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Abstract
Although Ni-rich layered materials with the general formula LiNi1-x-yCoxMnyO2 (0 < x, y < 1, NCM) hold great 
promise as high-energy-density cathodes in commercial lithium-ion batteries, their practical application is greatly 
hampered by poor cyclability and safety. Herein, a LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode modified with a surface 
self-assembling LiLaO2 coating and subsurface La pillars demonstrates stabilized cycling at 4.6 V. The LiLaO2-
coated NCM622 benefits from the suppression of interfacial side reactions, which relieves the layer-to-rock salt 
phase transformation and therefore improves the capacity retention under high voltages. Moreover, the La dopant, 
as a pillar in the NCM622 lattice, plays a dual role in expanding the c lattice parameter to enhance the Li-ion 
diffusion capability, as well as suppressing Ni antisite defect formation upon cycling. Consequently, the dual-
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modified NCM622 cathode exhibits an initial Coulombic efficiency of over 85% and a high capacity of over 200 
mAh g-1 at 0.1 C. A specific capacity of 188 mAh g-1 with a capacity retention of 76% is achieved at 1 C after 200 
cycles within a voltage range of 3.0-4.6 V. These findings lay a solid foundation for the materials design and 
performance optimization of high-energy-density cathodes for Li-ion batteries.

Keywords: LiNi0.6Co0.2Mn0.2O2 cathode, surface coating, La pillars, high energy density, Li-ion batteries

INTRODUCTION
Despite the rapid development of lithium-ion batteries (LIBs) in recent decades, their finite energy and 
power densities are regarded as the main barriers to their further application[1-4]. The cathode is the most 
critical component and is crucial in determining the working voltage, energy density and cost of a LIB[5-9]. 
Various promising cathode candidates with high capacity, including LiCoO2 and Ni-rich materials, have 
been extensively designed for LIBs[10,11]. Among the available candidates, nickel-rich layered cathode 
materials, namely, LiNixCoyMn1-x-yO2 (NCM, x ≥ 0.6), have demonstrated excellent market prospects owing 
to their advantages of high specific capacities, large discharge plateaus, low price and hypotoxicity[12-14]. 
Although the specific capacity of NCM materials increases significantly with the nickel content, the 
resulting cation mixing and interfacial side reactions lead to a rapid performance decay upon cycling. In 
addition, the NCM materials with more than a 70% nickel content manifest apparent safety concerns, 
thereby hindering their large-scale application[15-19]. The increasing cutoff voltage of NCM can also increase 
its specific capacity. For instance, the discharge capacity of LiNi0.6Co0.2Mn0.2O2 (NCM622) can be enhanced 
from 180 to 200 mAh g-1 with an increase in the cutoff voltage from 4.4 to 4.6 V. However, at 4.6 V, the 
surface side reactions and unamiable phase transitions increase in NCM significantly, resulting in capacity 
fading[20-24]. Furthermore, the surface lattice structure of NCM622 can suffer from the uncontrollable cation 
mixing, leading to an irreversible structural transformation and degradation.

Many approaches, including elemental doping and surface coating, have been adopted to overcome the 
aforementioned issues and enhance the structural stability of Ni-rich cathodes. Lattice doping using a 
variety of extrinsic ions, such as Ti[25], Na[26], Mg[27,28], Zr[29], Nb[30], Al[31] and La[32], has been already used to 
plausibly improve the electrochemical performance of NCM materials. Inorganic oxides, such as MgO[33], 
Al2O3

[34], AlF3
[35], Li3PO4

[36], SiO2
[37], In2O3

[38], TiO2
[39], ZrO2

[40] and Li2MnO3
[41], have been coated on the surface 

of NCM materials to alleviate the layer-to-rock salt phase transformation and improve the cycling stability. 
Furthermore, strategies of ion doping combined with surface modification have also been used to improve 
the electrochemical performance of NCM. Yang et al. used Ti doping and a La4NiLiO8 coating to 
significantly restrain the cation mixing of NCM811 and improve its capacity retention after 200 cycles[42]. 
Ming et al. employed Zr and Al doping of LiNi0.83Co0.12Mn0.05O2, which resulted in a remarkable 
enhancement in capacity and voltage retention[43]. However, the above studies focus mostly on the 
electrochemical performance of NCM materials in a lower potential range of 3.0-4.3 V. At an elevated 
voltage of 4.6 V, few reliable experimental results are available, and hence the underlying reaction 
mechanism concerning the capacity retention rate of NCM materials in this broader potential range is 
poorly understood[44-47].

