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Role of neuroinflammation in ischemic stroke
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Ischemic stroke causes the depletion of energy and induce excitotoxicity and neuroinflammation 
in the brain that results from thrombotic blockage. Neuroinflammation occurs initially 
depending on activated resident microglia that has the same function as the macrophage. 
Activated microglia participates in the neuroinflammatory process by phagocytosing the 
injured brain cells and producing the pro- and anti-inflammatory mediators. In this review, 
the authors present an overview of the role of microglia in mediating neuroinflammation in 
ischemic stroke.
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INTRODUCTION

Stroke is an acute episode of focal dysfunction of the 
brain, retina or spinal cord lasting longer than 24 h, or 
for any duration if imaging (computed tomography or 
magnetic resonance imaging) or autopsy show focal 
infarction or hemorrhage relevant to the symptoms. 
Stroke is comprised of ischemic stroke (most 

common at approximately 85%) causing cerebral, 
retinal, and spinal infarction and hemorrhagic stroke 
(15%) that may result from intracerebral hemorrhage 
and subarachnoid hemorrhage [Figure 1]. Almost 
90% of strokes are attributable to risk factors such 
as hypertension, regular physical inactivity, high 
apolipoprotein, insufficient diet quality, psychosocial 
factors, current smoking, cardiac causes, high alcohol 
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consumption, and/or diabetes mellitus.[1]

Ischemic stroke is caused by arterial embolism and 
in situ small vessel diseases. Embolism in brain 
results in oxygen and glucose deprivation, leading 
to brain damage and neurologic deficit. The cellular 
and molecular mechanisms underlying ischemic 
stroke-induced brain damage have been extensively 
investigated. Excitotoxicity, oxidative stress, and 
inflammation have been considered as major 
contributors to ischemic neuronal injury.[2] Cerebral 
ischemia induces large release of glutamate that 
causes over-activation of NMDA receptors and 
large inflow of Ca2+, leading to excitotoxicity-induced 
cell death.[3-7] The process of ischemia-reperfusion 
induces the production of superoxide and nitric oxide 
from damaged neurons and astrocytes and depletes 
glutathione, a primary antioxidant to protect against 
reactive oxygen species-mediated DNA damage.[8-10] 
Inflammation occurs after ischemia-reperfusion injury, 
which is caused by the dying cells and debris in the 
absence of microbes.[11,12]

There is an increasing evidence to showing complex 
role of the immune system in the pathophysiological 
changes that occur following ischemic stroke.[13] 
For example, brain injury activates neutrophils 
and macrophage/microglia,[14] as well as the lectin 
pathway of complement activation and the toll-like 
receptors (TLRs) that are the sensors in the innate 
immune system,[15,16] which leads to amplification of 
the inflammatory cascades. The immune system is 
closely involved in all the stages of ischemic stroke-
induced brain damage and tissue repair by the 
parenchymal processes.[17,18] When activated, the 
adaptive immune system is intervened by lymphocyte 
populations that include T - B cells and regulatory T 

cells.[19] Additionally, stroke induces the deleterious 
antigen-specific autoreactive responses, but it also 
has beneficial effects.[20] The ischemic brain can 
act through the autonomic nervous system to have 
suppressive effect that can induce intercurrent 
infections and contribute to the morbidity and mortality 
after stroke.[21-23] Therefore, immune system-mediated 
inflammation is critically involved in determining 
the fate of the brain following ischemic stroke.[24-26] 
Understanding the mechanisms underlying role of 
neuroinflammation in ischemic stroke would provide 
important targets for the development of therapy in 
ischemic stroke.

The aim of this review is to offer an overview of the 
current knowledge about the immune system and the 
neuroinflammatory processes in ischemic stroke. We 
focus on how the neuroinflammatory processes are 
triggered by ischemic stroke, and how microglia cells 
play a role in neuroinflammation after ischemic stroke.

