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Abstract
RAS oncogenes are the most commonly mutated oncogenes in human cancer, and RAS-mutant cancers represent 
a major burden of human disease. Though these oncogenes were discovered decades ago, recent years have seen 
major advances in understanding of their structure and function, including the therapeutic and prognostic 
significance of diverse isoforms. Targeting of these mutations has proven difficult, despite some successes with 
inhibition of RAS effector signalling. More recently, direct RAS inhibition has been achieved in a trial setting. While 
this has yet to be translated to everyday clinical practice, this development carries much promise. This review 
summarizes the diverse approaches that have been taken to RAS inhibition and then focuses on the most recent 
developments in direct inhibition of KRAS(G12C).
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INTRODUCTION
Since the discovery of RAS oncogenes as the transforming genes of oncogenic retroviruses[1,2] in the 1960s, 
great advances have been made in our understanding of their structure and role in human cancer. The three 
RAS genes, Kirsten rat sarcoma viral oncogene homolog (K-RAS), neuroblastoma RAS viral (v-ras) 
oncogene homolog (N-RAS) and Harvey rat sarcoma viral oncogene homolog (H-RAS), are the most 
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commonly mutated oncogenes in human cancer with approximately one-third of all cancers driven by these 
oncoproteins, including 40%-50% of colorectal cancer and over 90% of pancreatic cancers[3,4]. The discovery 
of oncogenes and the elucidation of intracellular signalling pathways heralded an era of targeted therapy 
that has greatly improved the outlook for many cancers[5,6]. New agents targeting receptor kinases and their 
downstream mediators demonstrated the ability to stabilise and shrink tumours, with side effects that were 
frequently milder than those associated with standard cytotoxic chemotherapy. Throughout this enormous 
paradigm shift in cancer therapeutics, however, RAS stood apart, dominant and seemingly undruggable[4]. 
The development of direct RAS inhibitors proved very challenging. RAS has a high affinity towards GDP 
and GTP and a lack of deep hydrophobic pockets which would allow binding of small molecules[7]. Subtle 
differences in structure and variable activation of RAS proteins added greatly to the complexity and 
attention largely focused on downstream inhibition of the transduced signalling pathways[8]. In recent years, 
however, there have been some very promising developments in direct RAS targeting which would suggest 
that this has real potential as a therapeutic avenue. Here we aim to review current efforts at RAS inhibition 
in the context of both RAS family biology and the historical efforts which attempted, largely without 
success, to perturb its role as a major oncogenic driver.

RAS STRUCTURE AND FUNCTION
The RAS superfamily of genes has about 36 members, which encode for 39 proteins[9]. Three RAS genes, H-
RAS, K-RAS and N-RAS, encode four protein isoforms: H-RAS, K-RAS4A, K-RAS4B and N-RAS. K-
RAS4B is the predominant isoform and is referred to simply as K-RAS in this article. RAS proteins are small 
GTPases, of about 21kD molecular weight, and are monomeric proteins that have a central role in cell 
differentiation, adhesion, migration, proliferation and survival[10]. RAS proteins convey signals from growth 
factors and extracellular components, and are upstream of signalling pathways including the ERK pathway 
and the PI3K/mTOR survival pathway. As illustrated in Figure 1, they function as a membrane-bound 
molecular switch, alternating between an inactive GDP-bound state and an active GTP-bound state. This 
alternation is mediated by guanine nucleotide exchange factors (GEFs) and GTPase activating/accelerating 
proteins (GAPs). GEFs are activated by an upstream mitogenic signal, and they in turn cause an inactive 
RAS to shed its GDP and bind a GTP, which has a 10-fold higher cellular concentration than GDP, thereby 
becoming activated. This period of activity terminates when the intrinsic GTPase activity of RAS-GTP is 
enhanced by GAPs, leading to hydrolysis of the bound GTP. In normal cells, a tight equilibrium is 
maintained between the active and inactive states.