La is a relatively inexpensive rare-earth material that is widely used in industry. The La-O bond has an 
energy of 798 kJ mol-1, much higher than that for Ni-O (392 kJ mol-1), Co-O (368 kJ mol-1) and Mn-O 
(402 kJ mol-1). Moreover, La-based oxides have excellent conductivity and thermal stability. As surface 
coating materials, it is reported that La-based oxides can improve the conductivity of NCM, inhibit the side 
reactions and alleviate the layer-to-rock salt transformation at high voltages[48-50]. On this basis, in this work, 
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we design a dual modification strategy to synthesize a NCM622 cathode with surface LiLaO2 self-assembly 
in conjunction with subsurface La pillaring, as shown in Scheme 1. The LiLaO2 coating on the surface of 
NCM622 is beneficial for inhibiting the side reactions between the cathode and electrolyte, thereby relieving 
the phase transformation from the layered to rock salt phase and improving the capacity retention at high 
voltages. The La dopant, as a pillar in the NCM622 lattice, increases the c lattice parameter to improve the 
Li-ion diffusion capability and suppress Ni antisite defect formation. Density functional theory (DFT) 
calculations confirm that the Li-ion diffusion and electronic conductivity are greatly enhanced in the dual-
modified NCM622 compared with the pristine material. As a result, the dual-modified NCM622 exhibits 
excellent cycling stability at 4.6 V (over 200 mAh g-1 at 0.1 C, 188 mAh g-1 at 1 C and a 76% capacity 
retention during 200 cycles), which is much better than the pristine material (45% capacity retention after 
200 cycles).

EXPERIMENTAL
Materials preparation. The Ni0.6Co0.2Mn0.2(OH)2 precursor was synthesized using a hydroxide 
coprecipitation method. The details of the coprecipitation process are displayed in the supporting 
information. NCM622 samples were prepared by mixing Ni0.6Co0.2Mn0.2(OH)2 precursors and Li2CO3 (Li:Ni 
ratio of 1:0.56). After calcined at 870 °C for 10 h, the samples were cooled to 570 °C and then sintered at 
570 °C for 5 h in an oxygen atmosphere. NCM622-La samples were prepared by homogeneously mixing 
Ni0.6Co0.2Mn0.2(OH)2 precursors, Li2CO3 and La2O3 (Li:Ni:La ratio of 1:0.56:0.003) and then sintered 
according to the above process. The synthesized NCM622-La@LLO was a mixture of NCM622-La, Li2CO3 
and La2O3 with the molar ratio of Ni: Li: La (0.6:0.003:0.003) in an agate mortar and then calcined at 870 °C 
for 10 h in an oxygen atmosphere.

Materials characterization. The structure and morphology of the samples were evaluated by X-ray 
diffraction (XRD, Rigaku DMAX 2500, Tokyo, Japan) with Cu Kα radiation and scanning electron 
microscopy (SEM, Hitachi S-4800, Tokyo, Japan), respectively. The lattice parameters of the samples were 
refined by Full Prof Suite software. High-resolution transmission electron microscopy (HR-TEM, Tecnai 
G2 F30) was conducted to further understand the microstructure of the samples. The chemical states of the 
main elements of the materials were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo 
ESCALAB 250Xi spectrometer).

Electrochemical measurements. The cell in a coin configuration (CR2016) assembled with the cathode, 
separator, lithium plate and electrolyte in an argon-filled glove box was used to investigate the 
electrochemical properties. The cathode was fabricated by coating the slurry composed of the active 
material, carbon black and binder at a ratio of 80:10:10 wt.% on Al foil. The electrode mass loadings of 
NCM622, NCM622-La and NCM622-La@LLO were 1.20, 1.18 and 1.22 mg/cm2, respectively. Li metal was 
used as the counter and reference electrodes. Celgard 2400 was used as the separator. The electrolyte was 
1 M LiPF6 in ethylene carbonate/dimethyl carbonate (1:1 by volume). The as-prepared cells were used for 
electrochemical measurements with Neware software. Cyclic voltammetry (CV) and AC impedance 
spectroscopy (0.01-105 Hz) were carried out using a multichannel potentiostat/galvanostat from Princeton 
Applied Research. The galvanostatic intermittent titration technique was conducted to evaluate the kinetic 
properties of the electrodes.

