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Abstract
Concentrations of 19 organophosphate esters (OPEs) were determined in dust samples collected from house and 
car indoor microenvironments in three Colombian cities. ∑OPE concentrations ranged from 1.31 to 599 μg/g. Mean 
concentrations of dust homes were 82.6, 48.3, and 46.7 μg/g for Cartagena, Bogotá, and Medellín, respectively. 
The pollution inside cars was somewhat higher than in houses, with a mean value of 231 μg/g. Sixteen compounds 
were detected, being TPHP, DCP, TEP, and TCEP the most frequently detected. As for OPEs with higher levels in 
houses, we found (mean ± SD) 35.2 ± 37.1 μg/g for TDCIPP in Cartagena, 35.6 ± 80.2 μg/g for TPHP in Cartagena, 
15.9 ± 31.4 μg/g for DCP in Cartagena, 35.7 ± 19.1 μg/g for TBOEP in Bogotá, 15.7 ± 14.8 μg/g for 4IPPDPP in 
Medellín, and 17.5 ± 22.9 μg/g for TCEP in Cartagena, while the highest OPE value found in cars was 176 ± 
144 μg/g for TDCIPP. The estimated daily intake (EDI) of OPEs through dust ingestion ranged from 
0.001 ng/kg bw/day for adults to 110 ng/kg bw/day for toddlers, while dermal absorption ranged from 
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0.02 ng/kg bw/day for adults to 42.7 ng/kg bw/day for infants. Overall, the EDIs of dust ingestion were three 
times greater than those of dust dermal absorption. The estimated EDIs were several orders of magnitude below 
the corresponding reference doses. However, the incremental lifetime cancer risk (ILCR) for TCEP ranged from 1.1 × 
10-5 for infants in Bogotá to 4.3 × 10-4 for adults in Cartagena, while ILCR for TEHP ranged from 8.8 × 10-7 for infants 
in Bogotá to 1.1 × 10-5 for adults in Bogotá. These estimated ILCRs were higher than the safe limit value of 1 × 10-6 
and showed that these populations are exposed to moderate cancer risk.

Keywords: Cancer risk, car dust, daily intake, home dust, indoor, Monte Carlo simulations

INTRODUCTION
Flame retardants (FRs) are chemical additives that are incorporated into different materials such as plastics, 
textiles, foams, furniture, and electronic materials[1,2]. Their function is to prevent combustion or reduce the 
spread of fire after ignition[2]. Organophosphate esters (OPEs) have come to the fore in recent years due to 
their increasing use as an alternative to legacy brominated FRs[3-5]. Global demand for OPEs increased from 
500,000 tons in 2011 to 680,000 tons in 2015[6,7]. OPEs are also widely used as plasticizers in furniture, textile 
coatings, upholstery, electronics, paints, polyurethane foams, lubricants, and hydraulic fluids[8].

OPEs have been found in different environmental matrices such as wastewater[9], surface water[10], drinking 
water[10,11], air[3], and indoor dust[12], as well as in biotic samples such as river fish[13] and marine mammals[14]. 
In addition, toxicology and epidemiology studies indicate that these compounds are associated with 
immunotoxicity[15], cardiotoxicity[16], neurotoxicity[17], adverse reproductive effects,  and endocrine 
disruption[18], and they are carcinogenic[19]. Tri-n-butyl phosphate (TNBP) causes sick building syndrome, 
which is related to the effects produced by chemical, physical, biological, and ergonomic agents, often 
related to the structure, distribution, facilities, and equipment of the building, as described by the World 
Health Organization[20]. OPEs are also considered to have neurodevelopmental problems after long-term 
exposure[21]. There is evidence that tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) causes adverse effects 
on thyroid hormone (TH) imbalance in aquatic and avian organisms[22] and thyroid function and hormone 
homeostasis in mammals[23]. Tris-2-chloroethyl phosphate (TCEP) exhibits carcinogenicity and was 
eliminated by the EU in 1980[24,25]. Furthermore, TDClPP may be carcinogenic[19].

Humans spend their lives in a variety of indoor microenvironments, such as homes, offices, and cars. 
Research reports that OPEs are widely used in various industrial products such as plastics, building 
materials, textiles, furniture, electronic parts, and vehicle parts[26]. OPEs can be released from a multitude of 
products, which inevitably lead to them being found in these indoor microenvironments. Indoor 
environments are considered a hotspot for human exposure to OPEs[27], which can occur from several 
routes including air inhalation, dust ingestion, dust dermal absorption, and dietary intake[5,28]. However, the 
pathways related with dust and air have been identified as the most important matrices for estimation of 
non-dietary exposure in the indoor microenvironment[26,28], probably because of the large surface area in 
dust, becoming important deposits of OPEs[5,29]. In general, OPE levels in indoor dust are significantly 
higher than those in outdoor dust[30,31]. Total OPE levels have been reported in indoor dust where 
concentrations were generally at the nanogram per gram level, but in some cases they reach values at the 
microgram per gram level[12,32].

This study aimed to evaluate the presence of different OPEs in dust samples from microenvironments of 
houses and cars, collected from the three most populated, industrialized, and polluted cities (Bogotá, Medell
ín, and Cartagena) in Colombia. In addition, we assessed the dust pathway as non-dietary human exposure 
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to these compounds through ingestion and dermal routes for several age groups (infants, toddlers, children, 
teenagers, and adults) as recommended by US-EPA[33-35]. To the best of our knowledge, this is the first study 
to show the occurrence of these FRs and plasticizers in several cities in Colombia.

EXPERIMENTAL
Sampling collection
Dust samples were collected in three Colombian cities from house and car interiors in the cities of Bogotá (n 
= 20 houses), Medellín (n = 15 houses and n = 5 cars), and Cartagena (n = 20 houses) in 2018.

