P = 0.0010

miR-431 5.01 +/- 4.38 t-test, P = 0.0054 t-test, P = 0.0027 t-test, P = 0.0749 t-test, P = 0.0375

miR-450a 1.77 +/- 0.66 t-test, P = 0.0602 t-test, P = 0.0307 t-test, P = 0.0578 t-test, P = 0.0289

The table shows a summary of statistical analysis of RTqPCR data. miRNA: MicroRNA; Cq: quantification cycle; MW: Mann-Whitney test.

Figure 8. Validation of miRNA expression changes. miRNA: MicroRNA; Cq: quantification cycle; A-C: target validation by miRcury RT-
qPCR. Three technical replicates were performed for each of 6 biological samples per group. The mean value of each biological sample is 
plotted as a circle (blue: control; red: pregnant). Bars show the mean and standard deviation for each group. miRNAs are grouped as 
Increased or Decreased in reference to the change observed in pregnancy relative to controls in the nCounter assay. *P < 0.05 in 2-tailed 
test; **P < 0.005 in 2-tailed test; (*) P < 0.05 in 1-tailed test; NS: not significant; A: ΔCq values are plotted; B: 2-ΔCq values are plotted. 
Inset shows the same data plotted on a different y-axis scale; C: Fold change values are plotted. Mean expression in control groups was 
set to 1 for each probe. Inset shows the same data plotted on a different y-axis scale; D: Table showing the nSolver analysis results for 
the 4 validated changes. Workflows correctly identifying each miRNA are highlighted in yellow and marked with an X.

[Table 4]. However, only three of these 6 workflows successfully identified another of our validated changes. 
miR-183 was also identified by a second workflow unique to this changed miRNA, while neither of the 
workflows that identified miR-450a picked up any of the other validated changes [Figure 8D]

To further understand nSolver data processing steps, a mathematical in silico recalculation was performed [
Figure 1D lower box]. By following the information provided in NanoString tech notes, we manually 
recalculated the effect of each step within the workflows for the 4 validated miRNA changes (miR-450a, 
miR-183, miR-196c and miR-431) and compared these to the results given by nSolver in order to gain 
insights into this “black box” process.
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By obtaining nSolver outputs for intermediate steps in the analysis, we were able to determine the correct 
order of steps performed by nSolver [Figure 9A], enabling us to develop a recalculation formula for each. 
This revealed that in thresholding workflows, normalisation is performed before background correction, but 
in subtraction workflows, these steps are reversed.

We first looked at thresholding workflows [Figure 9A top row]. Supplementary Tables 6 and 7 show our 
recalculations of the normalisation factors for the Normfinder and total RNA methods, respectively. 
Supplementary Tables 8 and 9 show the effect on the raw count data of each step in the thresholding 
workflows for the Normfinder and total RNA methods, respectively. The first step in the thresholding 
analysis workflows was the positive control normalisation of the raw counts, followed by content 
normalisation (either using NormFinder or total miRNA normalisation targets). Once these values were 
obtained, they were compared to the background at each of the 3 thresholds used in our workflows (mean 
of negative controls, mean + 1 SD or mean + 2 SD) and if the value obtained fell below the background 
value for that lane, the value was replaced by the background value as a threshold. Finally, Welch’s t-test was 
used to compare the two groups.

Most of the recalculated values match those reported by nSolver [Supplementary Tables 8 and 9], which 
confirms the accuracy of the identified formula. However, we noted that occasionally, there was a difference 
between the recalculated and nSolver values [Supplementary Tables 8 and 9 values shown in red]. In the 
case of the thresholding plus total expressed RNA workflows, these errors did not affect the final t-test 
result: our results agreed with nSolver that miR-431 and miR-196c were significantly changed using a 
background threshold set to the mean, while other thresholds, as well as all results for miR-450a and miR-
181, were not significant [Supplementary Table 9 and Figure 9B]. However, in the case of the thresholding 
plus NormFinder workflows, these count changes did affect the results. For miR431, nSolver deemed the 
workflow statistically significant when using a threshold of either mean or mean + 1 SD, but the 
recalculation did not, while the same was true for miR-196c when using a threshold of the mean [
Supplementary Table 8 red highlighting and Figure 9B]. This was due to a large change in the final counts 
for two of the pregnant rat samples. The recalculated results for miR450a and miR183 agreed with that of 
nSolver.