RESULTS AND DISCUSSION
The crystal structures of NCM622, La-doped NCM622 (NCM622-La) and La-doped and LiLaO2-coated 
NCM622 (NCM622-La@LLO) were studied by XRD, as shown in Figure 1A-C. The diffraction peaks of the 
(003), (101), (104), (105), (107) and (113) planes are observed [Figure 1A] and indexed to the hexagonal 
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Scheme 1. Synthetic process of LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode with and without modification.

R m structure (PDF#09-0063), indicating that the doping and coating processes have no obvious influence
on the crystal structure of NCM622. The separation of the (006)/(102) and (108)/(110) peaks illustrates a
highly crystallized layered structure for the three samples[51]. The apparent left shift of the (104) peak of
NCM622-La indicates that La successfully entered the NCM622 lattice [Figure 1C]. A similar phenomenon
occurs on both the (104) and (003) peaks of NCM622-La@LLO [Figure 1B and C]. Additionally, the
interplanar spacings of (003) and (104) widen, owing to the introduction of La, which is plausibly conducive
to facilitating the ionic diffusion kinetics of Li ions[52,53]. Moreover, the weak diffraction peaks of (020), (111)
and (220) observed in NCM622-La@LLO are attributed to the LiLaO2 surface coating layer
[Supplementary Figure 1].

XPS was used to evaluate the surface composition and oxidation states of the samples. As illustrated in
Figure 1D-F, the peaks of Ni-2p3/2 at 855.60 and 854.53 eV represent Ni3+ and Ni2+, respectively. Apparently,
compared to that in the pristine sample, the decrease in the Ni2+ content in both NCM622-La and NCM622-
La@LLO is mainly due to the introduction of La3+, whose electrostatic repulsion prevents more Ni2+ from
migrating to the Li site, thereby inhibiting cation mixing[54,55]. The XPS analysis comparison of La in the
three samples indicates that the La particles exist in both the NCM622-La and NCM622-La@LLO electrodes
[Supplementary Figure 2]. The Rietveld refinement results further confirm that the Ni-Li cation mixing
decreases after the La doping and LiLaO2 coating [Supplementary Figure 3 and Supplementary Table 1].

The sizes of the NCM622-La@LLO particles are ~0.5 μm, smaller than that of the pristine NCM622 particles
(~1 μm), as shown by the SEM images in Figure 1G-I. The introduction of La in the lithiation of the
hydroxide precursor changes the surface energy, which changes the fusion of nanosheets during high-
temperature calcination[56]. Interestingly, compared with the modified NCM622, many small particles
appear on the surface of the original sample, which are residual lithium (Li2CO3/LiOH)[38]. The surface of the
NCM622-La@LLO particles displays a blurred edge compared with the pristine NCM622 particles,
preliminarily proving the LiLaO2 formed on the surface of NCM622. Moreover, the integral morphologies
of the three samples show no significant differences, indicating that the overall morphology of the host
material is free from the destruction of the doping and coating processes [Supplementary Figure 4]. The
energy-dispersive  spectroscopy  mapping  images  of  NCM622 - La@LLO
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Figure 1. (A) XRD patterns of NCM622, NCM622-La and NCM622-La@LLO. (B and C) Comparison of (003) and (104) peaks for the 
three samples. (D-F) XPS comparison of Ni element for the three samples. (G-I) SEM morphology images of NCM622, NCM622-La and 
NCM622-La@LLO and (J) the corresponding energy-dispersive spectroscopy mapping results of NCM622-La@LLO. TEM images of (K 
and L) NCM622 and (M and N) NCM622-La@LLO.