These cities have different climatic characteristics. Bogotá is the capital and the largest city in Colombia, 
located in the mountains of the Andes at 2586 m above sea level (asl), with moderately cold temperatures 
(an average of 14 °C) that fall below 5 °C in the rainy season. The relative humidity varies between 77% and 
83%. Medellín is the second-largest city in Colombia, located in the Aburra Valley in the Andes at 1495 m 
asl, with humid weather (subtropical relative humidity between 63% and 73%) and moderate temperatures 
of 21.6 °C on average. Cartagena is a coastal city at sea level on the shores of the Caribbean Sea, humid (on 
average 78%-82%) with temperatures varying from 24 to 31 °C but generally higher than those cities located 
in the Andes.

Dust samples were collected from single or multiple bedrooms and living rooms of homes and apartments, 
selected for sampling. Floor dust samples were obtained from vacuum cleaner bags in each of the sampling 
sites. Samples were taken at the room normal conditions to observe the current human exposure. Prior to 
the analysis, samples were manually cleaned, removing particulate matter from stones, plastic, iron, grains, 
wood, and shavings. Samples were packaged in glass bottles, previously sterilized, labeled. and free of any 
organic or inorganic contamination, and immediately stored at -18 °C.

Standards and reagents
Analytical standards were acquired from different companies. Tris(2-butoxyethyl) phosphate (TBOEP), 
tri(2-chloroethyl) phosphate (TCEP), tris(chloroisopropyl) phosphate (TCIPP), trihexyl phosphate (THP) 
and tris(2-ethylhexyl) phosphate (TEHP) were obtained from Santa Cruz Biotechnology (SantaCruz, CA, 
USA); isodecyldiphenyl phosphate (IDPP) and 2-ethylhexyldiphenyl phosphate (EHDPP) were acquired by 
AccuStandard (New Haven, CT, USA); diphenylcresyl phosphate (DCP), tri(n-butyl)phosphate (TNBP), 
triphenyl phosphate (TPHP), triphenylphosphine oxide (TPPO), tris(1,3-dichloro-2-propyl) phosphate 
(TDClPP), triethyl phosphate (TEP), and tri-n-propyl phosphate (TPP) were acquired from Sigma-Aldrich 
(St. Louis, MO, USA); tricresyl phosphate (TMCP) was acquired from Dr. Ehrenstorfer (Augsburg, 
Germany); 2-isopropylphenyl diphenyl phosphate (2IPPDPP), 4-isopropylphenyl diphenyl phosphate 
(4IPPDPP), and bis(4-isopropylphenyl) phenyl phosphate (B4IPPPP) were acquired from Wellington 
Laboratories Inc. (Guelph, ON, Canada); and tris(2-isopropylphenyl) phosphate (T2IPPP) was purchased 
from Chiron (Trondheim, Norway). The isotopically labeled compounds d15-TDClPP, d27-TNBP, d12-TCEP, 
and 13C12-TBOEP were obtained from Wellington Lab-oratories Inc. (Guelph, ON, Canada), while d15-TPHP 
was purchased from Cambridge Isotope Laboratories Inc. (Andover, MA, USA). The solvents used as 
acetone and hexane were purchased from J.T. Baker (Center Valley, PA, USA). Methanol and water solvent 
for trace analysis as well as ammonium acetate and formic acid were obtained from Merck (Darmstadt, 
Germany). Diatomaceous earth sorbent (Hydromatrix) was purchased from Agilent Technologies 
(Wilmington, US).

Sample preparation
Throughout all analysis processes, plastic material was avoided due to potential contamination, as our 
analytes are used as plasticizers. We tried to minimize as much as possible blank signals, i.e., heating all the 
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non-volumetric material at 340 °C and rinsing with ethanol and hexane:acetone (1:1) just before use. For 
each batch of samples, a blank was included. Blank levels were subtracted from corresponding samples.

The analytical method applied was previously developed[13]. The dust sample (between 0.5 and 1 g) was 
spiked with internal standards (100 ng of d12-TCEP, d15-TDClPP, d27-TNBP, d15-TPHP, and 13C2-TBOEP) 
and loaded into a 22 mL extraction cell previously filled with 0.5 g of powdered copper (particle size < 
63 μm) and 8 g of diatomaceous earth sorbents (Hydromatrix). Extraction was done by pressurized liquid 
extraction (PLE) using an ASE350 system (Dionex, Sunnywale, CA, USA), with hexane:acetone (1:1) as 
solvent extraction and working at 1600 psi and 50 °C. After PLE, extracts were concentrated to incipient 
dryness and re-dissolved with methanol for a final volume of 500 μL.

Instrumental analysis
An online sample purification and analysis method based on turbulent flow chromatography (TFC) 
(Thermo Scientific TurboFlow™ system) in combination with a triple quadrupole (QqQ) tandem mass 
spectrometry (MS-MS) and a heated-electrospray ionization source (H-ESI) was used. Two liquid 
chromatography (LC) quaternary pumps and three LC columns were employed: Cyclone™-P (0.5 mm × 
50 mm) and C18-XL (0.5 mm × 50 mm) for purification and Purosphere Star RP-18 (125 mm × 0.2 mm) 
with a particle size of 5 μm for separation[13]. Detailed conditions used for purification and chromatographic 
separation are included in Supplementary Table 1.

Selective reaction monitoring mode was used for all compounds with two transitions monitored for each 
analyte. The most intense transition was used for quantification, while the second provided confirmation. 
Instrumental working parameters such as retention times, transitions, declustering potential, and collision 
energies are summarized in Supplementary Table 2.

Confirmation criteria for the detection and quantification of OPEs should include the following: (1) 
retention time for all transition monitored for a given analyte should maximize simultaneously ± 1 s, with 
signal-to-noise ratio ≥ 3 for each; and (2) the ratio between the two monitored transitions should be within 
15% of the theoretical. Quantification was carried out by internal standard method based on the use of 
labeled OPE standards with d15-TDClPP, d27-TNBP, d12-TCEP, 13C12-TBOEP, and d15-TPHP as internal 
standards.