We next looked at the subtraction workflows [Figure 9A middle row]. Unlike the thresholding workflows, 
background correction is the first step in the subtraction analysis workflows [Figure 9A]. Supplementary 
Tables 10 and 11 show the effect on the raw count data of each step in the subtraction workflows for the 
Normfinder and total RNA methods, respectively. The first step in the subtraction analysis workflows was 
to subtract the background levels for each lane from the raw counts, followed by positive control 
normalisation and then content normalisation (once again using either NormFinder or total miRNA 
normalisation). Finally, Welch’s t-test was used to compare the two groups.

In these subtraction workflows, we observed many differences in processed count values between the 
recalculated figures and nSolver values [Supplementary Tables 10 and 11 values shown in red]. This did not 
affect the final outcome of the subtraction plus NormFinder workflows [Supplementary Table 10]: our 
results agreed with nSolver that the only significant change was miR-431 when using a background 
threshold set to the mean. However, in the subtraction plus total miRNA workflows [Supplementary Table 
11], there were discrepancies: while the significant result for mir-431 using mean background was again 
replicated (green highlighting), the result for miR450a was not (red highlighting).
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Figure 9. In silico recalculation of nSolver data processing. NF: Normfinder; TR: total RNA method; A: flowcharts to illustrate differences 
in the order of data processing steps within the three workflow subtypes; B: results of recalculations for the 4 validated miRNA changes. 
× indicates a nSolver automated workflow that identified a significant change in the given mRNA. Colour coding indicates the results of 
recalculation. green: recalculation agrees with nSolver; red: recalculation does not agree (nSolver positive, recalculation negative); blue: 
recalculation does not agree (nSolver negative, recalculation positive); yellow: recalculation t-test agrees but errors found in calculation.

Finally, we looked at the background-free adjustment workflows [Figure 9A bottom row]. In these 
workflows, the background levels are ignored and the raw values are directly subjected to positive 
normalisation followed by content normalisation (once again, using either NormFinder or total miRNA 
normalisation) [Figure 9A]. For these workflows, we found no errors in the calculations for miR-183, miR-
450a, and miR-431 and our results matched that of nSolver [Supplementary Tables 12 and 13]. However, we 
did find errors in the calculation for miR-196c, and this resulted in our recalculation finding a significant 
change for this miRNA that was not picked up by nSolver [Supplementary Table 13 blue highlighting and 
Figure 9B].
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DISCUSSION
In this study, we report the utility of the Nanostring nCounter assay for detecting differences in circulating 
miRNA in maternal blood between two conditions. We examined the effect of user-defined variables within 
the nSolver data analysis workflow such as background correction, background threshold, and content 
normalisation [Figures 5 and 6] upon the output. We report that these variables have a substantial influence 
on the output and that each combination produces a different set of reported changes [Table 3]. Our results 
lead us to suggest that investigators in the future should not rely on a single analysis method to identify 
changes.

The four validated differentially expressed miRNAs [Figure 8 and Table 5] have known roles in pregnancy, 
giving us confidence in the final result. miR-183, miR196, and miR-450a are expressed within extracellular 
vesicles released by the placental syncytiotrophoblast and can be detected in the blood of pregnant mice 
(miR-183, miR-450a)[59] or human patients[60]. miR-183 was found to be one of the most enriched miRNAs 
in such vesicles. miR-183 has also been reported in blood-derived extracellular vesicles from pregnant 
cows[61]. miR-183 has been shown to regulate uterine receptivity and enhance embryo implantation in both 
an in vitro Ishikawa endometrium cell model and in an in vivo mouse pregnancy model[62], while the human 
homologue of miR-196c has been shown to influence macrophages[60]. These studies strongly support our 
finding of increased expression of these miRNAs in maternal blood during pregnancy. miR-431 has been 
found to be overexpressed within the placenta of preeclampsia patients[63,64], and it has been suggested to 
inhibit the migration and invasion of trophoblastic cells, which may give rise to preeclampsia[64]. However, 
we are not aware of studies demonstrating its presence in maternal blood and it is noteworthy that our 
results for this miRNA were ambiguous, with nCounter suggesting decreased expression in pregnancy, 
which is the opposite of the RT-qPCR result.

Our analysis demonstrated that user-defined variables significantly impact the output produced by nSolver 
[Table 3 and Figure 8C]. No single analysis workflow was able to correctly identify the 4 validated miRNA 
changes and even the most frequently seen change (miR-1224) occurred in only half of the workflows. 
Furthermore, the validated miRNAs were not those most frequently occurring in the various workflows.