Pathogenesis
The normal function of RAS, as described above, can be deranged by mutations which unbalance this 
equilibrium. Single point missense mutations in codons G12 (most commonly), G13 or Q61 are responsible 
for converting proto-oncogenes to oncogenes. These mutations favour GTP binding and lead to constitutive 
activation of RAS, with reduction or loss of GTPase activity. These codons are implicated as their amino 
acid residues are found in the cavity where GTPase catalytic activity operates[10]. The consequence of this 
aberrantly activated RAS is prolonged oncogenic signalling rather than short, controlled bursts of 
activation[11]. There is subsequent activation of downstream signalling molecules such as PI3K, RAF and 
Rin1. By contrast, mutations in other RAS codons, or any nonsense mutations, are likely to inhibit rather 
than enhance the activity of RAS, and do not provide a survival advantage. As well as uncontrolled 
proliferation, the mutagenic RAS oncogene has been implicated in tumour immune resistance by causing 
intrinsic - as opposed to adaptive - upregulation of programmed death ligand 1[12].

RAS in cancer
Approximately 25%-30% of cancers contain mutations in one of the RAS isoforms, and they are considered 
an early genetic event in tumour progression[4]. For example, in pancreatic adenocarcinoma, where RAS 
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Figure 1. Scheme of the critical role of RAS in biological processes that regulate cell proliferation, survival and autophagy, and potential 
therapeutic targets (created with BioRender.com)

mutations are virtually ever-present, precursor lesions - pancreatic intraepithelial neoplasia (PanIN) - 
contain RAS mutations which increase in frequency as they progress stepwise to malignancy. Though 
generally cooperative with other oncogenes during malignant transformation, these mutations are capable 
of neoplastic growth in the absence of further genetic abnormalities[13,14]. K-RAS is the isoform most 
frequently mutated and in addition to being almost inevitably mutated in pancreatic cancers, K-RAS 
mutations are present in approximately half of colorectal cancers and a third of lung cancers[3]. H-RAS 
mutations are found in salivary gland cancers (15% of salivary gland cancers), cervical cancers (9%) and 
urinary tract cancers (9%). N-RAS mutations are found in melanoma (17%), haematologic malignancies 
(10%) and thyroid cancers (7%)[15]. Not only are RAS mutations implicated in carcinogenesis, but also they 
are strongly associated with treatment resistance[16,17], and have been shown to be adverse prognostic 
markers in cancer[18]. RAS-mutated colorectal cancer will not benefit from EGFR-directed treatment with 
cetuximab or panitumumab. Similarly, in lung cancer RAS status has been shown to be an independent 
predictor for EGFR tyrosine kinase inhibition[19].

APPROACHES TO RAS INHIBITION
Given the central role of RAS both in carcinogenesis and tumour progression, the RAS oncoprotein is an 
important therapeutic target. Table 1 provides a summary of current trials of Ras inhibitors. Despite decades 
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Table 1. Ongoing RAS inhibitor trials

Study/Phase Drug Disease Biomarker Clinicaltrials.gov 
registration no.

Direct RAS inhibitors

A phase I/II, study evaluating the safety, tolerability, PK, and efficacy of AMG 510 in subjects 
with solid tumours with a specific KRAS mutation (CodeBreak 100)

AMG510 Advanced/Metastatic solid 
tumours

KRASG12C Mutant NCT03600883

A Phase 1b, Protocol Evaluating the Safety, Tolerability, Pharmacokinetics, and Efficacy of 
AMG 510 (pINN) Sotorasib Monotherapy and in Combination with Other Anti-cancer 
Therapies in Subjects with Advanced Solid Tumours With KRAS p.G12C Mutation (CodeBreak 
101)

AMG510 
PD1 inhibitor 
MEK inhibitor 
SHP2 allosteric 
inhibitor 
Pan-ErbB TKI 
PD-L1 inhibitor 
EGFR inhibitor 
Chemotherapy

Advanced/Metastatic solid 
tumours

KRASG12C Mutant NCT04185883

Phase I/II Study of MRTX849 in patients having a KRAS G12C Mutation KRYSTAL-1 MRTX849 Advanced/Metastatic solid 
tumours

KRASG12C Mutant NCT03785249

First-in-Human Study of JNJ-74699157 in participants with Tumours Harboring the KRAS 
G12C Mutation

JNJ-74699157 (ARS-
3248)