Analytical parameters such as recoveries, limits of detection (LODs), and limits of quantification (LOQs) 
are summarized in Supplementary Table 3. These quality parameters were calculated by analyzing four 
replicates of spiked samples. Samples were spiked with 10 ng of OPE analytes and extraction was performed 
following the same procedure as for regular dust samples. Previously to final reconstitution, 10 ng of labeled 
internal standards of OPEs were spiked. Our analytical methodology provided recoveries ranging between 
59% and 118%, LODs between 0.001 and 0.042 μg/g, and LOQs between 0.003 and 0.141 μg/g.

Statistical analysis
For the statistical analysis, a logarithmic transformation was performed on the data, which facilitated their 
use as some values obtained exceed the mean obtained by several orders of magnitude. Statistical analyses 
were carried out with R statistical software environment and Statgraphics Centurion XVIII, together with 
Excel. Significant statistical differences were considered when the P-value was ≤ 0.05.

Human risk assessment
Previous studies reported that humans can be exposed to OPEs in dust mainly via dust ingestion and 
dermal absorption. To evaluate human exposure, estimated daily intakes (EDIs) were calculated, expressed 
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in μg/kg body weight (bw)/day, using Equations (1)-(3):

where C (μg/g) represents the mean OPE concentration in dust samples, IR (g/day) is the daily dust 
ingestion rate, FT (%) is the fraction of time spent at the microenvironment (home or car), BW (kg) is the 
body weight, BSA (cm2/day) is the body surface area, DA (mg/cm2) is the dust adhered to the skin, and AF 
is the fraction of OPEs absorbed by the skin[36-39].

The hazard quotient (HQ) for non-carcinogens was estimated for OPEs using Equation (4):

where RfD (ng/kg/day) is the reference dose for OPEs. RfD values were only available for TCEP, TPPO, 
TCIPP, TDCIPP, TMCP, and TEHP[37,40]. OPEs pose a health risk if the estimated HQs were greater than 1 
(HQ > 1).

Lifetime average daily dose (LADD) and incremental lifetime cancer risk (ILCR) were estimated for OPE 
carcinogens exposure via dust thought dermal and ingestion pathways using Equations (5)-(7). The 
exposure assessment was performed for five age groups: infants (< 1 year), toddlers (1-5 years), children (6-
11 years), teenagers (12-19 years), and adults (≥ 20 years).

where ED (year) is the exposure duration, EF (day/year) is the exposure frequency, AT (day) is the average 
time, and SF (mg/kg/day)-1 is the slope factor for cancer risk. SF values were only available for the oral route 
for TCEP and TEHP[41-43]. SF values were not available for dermal route, and therefore oral SF values were 
used for all routes. Exposure to OPEs (TCEP and TEHP) through dust ingestion and dermal absorption was 
considered as cancer risk when the estimated ILCR was ≥ 1 × 10-6[41-44].
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Non-cancer and cancer endpoints, RfD, and SF of target OPE compounds are collected in Supplementary 
Table 4.

Probabilistic model
The estimated EDI, HQ, LADD, and ILCR values on the health risk exposure of OPEs are represented as 
single values. The input values for calculation may contain some degree of uncertainty arising from multiple 
and different sources. Thus, simple point estimations are inaccurate. Therefore, an uncertainty analysis was 
performed associated relative errors of the factors through Monte Carlo simulation (MCS). The 
probabilistic analysis of MCS allows estimating the uncertainties of all possible outcomes and assessing the 
impact of risk, and therefore better decisions can be made under uncertainty conditions. In this study, MCS 
was performed using The Crystal Ball software, version 11.1.2.4 (Oracle, Inc. Redwood. US), and the 
number of simulations is defined as 10,000. A probability distribution of the exposure factors was assumed, 
and the detailed description of abbreviations, sources, probability distribution, and units for C, IR, FT, BW, 
BSA, DA, AF, FT, ED, EF, AT, RfD, and SF are available at Supplementary Tables 4 and 5. The uncertainty 
analysis for EDI, HQ, LADD, and ILCR was performed at 10,000 random repetitions for all calculations.

RESULTS AND DISCUSSION
OPE levels in indoor dust
The mean concentrations of OPEs in dust samples collected from different homes and cars in Colombian 
cities are summarized in Table 1 (for individual sample results, see Supplementary Table 6). OPEs were 
detected in all analyzed samples, indicating widespread contamination by these emerging pollutants, with 
levels ranging between 1.31 and 599 μg/g. ∑OPE concentrations at homes varied between cities, being the 
highest values those obtained from Cartagena (mean ± SD), 82.6 ± 113 μg/g, followed by Bogotá and 
Medellín with similar values (48.3 ± 34.3 and 46.7 ± 48.1 μg/g, respectively) [Supplementary Figure 1]. 
Concentration levels inside cars were higher, with a mean ± SD of 231 ± 247 μg/g [Table 1]. The higher 
concentrations found in Cartagena may be related to temperature differences between cities, being 24-31 °C 
in Cartagena, 16-26 °C in Medellín, and 3-19 °C in Bogotá. As OPEs are semi-volatile organic compounds, 
temperature changes may cause different partitions between air and dust, being OPEs with higher vapor 
pressure more sensitive to temperature changes. Therefore, the higher OPE concentrations found in 
Cartagena may be due to easier release of OPEs from products to the indoor environment at higher 
temperatures.

Different studies have been conducted on OPE occurrence in dust samples [Supplementary Table 7]. 
Comparison with published data must be carried out with caution because analytical methodologies 
included different OPEs (3-20 compounds) as well as differences in the sampling methodology. A study on 
indoor dust from homes in 12 different countries (China, Colombia, USA, India, Japan, and Vietnam, 
among others) reported values of 0.05-249 μg/g[12]. A similar range of concentrations has been observed in 
dust from homes in USA[45], ranging from 16 to 224 μg/g. The most recent research[46] studied OPE levels in 
dust from homes, offices, and schools, obtaining levels between 5.82 and 148 μg/g. The values reported in 
these studies are very close to those found in our research, where we reported values between 1.31 and 
446 μg/g. Regarding studies in cars, Tokumura et al.[47] found OPE concentrations up to 640 μg/g, values 
very close to those found in our study with values up to 599 μg/g.