[Figure 1J and Supplementary Figure 5] show a uniform distribution of La, indicating that LiLaO2 is evenly 
coated on the surface of NCM622. Additionally, the HR-TEM images show that an obvious Ni-O phase 
exists on the pristine NCM622 electrode surface [Figure 1K and L] and the NCM622-La@LLO surface has a 
clear coating layer [Figure 1M]. The lattice fringes of the NCM622-La@LLO electrode vary significantly 
from the surface to the interior. The lattice spacing of the coating layer is 0.28 nm [Figure 1N], 
corresponding to the diffraction peak of the (220) plane of LiLaO2, further confirming that the surface of 
NCM622-La@LLO is covered with a thin LiLaO2 layer.

DFT calculations were used to estimate the surface structure of NCM622 before and after modification with 
La doping and LiLaO2 coating, as shown in Figure 2A-I. Using the same structure, the calculated density of 
states (DOS) of NCM622-La@LLO is much larger than that of NCM622 and NCM622-La at the Fermi level 
[Figure 2D-F and Supplementary Figure 6], indicating that the electronic conductivity of NCM622-La@LLO 
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Figure 2. (A-C) Structural diagrams, (D-F) DOS and (G-I) differential charge densities of the three samples.

is improved[57]. Figure 2G-I and Supplementary Figures 7 and 8 exhibit the charge density differences 
between the three samples. An evident electron transfer phenomenon occurs among Ni, Co, La and the 
surrounding O atoms, and becomes clearer after La doping and LiLaO2 coating. In addition, the La-O has a 
high electron aggregation degree compared to the Ni-O, suggesting that La-O has a stronger chemical bond, 
which will be beneficial to stabilize lattice oxygen during cycling, especially at a high cutoff voltage. Stable 
lattice oxygen can inhibit the layer-to-spinel/rock salt phase transformation and improve the 
electrochemical performance.

The ionic and electronic conductivities of NCM622, NCM622-La and NCM622-La@LLO measured with a 
blocking electrode method show that NCM622-La@LLO has the highest values [Figure 3A and B]. The 
Nyquist plots of the half-cells also reveal the best lithium-ion transport capability of NCM622-La@LLO 
[Figure 3C]. To understand the dynamic behavior of the three samples, the galvanostatic intermittent 
titration technique was used at a pulsed current of 20 mA/g [Supplementary Figure 9]. The lithium-ion 
diffusion coefficient in NCM622-La@LLO is estimated to be ~1.4 × 10-10 cm2 s-1, higher than that in 
NCM622 (5.1 × 10-12 cm2 s-1) and NCM622-La (4.0 × 10-11 cm2 s-1), suggesting that the La doping and LiLaO2 
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Figure 3. (A) Ionic and (B) electronic conductivity of NCM622, NCM622-La and NCM622-La@LLO samples. (C) Nyquist plots of the 
three electrodes. (D-F) CV curves of the three samples at different potential scanning rates. (G) Relationship between logarithmic anode 
peak current and logarithmic scan rates of the three electrodes. (H) Capacitance contribution calculations of the three electrodes at 
various scan rates.

coating boost the lithium-ion diffusion kinetics of NCM622. CV was carried out at a scan rate of 0.1 mV s-1 
within the potential range of 3.0-4.6 V [Supplementary Figure 10]. The potential difference (ΔEp) values of 
the three samples between the oxidation/reduction peaks are 286 mV (NCM622), 187 mV (NCM622-La) 
and 166 mV (NCM622-La@LLO), respectively. The minimum positional deviation of the 
oxidation/deoxidization peaks indicates that NCM622-La@LLO exhibits the best electrochemical activity 
and cycle reversibility. The CV curves of the three samples at different potential scan rates from 0.2 to 
1.0 mV s-1 are shown in Figure 3D-F. Both the oxidation and reduction peak currents of the three samples 
gradually increase with the scanning rate and shift toward low and high potentials, respectively. The fitting 
result indicates that the diffusion-controlled electrochemical process dominates the charge/discharge 
reaction in electrodes[58-60]. The b values of the cathode peaks of NCM622, NCM622-La and NCM622-
La@LLO are 0.76, 0.80 and 0.83, respectively, indicating that the NCM622-La@LLO has more significant 
surface capacitive effects [Figure 3G]. Figure 3H distinguishes the percentage of the capacitive contribution 
and diffusion-controlled contribution for the three electrodes at different scan rates. Although the capacitive 
contribution increases with scan rate, the surface capacitive contribution of NCM622-La@LLO dominates, 
meaning that the capacitance control process plays an important role in Li-ion storage at higher scan 
rates[61].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202210/5225-SupplementaryMaterials.pdf
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Figure 4. (A) Charge and discharge curves of the first cycles of NCM, NCM-La and NCM622-La@LLO at a current density of 20 mA g-1 
(0.1 C) and (B) corresponding cycling performance at 1 C in the voltage range of 3.0-4.6 V. Charge and discharge curves of different 
cycles and corresponding dQ/dV curves of (C and F) NCM622, (D and G) NCM622-La and (E and H) NCM622-La@LLO.