Advanced/Metastatic solid 
tumours

KRASG12C Mutant NCT04006301

A Phase I/II study of LY3499446 administered to patients with advanced solid tumours with 
KRAS G12C mutation

LY3499446 
Abemaciclib 
Cetuximab 
Erlotinib 
docetaxel

Advanced/Metastatic solid 
tumours

KRASG12C Mutant NCT04165031

A Study to evaluate the safety, Pharmacokinetics, and activity of GDC-6036 in participants 
with advanced or metastatic solid tumours with a KRAS G12C mutation

GDC-6036 Advanced/Metastatic solid 
tumours

KRASG12C Mutant NCT04449874

Indirect Targeting of RAS

SOS inhibitor

A study to test different doses of BI-1701963 alone and in combined with trametinib in patients 
with different types of advanced cancer (solid tumours with KRAS mutation)

BI-1701963 
BI-3406 trametinib

Advanced/Metastatic solid 
tumours

KRAS mutations NCT04111458 

SHP2 inhibitors

Dose escalation of RMC-4630 monotherapy in relapsed/refractory solid tumours RMC-4630 Advanced/Metastatic solid 
tumours

Mutations that hyperactivate ERK 
pathway

NCT03634982 

Dose finding study of TNO155 in adult patients with advanced solid tumours TNO155 Advanced/Metastatic solid 
tumours

EGFR or KRASG12C mutations NCT03114319 

Phase Ib study of TNO155 in combination with Spartalizumab or Ribociclib in selected 
malignancies

TNO155 
Spartalizumab 
ribociclib

Advanced/Metastatic solid 
tumours

KRAS mutations NCT04000529 

First-in-Human Study of the SHP2 Inhibitor BBP-398 in patients with Advanced Solid Tumours BBP-398 Advanced/Metastatic solid 
tumours

MAPK-pathway alterations 
(excluding BRAF V600X)

NCT04528836

Farnesyltransferase inhibitors
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Phase II study of Tipifarnib in squamous head and neck cancer with HRAS mutations Tipifarnib Advanced head and neck 
squamous cell cancer

HRAS mutations NCT02383927 

RAF inhibitors

Phase I study of LXH254 in patients with advanced solid tumours harbouring MAPK pathway 
alterations

LXH-254 
Anti-PD-1 antibody

Advanced/Metastatic solid 
tumours

ERK pathway mutations NCT02607813 

Cobimetinib and HM95573 in Patients with Locally Advanced or Metastatic Solid Tumours Belvarafenib 
cobimetinib

Advanced/Metastatic solid 
tumours

RAS or RAF mutation NCT03284502 

A Phase Ib Study of LXH254-centric Combinations in NSCLC or Melanoma LXH-254 
Trametinib 
LTT462 
Ribociclib

Advanced/Metastatic solid 
tumours

KRAS or BRAF mutant NSCLC or 
NRAS mutant melanoma

NCT02974725 

Study of the Safety and Pharmacokinetics of BGB-283 (Lifirafenib) and PD-0325901 
(Mirdametinib) in Participants with Advanced or Refractory Solid Tumors

BGB-283 
PD-0325901

Advanced/Metastatic solid 
tumours

KRAS mutant NSCLC or 
endometrial cancer

NCT03905148 

MEK inhibitors

Trametinib and HDM201 in colorectal cancer patients with RAS/RAF mutant and TP53 wild-
type advanced/metastatic colorectal cancer I

HDM201 (MDM2 
inhibitor) 
Trametinib

Colorectal cancer RAS mutant and TP53 wild type NCT03714958

Atezolizumab and Cobimetinib in Treating Patients with Metastatic, Recurrent, or Refractory 
Non-small Cell Lung Cancer

Cobimetinib 
atezolizumab

Advanced/Metastatic solid 
tumours

KRAS mutation NCT03600701 

Study of MK-8353 + Selumetinib in Advanced/Metastatic Solid Tumors (MK-8353-014) Selumetinib 
MK-8353

Advanced/Metastatic solid 
tumours

none NCT03745989 

Trial of Trametinib and Ponatinib in Patients with KRAS Mutant Advanced Non-Small Cell Lung 
Cancer