OPE patterns
Sixteen of nineteen analyzed compounds were detected in dust samples and three were not detected in any 
samples (TNBP, IDPP, and THP). TPHP was the compound with the highest frequency detection in home 
dust samples (87%), followed by DCP (81%), TEP (72%), and TCEP (60%). In the case of car dust, TEP was 
detected in all analyzed samples (100%), followed by DCP (80%), and TPHP and TCEP were detected in the 
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Table 1. Concentrations (µg/g), range, and detection frequency of OPEs in dust indoor samples from Colombian cities

Bogotá Cartagena Medellín
Homes Homes Homes CarsOPEs

Mean ± SD* Median (range) DF (%) Mean ± SD Median (range) DF (%) Mean ± SD Median (range) DF (%) Mean ± SD Median (range) DF (%)

TEP 1.94 ± 1.82 1.02 (0.14-6.75) 55 3.15 ± 7.1 1.0 (0.14-31.9) 84 3.28 ± 4.2 1.8 (0.34-16.2) 79 3.43 ± 3.5 2.7 (0.11-9.32) 100

TCEP 7.97 ± 7.5 5.19 (0.31-51.9) 55 17.5 ± 22.9 7.1 (1.32-97.1) 74 9.12 ± 14.3 1.61 (0.24-54.0) 50 13.8 ± 8.7 16.5 (6.83-18.1) 60

TPPO 0.61 ± 0.42 0.62 (0.24-1.60) 50 0.89 ± 0.8 0.5 (0.52-1.74) 32 9.13 ± 19.8 1.0 (0.30-74.5) 64 1.33 ± 0.7 1.3 (1.27-1.40) 60

TCIPP 4.56 ± 2.7 2.98(1.30-11.0) 25 5.7 ± 3.0 6.9 (0.50-11.0) 32 2.66 ± 1.9 2.5 (0.45-6.16) 43 71.1 ± 60.4 65.9 (3.61-134) 60

TPP 0.52 ± 0.30 0.67 (0.28-0.76) 45 0.62 ± 0.3 0.7 (0.36-0.73) 21 0.62 ± 0.34 0.71 (0.35-0.76) 50 0.67 ± 0.4 0.7 (0.61-0.72) 60

TDCIPP 0.96 ± 0.64 0.30 (0.11-2.22) 30 35.2 ± 37.1 4.5 (0.29-122) 37 1.24 ± 0.86 0.81 (0.18-2.80) 36 176 ± 144 176 (24.7-328) 40

TPHP 21.1 ± 18.4 18.3 (1.26-70.2) 90 35.6 ± 80.2 8.9 (0.43-325) 100 20.5 ± 15 25.6 (0.75-36.5) 64 126 ± 155 19.7 (4.65-352) 60

DCP 4.75 ± 5.0 3.64 (0.21-17.4) 95 15.9 ± 31.4 2.6 (0.40-121) 74 5.57 ± 5.32 2.91 (0.87-17.6) 71 2.64 ± 1.6 2.8 (0.88-4.04) 80

TBOEP 35.7 ± 19.1 33.9 (10.4-61.0) 30 5.85 ± 3.7 4.8 (0.46-14.4) 32 1.37 ± 0.82 1.7 (0.03-1.87) 43 34.1 ± 37.1 12.5 (3.66-86.1) 60

2IPPDPP 0.25 ± 0.17 0.64 (0.09-0.47) 60 0.24 ± 0.1 0.3 (0.22-0.25) 16 0.49 ± 0.5 0.32 (0.11-1.92) 57 0.27 ± 0.16 0.23 (0.22-0.36) 60

4IPPDPP 7.34 ±7.03 4.09 (0.06-30.2) 40 7.51 ± 4.3 4.4 (3.41-18.0) 21 15.7 ± 14.8 8.7 (3.22-55.8) 43 7.53 ± 6.7 4.02 (2.33-16.2) 60

TMCP 1.16 ± 1.04 0.35 (0.17-4.68) 25 3.83 ± 2.4 2.7 (0.42-8.21) 26 2.29 ± 2.0 1.53 (0.21-7.43) 43 0.98 ± 0.58 0.90 (0.70-1.34) 60

EHDPP 0.28 ± 0.15 0.26 (0.11-0.59) 25 0.1 ± 0.05 0.1 (0.11-0.14) 16 0.14 ± 0.07 0.14 (0.12 -0.18) 43 0.22 ± 0.13 0.21 (0.17-0.29) 60

B4IPPPP 0.25 ± 7.03 4.09 (0.02-0.48) 10 nd nd 0 5.16 ± 2.75 5.19 (0.07-10.3) 14 0.17 ± 0.08 0.17 (0.17-10.3) 20

T2IPPP 1.75 ±1.59 1.05 (0.40-6.08) 45 1.76 ± 0.7 1.7 (1.26-2.35) 16 9.11 ± 15.8 2.02 (0.51-60.2) 57 1.92 ± 1.18 1.49 (1.46-2.81) 60

TEHP 5.24 ± 1.17 5.24 (nd-5.24) 5 nd nd 0 nd nd 0 0.64 ± 0.42 0.64 (0.32-0.96) 40

∑OPEs 48.3 ± 34.3 38.3 (1.31-121) 100 82.6 ± 113 39.2 (1.7-447) 88 46.7 ± 48.1 34.3 (1.58-368) 94 231 ± 247 122 (21.7-599) 100

*SD: Standard deviation; DF: detection frequency, nd: not detected or < LOD; LOD: limits of detection; TEP: triethyl phosphate; TCEP: tri(2-chloroethyl) phosphate; TPPO: triphenylphosphine oxide; TCIPP: 
tris(chloroisopropyl) phosphate; TPP: tri-n-propyl phosphate; TDCIPP: tris(1,3-dichloro-2-propyl) phosphate; TPHP: triphenyl phosphate; DCP: diphenylcresyl phosphate; TBOEP: tris(2-butoxyethyl) phosphate; 
2IPPDPP: 2-isopropylphenyl diphenyl phosphate; 4IPPDPP: 4-isopropylphenyl diphenyl phosphate; TMCP: tricresyl phosphate; EHDPP: 2-ethylhexyldiphenyl phosphate; B4IPPPP: bis(4-isopropylphenyl) phenyl 
phosphate; T2IPPP: tris(2-isopropylphenyl) phosphate; TEHP: tris(2-ethylhexyl) phosphate.