NEUROINFLAMMATION

Neuroinflammation, an inflammatory response in the 
brain, occurs in a variety of acute brain diseases.[27,28] 
The non-diseased brain is separated by the blood brain 
barrier (BBB) from periphery.[29] The BBB prevents 
immune cells that are in the blood from entering 
brain tissue.[30] Brain is an independent immune-
privileged organ with the innate. Neuroinflammation 
is regulated by the production of reactive oxygen 
species (ROS), cytokines and chemokines.[31] Once 
neuroinflammation happens, it enhances the release 
of several cytokines in the brain.[32,33] It also involves 
the reaction of innate immune cells (i.e. the microglia) 
in the parenchyma, the infiltration of myeloid cells 
and the adaptive immune cells (i.e. lymphocytes).[34] 
But the own innate immune system of brain operates 
mainly dependent on microglia, astrocyte and the 
expression of TLRs on these glia as well as the 
release of interleukins.[35,36]

Microglia is an innate immune cell that is well-
characterized as the resident macrophage of 
the brain.[37] Astrocyte is important mediator of 
homeostasis in the brain.[38] These two cells are key 
players in the multicellular response to central nervous 
system (CNS) trauma and disease, including the 
immune reactions.[39,40] TLRs, the well-defined pattern 
recognition receptors of the immune system,[41] can 
initiate an immune response upon exposure to harmful 
microorganisms[42] and play a key role in macrophage 
activation. Neuronal TLR’s play a central role in 
connecting the interactions between the immune 
system and the nervous system.[42] Interleukin’s act as 

Figure 1: Stroke is comprised of ischemic stroke (85%) and 
hemorrhagic stroke (15%) (intracerebral hemorrhage and 
subarachnoid hemorrhage)
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essential innate immune modulators and conduct an 
array of biological processes.[43]

The neuroinflammation process is decided by the 
scene, duration and course of the neurological 
insult.[44] Neuroinflammation can perform function 
that are either supportive or destructive by which is 
determined by the immune signals relayed to the 
CNS. The nature of neuroinflammatory function 
can depend on the conditions and the intensity 
and duration of inflammation.[45] The positive role 
associated with neuroinflammation is only present 
for a brief, controlled inflammatory situations and  
responses and this can be considered as performing 
a protective function to the host organism.[46-48] For 
example, during low transient inflammation that may 
occur during infections, the immune cell signals to the 
brain by increasing the expression of interleukin (IL)-
1 cytokine, this then increasing the ‘survellience’ role 
of glia cells in the brain if infected.[49,50] The transient 
inflammation of traumatic CNS injury, following the 
expression of IL-4, has been shown to promote injury 
recovery and axonal regrowth.[51,52] On the contrary, 
the negative aspects of neuroinflammation mainly 
represent maladaptive inflammatory responses.[53,54] 
The common characteristics of this aspect is 
increasing, supraphysiological production of cytokines 
[IL-1 and tumor necrosis factor (TNF)], ROS, and other 
inflammatory mediators including inducible nitric oxide 
synthase.[55] These markers are highly evident in the 
high traumatic CNS, giving rise to collateral damage.[56] 
Following the acute phase of CNS trauma, the IL-1 
and IL-6 drive a low-level and chronic inflammatory 
response, leading to cognitive impairments and 
reduced neuronal plasticity.[57]

MICROGLIA AND NEUROINFLAMMATION

Microglia are the innate immune cells of the CNS, 
and are key modulators of the immune response in 
the brain.[37] Microglia is considered as the resident 
macrophage in the brain and the initial responders 
to tissue damage.[58] Microglia express receptors that 
respond to various stimuli that may as a consequence 
result in there activation.[59] A large number of studies 
indicate that microglia expresses different proteins and 
cytokines that display different role to express different 
function.[60] Activated microglia have two phenotypes: 
classically activated (M1) and alternatively activated 
(M2).[61] The M1 microglia are pro-inflammatory and 
thus secrete cytokines and oxidative metabolites such 
as IL-1β, TNF, IL-6 and nitric oxide,[62] whereas M2 
microglia contributes to recovery after brain injury. 
M2 microglia expresses anti-inflammatory mediators, 
such as IL-10, IL-4 and give out various neurotrophic 

factors, which prevent inflammation and improve injury 
[Figure 2].[63] M1 microglia tends to induce neuronal 
cell death. Recent research has demonstrated that 
the M1 phenotype microglia can be switched to the 
M2 phenotype.[64] One study has shown that HIV-
associated dementia initiates and maintains M1 
phenotype microglia in the CD40 ligation by CD40L 
and TNFα. These microglia may later switch microglia 
to the M2 phenotype via up-regulation of CD45.[65] In 
a pathological condition, the corresponding stimuli 
may active microglia and cause them to change 
their shape and function and initiate phagocytosis.[66] 
Microglia works in close association with astrocytes 
to release cytokines that lead to a cascade of events 
which can modulate the neuroinflammatory respond. 
Meanwhile, the microglia cells produce and release 
excitotoxic metabolites that can damage surrounding 
tissue. Sometimes a short-term neuroinflammatory 
response is likely good for recovering the damages 
or infected tissue.[67] On the contrary, a long period 
of time neuroinflammatory process may damage the 
surrounding brain tissue.[68]