The first-cycle discharge/charge capacities of NCM622-La@LLO are 237.2/202.2 mAh g-1, with a 
corresponding initial Coulombic efficiency (ICE) of 85.2% [Figure 4A]. There is little difference among the 
ICEs compared with NCM622 (84.7%) and NCM622-La (86.8%) [Supplementary Figure 11], indicating that 
La doping and LiLaO2 coating have little effect on the ICE of NCM622 materials. Figure 4B further 
compares the electrochemical cycling performances of the three samples after various cycles at 1 C. For 
NCM622-La@LLO, excellent capacity retention can be achieved at 76.1% after 200 cycles. In contrast, 
pristine NCM622 undergoes rapid capacity decay, resulting in a lower capacity retention of only 32.7% after 
200 cycles. Furthermore, NCM622-La@LLO shows a good charge and discharge plateau above 3.6 V after 
200 cycles [Figure 4C-E]. Figure 4F-H provides a detailed analysis of the evolution process of the differential 
capacitance (dQ/dV) curves of the three samples. The dQ/dV curves display two redox peaks during cycling. 
However, for the NCM622 sample, the intensity of the redox peak becomes weaker than that of the 
NCM622-La and NCM622-La@LLO samples when the cycle number increases, indicating that La-pillared 
and LiLaO2-coated NCM622 exhibits a more stable structure, a stronger ability to withstand high voltages 
and better electrochemical performance.

The crystal structures and surface morphologies of the samples after 200 cycles were investigated by TEM 
and SEM, respectively. The TEM images of NCM-La@LLO show that although no rock-salt phase is 
observed on the NCM-La@LLO surface, it conserves a well-ordered layered structure [Figure 5B]. In 
contrast, the rock-salt phase exists on the surface region of NCM622 and the spinel phase is detected from 
the diffraction spots, as shown in Figure 5A. The NCM622 exhibits a salt-spinel-layered structure from the 
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Figure 5. TEM images of (A) NCM622 and (B) NCM622-La@LLO after 200 cycles, where Ia, I Ia, II Ia, Ib, IIb and IIIb are the fast Fourier 
transform conversion graphs of the corresponding regions. Surface morphologies of (C) NCM622, (D) NCM622-La and (E) NCM622-
La@LLO after 200 cycles. (F) C1s, (G) O1s and (H) F1s XPS spectra of NCM622, NCM622-La and NCM622-La@LLO after 200 cycles.

surface to the inner phase, but the NCM-La@LLO exhibits a slight mixture of the layered and spinel phases 
on the surface. This obvious evidence indicates that La doping and LiLaO2 coating significantly inhibit the 
transformation of the layered phase to the rock-salt phase and maintain the structural stability of the NCM 
material, thereby improving the reversible specific capacity and cycle life. The surface morphologies of 
NCM622-La@LLO after 200 cycles are shown in Figure 5E. Compared with the NCM622 and NCM622-La 
particles [Figure 5C and D], no cracks exist on the surface of NCM622-La@LLO, indicating that La doping 
and LiLaO2 coating significantly inhibit the phase transition to maintain the structural stability of NCM at 
high voltages, thus improving the electrochemical performance.