60% of analyzed samples.

The persistence of TPHP in dust samples could be related to their widespread use in polyvinyl chloride (PVC)-based products, plastics, flooring, electronic 
products, hydraulic fluids, and flexible polyurethane foam for car upholstery[48]. Zhou and Püttmann[49] also reported a high TPHP occurrence (93%) in 
household samples and building materials markets. A study also related high TPHP values in dust to its presence in mattresses[50]. The high frequency detection 
of DCP could be related to their common use as plasticizer for PVC[20]. TEP follows as the most frequently detected compound, and this OPE is used in resins, 
plastics, rubbers, defoamers, and as flame retardant in rigid urethane foam[51]. Regarding TCEP, this compound is being replaced by TCIPP due to its 
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carcinogenicity[52], and, consequently, we also observed a high contribution of TCIPP in the total 
concentration of dust samples.

Regarding concentration levels, the most contributing compound on the total OPE concentrations in home 
dust was TCIPP (mean value of 81.7 μg/g), followed by TPHP (27.0 μg/g), TDClPP and TBOEP (14.3 μg/g), 
and TCEP (13.7 μg/g). For car dust samples, TDClPP was the most contributing OPE (mean value of 
176 μg/g), followed by TPHP (126 μg/g), TCIPP (71.1 μg/g), and TBOEP (34.1 μg/g). The OPE pattern was 
different for home and car samples; however, the most contributing compounds were the same: TCIPP, 
TDClPP, TPHP, TBOEP, and TCEP [Figure 1].

Zhou et al.[32] analyzed indoor dust samples from different indoor microenvironments in Germany, and they 
found that TBOEP and TCIPP were the most abundant OPEs. Another study of indoor dust showed that 
the most abundant OPEs were TCIPP, TCEP, and TPHP, with mean values of 0.52, 0.29, and 0.18 μg/g, 
respectively[53]. Wang et al.[54] analyzed dust samples collected from a college library, and they found the 
highest concentrations for TCEP (0.03-68.4 μg/g), TCIPP (0.11-64.6 μg/g), and TBOEP (0.10-58.2 μg/g). 
Thus, the different published studies, as well as the results of our study, showed the prevalence of the same 
OPE compounds.

Daily intake estimations
EDI values were calculated based on exposure factors and OPE concentrations in dust from homes. 
Humans can be exposed to OPEs by dust through non-dietary routes such as ingestion, air inhalation, and 
dermal absorption. However, ingestion and dermal absorption have been reported as predominant 
pathways[12]. The EDIs of OPEs through dust ingestion (EDIIngestion) and dermal absorption (EDIDermal) were 
estimated. The results are presented in Supplementary Tables 8 and 9. Because body weight, ingestion rate, 
and body surface area vary with the age, we estimated the EDIs for five age groups: infants (< 1 year), 
toddlers (1-3 years), children (4-10 years), teenagers (11-18 years), and adults (≥ 19 years).

The obtained mean EDIIngestion values ranged from 0.03 ng TPPO/kg-bw/day for teenagers and adults from 
Bogotá to 110 ng TDClPP/kg-bw/day for toddlers from Cartagena. Regarding EDIDermal, mean values were 
between 0.49 ng TPPO/kg-bw/day for adults from Bogotá and 42.7 ng TCEP/kg-bw/day for infants from 
Cartagena. EDIs varied depending on the pathway, the age group, and the city. Among the cities, EDIs 
decreased for the most of OPEs in the following order: Cartagena > Medellín > Bogotá. As regards the age 
group, in general, EDIs decreased with the age. Toddlers were the most exposed group for dust ingestion, 
being their EDIIngestion values on average 50 and 70 times higher than those for teenagers and adults, 
respectively. Dust ingestion is an important pathway of pollutant exposure for toddlers because they spend a 
significant amount of time on the floor, where they touch different objects with their fingers and transfer 
them to the mouth, as a result of the hand-to-mouth behavior. On the other hand, infants presented the 
highest EDIDermal values, being 50 times greater than those for teenagers and adults. Moreover, dust ingestion 
was the dominant pathway for infants and toddlers, whereas dermal absorption was the dominant pathway 
for teenagers and adults [Figure 2]. In the case of Medellín, where we collected dust samples from both 
houses and cars, we estimated the EDI values from the exposure in both microenvironments. The 
EDIHouse + Car values were estimated as the sum of the EDIHouse and EDICar from dust ingestion and dermal 
absorption [Supplementary Table 10]. EDIHouse + Car values ranged from 0.05 ng TEHP/kg-bw/day for 
teenagers to 51.5 ng TDClPP/kg-bw/day for infants. In general, EDIHouse + Car via dust decreased in the order: 
toddlers > infants > children > teenagers > adults. Moreover, the EDIHouse + Car values of OPEs for toddlers 
decreased in the order: TCEP > TDClPP > TPPO > TCIPP > TMCP > TEHP. For both routes of exposure, 
dust ingestion and dermal absorption, EDICar values were slightly different from EDIHouse ones. Variations 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4671-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4671-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4671-SupplementaryMaterials.pdf
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Figure 1. Percentage contribution of detected OPEs to the total concentration levels in dust from homes of Cartagena, Bogotá, and 
Medellín, as well as in Medellín cars. OPEs: Organophosphate esters; TEP: triethyl phosphate; TCEP: tri(2-chloroethyl) phosphate; 
TPPO: triphenylphosphine oxide; TCIPP: tris(chloroisopropyl) phosphate; TPP: tri-n-propyl phosphate; TDClPP: tris(1,3-dichloro-2-
propyl) phosphate; TPHP: triphenyl phosphate; DCP: diphenylcresyl phosphate; TBOEP: tris(2-butoxyethyl) phosphate; 2IPPDPP: 2-
isopropylphenyl diphenyl phosphate; 4IPPDPP: 4-isopropylphenyl diphenyl phosphate; TMCP: tricresyl phosphate; EHDPP: 2-
ethylhexyldiphenyl phosphate; B4IPPP: bis(4-isopropylphenyl) phenyl phosphate; IPPP: tris(2-isopropylphenyl) phosphate; TEHP: 
tris(2-ethylhexyl) phosphate.