ROLE OF MICROGLIA IN 
NEUROINFLAMMATION AFTER STROKE

Neuroinflammation occurs in different types of 
brain injuries including ischemic stroke. Ischemic 
stroke mediated brain injury results in necrosis 
and apoptosis.[69-71] The damaged cells and debris 
induces neuroinflammation in areas in and around the 
ischemic injury in the brain.[72] Ischemia-induced cell 
debris and increased ROS lead to neuroinflammation 
by activating resident microglia and astrocytes 
as well as attracting infiltrating leukocytes from 
circulating blood.[73] These cells increase major 

Figure 2: Activated microglia has two activation phenotypes: 
classically activated (M1) and alternatively activated (M2). 
M1 microglia is considered as pro-inflammatory, activated by 
LPS which produces pro-inflammatory cytokines and oxidative 
metabolites such as IL-1β, TNF, IL-6 and nitric oxide. M2 microglia 
contributes to recovery after brain injury activated by IL-4 and 
express anti-inflammatory mediators, such as IL-10, IL-4, TGFβ. 
LPS: lipopolysaccharide; IL: interleukin; TNF: tumor necrosis factor; 
TGF: transforming growth factor
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histocompatibility complex class II molecules and 
cytokines.[74-76] Following activation of microglia, the 
release of pro-inflammatory mediators from these 
microglia favor the permeability of the BBB. Together 
with the secretion of chemokines, this promotes the 
successive entry of systemic leukocytes including 
neutrophils, macrophages and lymphocytes, which 
share several functional features with microglia.[77,78]

Microglia is the resident macrophage of the brain 
and a key modulator of immunologic responses 
after ischemic stroke. Under normal conditions, 
microglia is primarily involved in activity-dependent 
synaptic pruning and repair.[37] When ischemic 
stroke occurs, the native microglia undergoes 
morphological transformation from a ramified resting 
state in preparation for the forthcoming immune 
response.[79,80] Once reperfusion beginning, microglia 
come to be activated to an active, characterized by 
many branching processes in the penumbra, motile 
amoeboid state.[81] These activated microglia start 
to engulf endothelial cells via phagocytosis, which 
allows the entrance of blood serum components.[82] 
Active microglia phagocytoses foreign organisms as 
well as injured brain cells.[60,83] In ischemic stroke, 
activation of microglia is the early stages of the 
neuroinflammation process even within minutes.[83-85] 
Several reports have demonstrated that defective 
microglial activation increased the infarction and 
apoptosis after ischemic stroke.[86]

Microglial activation following ischemic stroke can 
promote activated microglia to migrate toward the 
ischemic hemisphere of the cerebral cortex.[87] It is 
suggested that active microglia have predominantly 
harmful effects in the acute stages of ischemic 
stroke and most beneficial effects appear in delayed 
stages.[62,88] Microglia morphology is changed 
either to M1, the typically activated phenotype, or 
to M2, an alternatively activated phenotype, after 
stroke.[61,89,90] M1 microglia activated by LPS and the 
pro-inflammatory cytokine interferon-gamma (IFN-γ) 
shows harmful effect after stroke.[91] In contrast, M2 
phenotype microglia contribute to stroke recovery 
through anti-inflammatory cytokines such as IL-4.[92] 
In ischemic stroke, the M2 phenotype is dominant in 
both local microglia and newly recruited macrophages 
at earlier stages. The M1 phenotype increases 
progressively in peri-infarct regions. Thus, ischemic 
neuron induces changes towards the M2 phenotype 
in microglia and macrophages.[62] Considering the 
opposing roles of microglia phenotypes in ischemic 
stroke, it is critical to develop therapeutic strategy 
by restraining the morphological transformation and 
promoting the beneficial of microglia.