To further verify the protective effect of the coating layers on the cathode-electrolyte interface, XPS 
measurements on NCM622, NCM622-La and NCM622-La@LLO after 200 cycles were conducted 
[Figure 5F-H]. The peaks of the C-H, C-C, C-O and OCO2 bonds can be observed in the C 1s spectra of the 
electrodes [Figure 5F]. The binders and conductive substances in the electrode can cause the existence of C-
H and C-C bonds, while the C-O and OCO2 bonds are related to the decomposition of the electrolyte[62]. 
Compared to NCM622, weaker peak intensities are observed for the peaks associated with the C-O and 
OCO2 of the NCM622-La@LLO cathode, suggesting a lower electrolyte decomposition amount on the 
surface. In addition, the typical peaks of M-O, Li2CO3 and ROCO2Li can also be observed in the O 1s spectra 
[Figure 5G]. The ROCO2Li peak of the NCM622-La@LLO electrode is smaller, meaning that the LiLaO2 
coating layer formed in NCM@LLO can inhibit the decomposition of the electrolyte and the formation of 
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Figure 6. Electrochemical characterization of cylindrical full batteries. (A) Schematic and (B) photographs of the configuration of a 
graphite//NCM622-La@LLO full battery. (C) Cycling performance of full batteries with both pristine NCM622 and NCM622-La@LLO 
as the cathode and graphite as the anode at 2 C. (D and E) dQ dV-1 curves at selected cycles. (F and G) Corresponding charge/discharge 
curves. (H) Comparison of voltage platform attenuation.

SEI film on the particle surface during electrochemical cycling. Additionally, the LiF peak is significantly 
weakened in NCM622-La and almost invisible in NCM622-La@LLO, indicating that the La doping and 
LiLaO2 coating significantly inhibit the surface side reactions and are helpful for the structural stability of 
NCM materials.

Cylindrical full batteries with a design capacity of 2500 mAh were assembled to compare the cycling 
stabilities of NCM622 and NCM622-La@LLO in real applications. Schematic diagrams of the cylindrical full 
batteries are shown in Figure 6A and B. The NCM622-La@LLO cell undergoes 1000 cycles with an excellent 
capacity retention of 82.5% [Figure 6C]. The overlap of the dQ/dV curves of the NCM622-La@LLO cathode 
demonstrates that La doping and LiLaO2 coating can maintain the structural integrity of NCM materials 
[Figure 6D and E]. In addition, the charge/discharge curves from the 1st to 1000th cycle also suggest that 
the NCM622-La@LLO cathode has a higher reversible capacity due to the less electrochemical polarization 
compared with the NCM622 cathode [Figure 6F and G], which is mainly caused by the enhanced stability of 
NCM622 after La doping and LiLaO2 coating. During long cycling [Figure 6H], the average voltage of the 
NCM622-La@LLO cell is stable at ~3.6 V, further proving the cyclic stability of the NCM622-La@LLO 
cathode. The excellent electrochemical performance of the NCM622-La@LLO cathode shows its excellent 
prospects for industrial applications.
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CONCLUSIONS
In summary, we present a practical solution to enhance the stability of NCM622 at 4.6 V via the self-
assembly of a LiLaO2 coating on its surface and La pillars in its subsurface. The dual-modified NCM622-
La@LLO cathode exhibits a capacity of more than 200 mAh g-1 and an initial Coulombic efficiency of 85% at
a current density of 0.1 C. Even after 200 cycles, NCM622-La@LLO maintains a capacity retention of 1.7
times higher than the pristine material (76% vs. 45%) at 1 C and 4.6 V. Two factors are responsible for the
superior electrochemical performance of the NCM622-La@LLO cathode. The first is that the LiLaO2 coating
on the surface of NCM622 is beneficial for inhibiting the side reactions between cathodes and electrolytes
and suppressing the phase transformation from the layered phase to the rock-salt phase, thereby improving
the capacity retention at high voltage. The other reason is that the La atom dopants, as pillars in the
NCM622 lattice, increase the c-axis distance to improve the Li+ diffusion rate, and suppress nickel taking the
place of lithium. We expect this strategy could provide a direction for managing the internal structure and
interfacial stability of NCM, which can be extended to the applications of other cathodes, such as
LiMn2xNixO4 spinel and layered Li-rich oxides.
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