Figure 2. Contribution of different pathways (dust ingestion and dermal absorption) to OPE exposure via home dust, for different age 
groups in Bogotá. TCEP: Tri(2-chloroethyl) phosphate; TPPO: triphenylphosphine oxide; TCIPP: tris(chloroisopropyl) phosphate; 
TDCIPP: tris(1,3-dichloro-2-propyl) phosphate; TMCP: tricresyl phosphate; TEHP: tris(2-ethylhexyl) phosphate.

were related to the different OPE profiles in cars and homes as well as the different fraction time of the day 
spent traveling in a car (0.044-0.065, depending on the age group) and at home (0.792-0.875). Few studies 
have focused on the OPE exposure traveling in a car or other type of transport. Our obtained EDI values for 
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toddlers (34.6 and 0.24 ng/kg-bw/day for TCIPP and TEHP, respectively) were similar to those reported in 
Thailand (22.4 and 0.16 ng/kg-bw/day for TCIPP and TEHP, respectively)[55].

Human exposure assessment
Monte Carlo analysis has become a powerful tool in environmental risk assessment because it incorporates 
the quantitative uncertainty analysis into the risk estimate. HQ values were simulated by Monte Carlo 
technique providing a useful, systematic, and quantitative description of the human health risk of OPE 
exposure via dust ingestion and dermal absorption. The final result was a probabilistic density function 
(PDF) of the HQ for OPEs exposure through dust. HQ values were reported for the sum of the ingestion 
and dermal absorption pathways, which varied depending on the age group, city, and type of OPE [Table 2, 
Figure 3]. The obtained mean values ranged from 0 to 0.014, being always below the safe value of 1. Similar 
results were obtained when exposure to dust car was also included and added to the exposure to dust homes 
[Supplementary Table 11]. The highest HQ values were found for TCEP: this compound was one of the 
most frequently detected OPEs (60%), found at high concentration levels in home dust (mean value of 
13.7 μg/g), and has the lowest RfD value (7 μg/kg-bw/day). Supplementary Figure 2 shows the PDFs of the 
risk for TCEP in Bogotá homes, and we observed an approximately lognormal distribution for the different 
age groups. Expected risks were 5.52 × 10-3, 6.13 × 10-3, 3.62 × 10-3, 2.08 × 10-3, and 1.94 × 10-3 for infants, 
toddlers, children, teenagers, and adults, respectively. However, there is a roughly 50% probability that the 
expected risk for the population will be less than these values. In general, TCEP is 100-800 times below the 
expected risk for the whole population, TCIPP 400-3000 times, TDClPP 200-3000 times, TEHP 5000-1 × 
106, TMCP 200-3 × 104 times, and TPPO 2000-5 × 106. These results suggest that the contribution of dust 
ingestion and dermal absorption to OPE exposure do not pose a health risk for infants, toddlers, children, 
teenagers, and adults in the three Colombian cities.

Some toxicological studies have found that TCEP and TEHP have carcinogenic potential and indoor dusts 
vary according to the indoor environments studied[56-58]. ILCR values were estimated in the three cities and 
for the different age groups [Table 3, Figure 4]. The ILCRs estimated by MCS were higher via dust ingestion 
than those via dust dermal absorption. The guideline recommended by US-EPA as safe limit for ILCR is a 
value of 1 × 10-6[39]. ILCR values estimated for TCEP ranged from 1.14 × 10-5 for infants in Bogotá to 4.27 × 
10-4 for adults in Cartagena, while ILCRs for TEHP ranged from 8.79 × 10-7 for infants in Bogotá to 1.03 × 
10-5 for adults in Bogotá. Due to the assumed longer lifetime exposure for adults, ILCR values were 40 and 
12 times higher in adults than in infants for TCEP and TEHP, respectively. In a worst-case scenario and 
assuming the highest dust intake and dermal absorption, ILCRs estimated at 95th percentile were 1.39 × 10-3 
for TCEP in Cartagena and 1.71 × 10-5 for TEHP in Bogotá. Because mean and 95th percentiles were higher 
than the safe limit of 1 × 10-6, there is a moderate probability of cancer risk through TCEP and TEHP 
exposure by dust ingestion and dermal absorption, which is a cause of concern for the public health. A 
recent study in Saudi Arabia[55] estimated a cancer risk from OPE exposure via dust similar to our 
estimations for the Colombian population. Our ILCR results were three orders of magnitude higher than 
those reported for Saudi Arabia.