ROLES OF CYTOKINES IN CEREBRAL 
ISCHEMIA

IFN-γ
IFN is a type cytokines that plays a key role in the 
immune system. The IFN family cytokines are divided 
into two types. Type I IFNs constitute by a largest 
IFN class and comprise the IFN-α, -β, -ε, -κ, and 
-ω, type that share notable sequence homology and 
are produced by most cell types. IFN-γ is a unique 
member of the type II IFN.[93,94] IFN-γ is principally 
secreted by monocytes, macrophages, T cells, natural 
killer (NK) cells, dendritic cells and B lymphocytes. 
IFN-γ is a critical regulator of immune function and 
provides a robust first-line of defense against invading 
pathogens. Additionally, IFN-γ has plenty of biological 
functions including regulation of several aspects 
of the immune responses, stimulation of antigen 
presentation via upregulating class I and class II 
major histocompatibility complex (MHC) molecules on 
the surface of macrophages and T cells. IFN-γ when 
bound to its cognate receptor can activate a variety 
of downstream signaling pathways, particularly the 
Janus kinase (JAK)/signal transducer and activator of 
transcription (STAT).[95,96] All of these characteristics 
potentially influence the process of atherogenesis. 
Numerous lines of evidence have indicated that IFN-γ 
is highly expressed in atherosclerotic lesions and 
believed to have a critical role in the atherogenesis.[97] 
Stroke is the main atherosclerosis disease.[98] Under 
inflammatory conditions, MHC class II specific CD4+ 
cells will be activated. Activated CD4+ cells easily 
infiltrate through BBB into the CNS following cerebral 
I/R.[99] Therefore, microglia have the opportunity 
to retain and further stimulate CD4+ cells already 
primed to differentiate into T helper 1 (TH1) cells 
producing proinflammatory cytokines (IL-2, IFN-γ, 
TNF-α) or into T helper 2 (TH2) cells producing 
cytokines that support antibody-mediated responses 
(IL-4, IL-5, IL-10, lL-13).[100] IFN-γ is thought to have 
a key role in the polarization of microglia. TH1 cells 
produces proinflammatory cytokines IFN-γ that can 
return to activation microglia into M1 phenotype, 
shows pro-inflammatory response, and produces pro-
inflammatory cytokines and oxidative metabolites.

IL-1β
IL-1β belongs to the family IL-1. IL-1β is a key 
immunoregulatory and proinflammatory cytokine 
that affects almost all cell types. IL-1β is produced 
following the formation of a inflammasome; such 
as monocytes and macrophage/microglia.[101] After 
Ischemic stroke, IL-1β can activate nuclear factor 
(NF)-κB via the activation of TLRs allowing NF-κB 
to transactivate genes associated with cytokines, 
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chemokines and other proinflammatory mediators.[102] 
In a pathological condition, IL-1β also connects with 
the activation and proliferation of astrocytes and 
microglia. After Ischemic stroke, the microglia will be 
activated, the M1 phenotype of microglia can express 
IL-1β which act as a proinflammatory cytokines to play 
neurotoxic effect.[62] In addition, IL-1β can prime the 
endothelium for increased leukocyte adherence and 
edema formation.[103] At supraphysiological levels IL-1β 
can be neurotoxic, however, IL-1β can also promote 
astrocytes to secrete survival promoting factors.[104] IL-
1β when bound to its cognate receptor the IL-1 receptor 
(IL-1R) can also result in IL-1R-dependent increase in 
NF-κB pathways. However, if the levels of IL-1β are 
increased above a specific threshold, it can result in 
the increase of greater amounts of the IL-1 receptor 
antagonist (IL-1Ra). It is this balance between IL-1β 
and its antagonist the IL-1Ra that is more important 
for its global effect and role than just the IL-1β itself.[105] 
Thus, we predict that balance of IL-1β and IL-1Ra 
might be good predictor for patient outcome following 
ischemic stroke. However, few clinical studies have 
made use of their level as stroke biomarkers. IL-1β 
levels mostly were associated with poor long-term 
functional outcome in study,[106] while IL-1Ra levels 
have shown to be predictive of the development of 
post-stroke infections.[107]