Most published Nanostring studies use only a single analysis method, and often, this choice is not 
explained. NanoString recommends Thresholding as the method of choice for most analytes and 
acknowledges that Subtraction can lead to false positives[42]. It is, therefore, surprising that a number of 
published studies have utilised Subtraction as the sole method in their analysis[33,37,65,66]. Our data indicate 
that Thresholding picked up only one of the four validated changes [Figure 8C], suggesting that this method 
leads to false negatives. Subtraction plus total RNA normalisation was able to pick up 2 of the 4 validated 
targets, albeit at different levels of background. No Background plus total RNA normalisation was able to 
pick up 3 of the 4 validated changes, while the fourth validated target, miR-450a, was only just above the P = 
0.05 threshold. This is consistent with the fact that the expression of miRNA is generally at a very low level, 
and therefore, any background correction will produce false negatives. However, if no background 
threshold is applied, the system is likely to pick up false positives, something that we did not test in our 
recalculation. Thus, our data suggest that investigators should analyse their data using a range of workflows 
including Thresholding and Subtraction, as well as No Background, in order to pick up all potential 
changes.

In silico recalculation revealed errors in nSolver data processing [Figure 9B], which compound the inherent 
problems associated with background correction. Why was there a discrepancy in many processed counts 
between those reported by nSolver and those in our recalculation? We can only speculate on the reasons 



Adamova et al. Extracell Vesicles Circ Nucleic Acids 2024;5:571-96 https://dx.doi.org/10.20517/evcna.2024.38                                  Page 593

behind this. It is surprising that errors occurred in some lanes and not others, given that the same formula 
must have been applied to each. It is possible that rounding errors occur in these workflows that accumulate 
over the different steps, which leads to false values at the end. However, the analysis suggests this is not 
always the case. In some cases, nSolver appears to have simply made a mistake. In some of the thresholding 
workflows, nSolver appears to have replaced the correct output with the corresponding background value 
even in cases where the experimental value was higher than background, and thus, there was no need to 
threshold to background. It is noteworthy that errors were made only in the Thresholding and Subtraction 
workflows, and no errors were made in the No Background correction workflows [Figure 9B]. This suggests 
that the more complex the workflow, the higher chance of an error by nSolver.

A surprising number of published studies have reported unvalidated nCounter data[14,31,32,34]. Our results, in 
common with others, suggest that technical validation is a critical step. For example, in a study of pre-term 
birth, Kim et al. technically validated 4 of 7 miRNA changes, of which only 2 were subsequently validated in 
an independent biological cohort[17]. Filardi et al., in a study of gestational diabetes, found that only 2 of 12 
changes were validated in an independent cohort[33]. In our study, only 4 of 13 changes were technically 
validated [Figure 8].

It is interesting to note that variability in output associated with differing analysis methods is not limited to 
the nCounter assay, but is perhaps a common feature of many genomic assays. We show here that user-
defined variables also have an influence on the reported results of RTqPCR assays, while others have 
demonstrated that the results of RNAseq are similarly influenced by user-defined variables[67].

One limitation of our study is that we were not able to directly compare the output of the nCounter assay to 
an alternative, such as an RNAseq assay. It would be informative to perform such a test in the future. The 
cost of the two assays is similar. A clear advantage of RNAseq is the ability to perform an unbiased screen in 
order to pick up any expressed miRNA, in contrast to the subset of probes included in the nCounter assay. 
This must be weighed against the simpler data processing required for the nCounter assay. Although we 
looked at two different normalisation methods for the nCounter assay, we did not do the same for the 
RTqPCR assay. It would be valuable in the future to investigate the effect of this choice on the output. We 
were also limited by small group size, and it is likely that a better powered study would identify a greater 
number of significant changes. Finally, we assayed the total circulating RNA in plasma, which includes both 
protein-bound and vesicle-bound extracellular RNA. Our assay did not distinguish between these two 
sources, and in future work, it would be useful to do so.

In conclusion, we have demonstrated that NanoString nCounter profiling can be used successfully as a 
global screening tool to identify changes in circulating miRNA and is, therefore, a potentially useful tool for 
biomarker identification. However, it is critical to understand that user-defined variables within the nSolver 
workflow greatly affect the final output. Clearly, standardised methods are needed in the field. We propose 
that researchers use multiple analysis workflows to identify changes and validate these changes with RT-
qPCR.
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