This study only focused on the OPE exposure through contaminated dust. However, it is important to note 
that OPE exposure also occurs in other indoor environments (workplaces), as well as by other routes, such 
as air inhalation and food and beverage ingestion. The sum of all these exposures should increase the 
estimated risk, both for non-carcinogenic (HQ) and carcinogenic (ILCR) values, which would lead to a 
higher risk of harmful effects on human health. Different research studies have determined that prolonged 
human exposure to OPEs can cause adverse effects such as neurotoxicity, reproductive toxicity, 
carcinogenicity, and endocrine disruption.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4671-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4671-SupplementaryMaterials.pdf
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Table 2. Hazard quotients of OPEs via dust ingestion and dermal absorption exposure

Bogotá Cartagena Medellín
OPEs Age groups

Mean SD Median 95th percentile Mean SD Median 95th percentile Mean SD Median 95th percentile

TCEP Infant 5.52E-03 6.65E-03 3.63E-03 1.61E-02 1.24E-02 1.82E-02 6.70E-03 4.14E-02 6.12E-03 1.01E-02 3.06E-03 2.16E-02

Toddler 6.13E-03 7.88E-03 3.97E-03 1.80E-02 1.36E-02 2.09E-02 7.30E-03 4.55E-02 5.91E-03 9.72E-03 2.92E-03 2.08E-02

Children 3.62E-03 4.20E-03 2.40E-03 1.04E-02 8.09E-03 1.18E-02 4.41E-03 2.66E-02 4.13E-03 7.43E-03 2.04E-03 1.44E-02

Teenager 2.08E-03 2.20E-03 1.48E-03 5.74E-03 4.64E-03 6.35E-03 2.72E-03 1.49E-02 2.33E-03 3.68E-03 1.24E-03 7.90E-03

Adult 1.94E-03 2.07E-03 1.37E-03 5.27E-03 4.28E-03 5.55E-03 2.52E-03 1.38E-02 2.16E-03 3.33E-03 1.16E-03 7.07E-03

TPPO Infant 1.09E-04 1.17E-04 7.51E-05 3.01E-04 1.59E-04 1.46E-04 1.19E-04 4.12E-04 1.74E-03 4.80E-03 6.14E-04 6.22E-03

Toddler 1.28E-04 1.42E-04 8.72E-05 3.70E-04 1.88E-04 1.79E-04 1.36E-04 5.11E-04 1.70E-03 4.70E-03 5.98E-04 6.09E-03

Children 6.64E-05 6.98E-05 4.62E-05 1.81E-04 9.78E-05 9.16E-05 7.20E-05 2.53E-04 1.05E-03 2.65E-03 3.77E-04 3.83E-03

Teenager 2.78E-05 2.14E-05 2.19E-05 6.76E-05 4.09E-05 2.59E-05 3.46E-05 8.98E-05 4.34E-04 9.53E-04 1.77E-04 1.54E-03

Adult 2.56E-05 1.92E-05 2.05E-05 6.19E-05 3.79E-05 2.37E-05 3.21E-05 8.26E-05 4.07E-04 8.99E-04 1.65E-04 1.44E-03

TCIPP Infant 2.05E-03 1.68E-03 1.58E-03 5.17E-03 2.60E-03 2.10E-03 2.04E-03 6.30E-03 1.20E-03 1.18E-03 8.73E-04 3.14E-03

Toddler 2.33E-03 2.11E-03 1.75E-03 6.11E-03 2.93E-03 2.44E-03 2.26E-03 7.34E-03 1.16E-03 1.15E-03 8.35E-04 3.05E-03

Children 1.35E-03 1.19E-03 1.03E-03 3.47E-03 1.69E-03 1.35E-03 1.35E-03 3.97E-03 7.78E-04 7.33E-04 5.75E-04 2.00E-03

Teenager 7.33E-04 5.05E-04 6.08E-04 1.67E-03 9.19E-04 5.44E-04 7.85E-04 1.94E-03 4.23E-04 3.19E-04 3.37E-04 1.04E-03

Adult 6.78E-04 4.53E-04 5.63E-04 1.54E-03 8.52E-04 4.94E-04 7.36E-04 1.79E-03 3.92E-04 2.95E-04 3.14E-04 9.69E-04

TDCIPP Infant 1.74E-04 1.79E-04 1.21E-04 4.84E-04 6.40E-03 9.13E-03 3.75E-03 2.04E-02 2.24E-04 2.56E-04 1.53E-04 6.19E-04

Toddler 2.03E-04 2.08E-04 1.40E-04 5.63E-04 7.42E-03 1.04E-02 4.31E-03 2.41E-02 2.19E-04 2.52E-04 1.49E-04 6.05E-04

Children 1.06E-04 1.08E-04 7.46E-05 2.92E-04 3.91E-03 5.61E-03 2.28E-03 1.22E-02 1.37E-04 1.53E-04 9.52E-05 3.82E-04

Teenager 4.40E-05 3.17E-05 3.57E-05 1.03E-04 1.63E-03 1.83E-03 1.08E-03 4.82E-03 5.69E-05 4.53E-05 4.48E-05 1.40E-04

Adult 4.09E-05 3.00E-05 3.30E-05 9.71E-05 1.51E-03 1.68E-03 9.88E-04 4.42E-03 5.28E-05 4.15E-05 4.17E-05 1.26E-04

TMCP Infant 2.10E-04 2.76E-04 1.32E-04 6.41E-04 6.92E-04 6.86E-04 5.02E-04 1.85E-03 4.13E-04 4.87E-04 2.67E-04 1.24E-03

Toddler 2.47E-04 3.20E-04 1.52E-04 7.52E-04 8.11E-04 7.98E-04 5.72E-04 2.23E-03 4.04E-04 4.79E-04 2.60E-04 1.22E-03

Children 1.29E-04 1.69E-04 8.11E-05 3.87E-04 4.25E-04 4.08E-04 3.05E-04 1.16E-03 2.58E-04 3.31E-04 1.64E-04 7.47E-04

Teenager 5.36E-05 5.27E-05 3.86E-05 1.46E-04 1.78E-04 1.25E-04 1.45E-04 4.14E-04 1.06E-04 9.90E-05 7.75E-05 2.81E-04

Adult 4.94E-05 4.66E-05 3.56E-05 1.33E-04 1.64E-04 1.14E-04 1.34E-04 3.81E-04 9.87E-05 9.04E-05 7.29E-05 2.64E-04

TEHP Infant 1.91E-04 1.40E-04 1.53E-04 4.44E-04 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00

Toddler 2.24E-04 1.66E-04 1.77E-04 5.27E-04 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00

Children 1.16E-04 8.32E-05 9.46E-05 2.58E-04 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00

Teenager 4.86E-05 1.74E-05 4.55E-05 8.05E-05 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00

Adult 4.50E-05 1.57E-05 4.23E-05 7.44E-05 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00
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SD: Standard deviation; OPEs: organophosphate esters; TCEP: tri(2-chloroethyl) phosphate; TPPO: triphenylphosphine oxide; TCIPP: tris(chloroisopropyl) phosphate; TDCIPP: tris(1,3-dichloro-2-propyl) phosphate; 
TMCP: tricresyl phosphate; TEHP: tris(2-ethylhexyl) phosphate.