Transforming growth factor beta
Transforming growth factor beta (TGF-β) proteins are 
multifunctional cytokines with pleiotropic functions.[108] 
TGF-β can regulate various biological processes, 
including hematopoiesis, angiogenesis, cell 
proliferation, differentiation, migration and apoptosis. 
TGF-β also plays an important role in the regulation of 
the immune system. TGF-β is a superfamily, including 
inhibins, activins, growth differentiation factors 
(GDFS), bone morphogenetic proteins (BMPs), TGF-β 
isoforms, and glial cell derived factors.[109] The main 
research object is TGF-β isoforms. TGF-β exists in at 
least three isoforms: TGF-β1, TGF-β2, and TGF-β3.[110] 
In the TGF-β superfamily, only TGF-β1, produced 
by activated microglia, and TGF-β2, produced by 
astrocytes and neurons.[111] TGF-β1 and TGF-β2 
increased prominently after ischemic stroke. After 
Ischemic stroke, TGF-β produced by activated M2 
phenotype macrophage, plays an anti-inflammatory 
role and contributes to recovery after brain injury.[63] 
TGF-β reduces microglial activation and thus reduces 
the potential harmful effects associated with activated 
microglia. TGF-β decreases the expression of other 
poisonous cytokines and suppresses the release of 
oxygen and nitrogen derived products. TGF-β can 
also stimulate the release of IL-1Ra and promote 
angiogenesis.[112] Its protective effects, however, are 

limited to the peri-infarcted area, as TGF-β can inhibit 
apoptosis but not necrosis.[113]

IL-4
IL-4, its congener of IL-13, a product of select immune 
cells that has highly polyfunctional properties. IL-4 is 
known to regulate a variety of immune and inflammatory 
responses, including T cell differentiation and IgE class 
in B cells.[114] IL-4 is primary produced by TH2 cells.[115] 
During CD4+ cellular activation, cytokines are through 
T cell receptor mediated signaling and co-stimulation. 
For instance, IL-4 mediated activation of the signal 
transducer and activator of transcription 6 plays an 
important role during TH2 cell differentiation.[116] IL-4 
have an unique properties as it polarizes macrophages/
microglia toward the M2 phenotype which is anti-
inflammatory phenotype.[117] M2 macrophages/
microglia expresses anti-inflammatory mediators and 
give out various neurotrophic factors that aid in the 
resolution of inflammation via increased trophic input 
and the augmentation of phagocytosis and proteolysis 
of dead, diseased cells/proteins, ultimately paving the 
way for tissue repair.[118] Consequently, IL-4 may have 
a neuroprotective function to promote tissue repair and 
may act as a therapeutic factor.

STROKE-ASSOCIATED INFECTION AND 
NEUROINFLAMMATION

Infection frequently occurs in both and after stroke 
that can induce immune and neuroinflammatory 
responses.[119-122] The characteristics of post-stroke 
infections include immune suppression, elevation 
of IL-6, decreases in TNF-α levels and inflammation 
are among the factors. Along with stroke-associated 
infection, inflammatory responses are the defense 
mechanism against infection and it can also be a 
pathogenic mechanism that precipitates stroke and 
neurological sequelae.[123] It is generally recognized 
that stroke-associated infection may be a source of 
inflammation and autoimmunity as infection facilitates 
the maturation of APCs into potent immunostimulatory 
cells.[124] Stroke-associated infection is mostly induced 
by virus.[125-127] Virus enters the CNS through two 
pathways: (1) hematogenous dissemination through 
BBB;[125] (2) neuronal retrograde dissemination.[126] It 
also suggested that virus can replicate in macrophage 
and CCR5+ T cells in the CNS.[127]

CONCLUSION

The role of neuroinflammation in ischemic stroke 
has drawn increasing attention. In this review, we 
summarize the relevance of inflammation in the nervous 
system and introduce the neuroinflammatory cells 



               Neuroimmunology and Neuroinflammation ¦ Volume 4 ¦ August 28, 2017

Liu et al.                                                                                                                                                                              Neuroinflammation in ischemic stroke

163

and mediators that occur following ischemic stroke. 
Microglia is the resident macrophages of the brain. 
After ischemic stroke, the M1 and M2 phenotype of 
microglia play different roles at different times. The M1 
phenotype tends to induce neuronal cell death, but M2 
microglia contributes to the recovery after brain injury. 
Down-regulation of M1 phenotype and up-regulation 
of M1 phenotype are considered to be the potential 
strategy to counteract ischemic brain injury. Recent 
research has demonstrated that the M1 phenotype can 
be switched to the M2 phenotype. But the underlying 
mechanisms remain unclear. Thus, understanding 
how and why the M1 phenotype is down-regulated 
and the M2 phenotype up-regulated are important 
current and next steps to improve our understanding 
of the differing role of microglia post-stroke. Probing 
the mechanisms of M1-M2 switch could provide new 
approach to protect against ischemic neuronal death. 
Properly controlling the transformation of microglia is 
an important task in the treatment of ischemic stroke.
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