Table 3. Incremental lifetime cancer risk simulated by Monte Carlo for TEHP and TCEP exposure via home dust

Bogotá Cartagena Medellín
OPEs Age group

Mean SD Median 95th percentile Mean SD Median 95th percentile Mean SD Median 95th percentile

TCEP Infant 1.14E-05 1.34E-05 7.31E-06 3.32E-05 2.45E-05 3.71E-05 1.34E-05 8.16E-05 1.26E-05 2.29E-05 6.30E-06 4.30E-05

Toddler 6.91E-05 8.35E-05 4.43E-05 2.07E-04 1.51E-04 2.36E-04 8.07E-05 4.99E-04 7.90E-05 1.60E-04 3.69E-05 2.80E-04

Children 9.12E-05 1.08E-04 5.91E-05 2.69E-04 1.95E-04 3.04E-04 1.09E-04 6.32E-04 1.03E-04 1.96E-04 5.00E-05 3.60E-04

Teenager 8.10E-05 8.22E-05 5.56E-05 2.28E-04 1.73E-04 2.30E-04 1.03E-04 5.45E-04 9.20E-05 1.53E-04 4.77E-05 3.09E-04

Adult 1.98E-04 2.01E-04 1.36E-04 5.65E-04 4.27E-04 5.73E-04 2.51E-04 1.39E-03 2.23E-04 3.61E-04 1.16E-04 7.72E-04

TEHP Infant 8.79E-07 6.46E-07 6.97E-07 2.05E-06 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00

Toddler 5.64E-06 4.14E-06 4.51E-06 1.31E-05 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00

Children 6.49E-06 4.57E-06 5.25E-06 1.45E-05 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00

Teenager 4.23E-06 1.53E-06 3.96E-06 7.03E-06 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00

Adult 1.03E-05 3.69E-06 9.66E-06 1.71E-05 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00

SD: Standard deviation; OPEs: organophosphate esters; TCEP: tri(2-chloroethyl) phosphate; TEHP: tris(2-ethylhexyl) phosphate.

It is important to make a special mention of the many uncertainties associated with the estimations of OPE exposure because various factors such as personal 
habits, occupation, dietary preferences, variation of OPE concentrations from room-to-room, continuous use of consumer products containing OPEs, time 
spent indoors or outdoors, seasonal dust variation, skin exposure, or ventilation can all affect the magnitude of the exposure.

CONCLUSIONS
The occurrence of OPEs in dust from homes and cars in three Colombian cities was reported for the first time. Sixteen OPEs were detected at concentrations 
up to 599 μg/g, being the levels similar to those reported in other countries around the world. Levels in car dust samples were higher than those of home dust, 
but the most contributing OPE compounds were the same in both microenvironments: TCIPP, TDClPP, TPHP, TBOEP, and TCEP.

The EDIs through dust ingestion and dermal absorption were estimated for five different age groups. In general, EDI values decreased with age. Moreover, 
dust ingestion was the dominant pathway for infants and toddlers, whereas dermal absorption was the dominant pathway for teenagers and adults.
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Figure 3. Mean hazard quotients (HQs) simulated by MCS for OPE exposure via home dust: (A) HQ variation among cities; and (B) HQ 
variation by age group. MCS: Monte Carlo simulation; OPE: organophosphate ester; TCEP: tri(2-chloroethyl) phosphate; TCIPP: 
tris(chloroisopropyl) phosphate; TDCIPP: tris(1,3-dichloro-2-propyl) phosphate; TEHP: tris(2-ethylhexyl) phosphate; TMCP: tricresyl 
phosphate; TPPO: triphenylphosphine oxide.

Non-carcinogenic risk was evaluated by the estimation of HQ values using MCS, which provided 
quantitative description of the human health risk of OPE exposure via dust ingestion and dermal 
absorption. Obtained mean values ranged from 0 to 0.014, being always below the safe value of 1. Moreover, 
the carcinogenic risk was also estimated by the ILCRs obtained through MCS, showing higher values for 
dust ingestion than those for dermal absorption. ILCRs ranged from 1.14 × 10-5 to 8.79 × 10-7, being for 
many cases higher than the safe limit value (1 × 10-6). Due to the assumed longer lifetime exposure for 
adults, ILCR values were forty and twelve times higher in adults than infants for TCEP and TEHP, 
respectively.

Estimated ILCR values for TCEP and TEHP showed that these populations are exposed to moderate cancer 
risk, being a cause of concern for the public health. In this context, adopting the precautionary principle, it 
would appear desirable to reduce overall human exposure to OPEs. Environmental legislation should pay 
more attention to this health problem and act with measures aimed at reducing the degree of human 
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Figure 4. Cumulative distribution of ILCR simulated by MCS for OPEs (TEHP and TCEP) exposure via home dust: (A) distribution by 
cities; and (B) distribution by age groups. ILCR: Incremental lifetime cancer risk; MCS: Monte Carlo simulation; OPEs: organophosphate 
esters; TEHP: tris(2-ethylhexyl) phosphate; TCEP: tri(2-chloroethyl) phosphate.

exposure to OPEs.
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