Trametinib 
ponatinib

Advanced/Metastatic solid 
tumours

KRAS mutation NCT03704688 

Trametinib and Hydroxychloroquine in Treating Patients With Pancreatic Cancer Trametinib 
hydroxychloroquine

Advanced pancreas cancer none NCT03825289 

Trametinib and Docetaxel in Treating Patients with Recurrent or Stage IV KRAS Mutation 
Positive Non-Small Cell Lung Cancer

Trametinib 
Docetaxel

Metastatic NSCLC KRAS mutation NCT02642042

ERK inhibitors

First-in-Human Study of KO-947 in Non-Hematological Malignancies KO-947 Advanced/Metastatic solid 
tumours

BRAF, KRAS, NRAS or HRAS 
mutation

NCT03051035 

A Study of LY3214996 Administered Alone or in Combination with Other Agents in Participants 
with Advanced/Metastatic Cancer

LY-3214996 Advanced melanoma or 
NSCLC

BRAF or NRAS mutations NCT02857270 

Adoptive Cell therapies

Administering Peripheral Blood Lymphocytes Transduced with a Murine T-Cell Receptor 
Recognizing the G12D Variant of Mutated RAS in HLA-A*11:01 Patients

Anti-RAS G12D 
mTCR

Advanced/Metastatic solid 
tumours

HLA-A11:01 RASG12D mutation NCT03745326 

Administering Peripheral Blood Lymphocytes Transduced with a Murine T-Cell Receptor 
Recognizing the G12V Variant of Mutated RAS in HLA-A*11:01 Patients

Anti-RAS G12D 
mTCR

Advanced/Metastatic solid 
tumours

HLA-A11:01 RASG12D mutation NCT03190941 

Vaccine therapy

HLA-A11:01 and/or HLA-C08:02; 
KRASG12C, KRASG12D, KRASG12V or 

A Study of mRNA-5671/V941 as Monotherapy and in Combination with Pembrolizumab 
(V941-001)

mRNA-5671 Advanced NSCLC, non-MSI-
high CRC, PDAC

NCT03948763 
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KRASG13D mutation 

Immunotherapy

A study of Avelumab, Binimetinib and Talazoparib in patients with locally advanced or 
metastatic RAS-mutant Solid Tumors I/II

Avelumab 
Binimetinib 
Talazoparib

Solid tumours KRAS or NRAS mutant NCT03637491

A study of Binimetinib + Nivolumab plus or minus Ipilimumab in patients with previously 
treated Microsatellite stable metastatic colorectal cancer with RAS mutation I/II

Binimetinib 
Nivolumab 
ipilimumab

Colorectal cancer RAS mutations NCT03271047

of efforts, however, it has proven extremely difficult to synthesise clinically effective direct inhibitors of RAS oncoproteins. This has been attributed to the high 
affinity of RAS towards GDP and GTP (in contrast to the low affinity of ATP for protein kinases, for example), and lack of deep hydrophobic pockets that 
would allow the binding of small molecules[7]. In addition, given variation in the frequency of isoform mutations within different cancer types, and in the 
specific mutations involved, there may not be a single effective RAS inhibitor for all RAS-mutated cancers[4]. Historical efforts to target RAS which have made 
it to the clinic could be broadly summarized as those focusing on RAS plasma membrane localisation and those attempting to indirectly block RAS by 
inhibiting the downstream effector signalling.

RAS membrane localisation
In order to carry out their role, RAS proteins must become membrane-bound. This involves a complex series of post-translational modifications. Three 
enzymatic steps are necessary for RAS to associate with membranes - (1) prenylation of the CAAX box by farnesyltransferase (FTase); (2) cleavage of the 
terminal AAX residues by RAS converting enzymes RCE1; and (3) methylation of the cysteine residues of the CAAX box by isoprenylcysteine carboxyl 
methyltransferase ICMT. Farnesylation, the addition of farnesyl groups to RAS, is a critical step in creating a hydrophobic domain in RAS that allows the 
protein to associate with the plasma membrane, and therefore to be biologically active. Farnesyltransferases (FTases) are the enzymes responsible for this step, 
and they were an early target in efforts to inhibit RAS function[20]. Two farnesyltransferase inhibitors (FTIs), lonafarnib and tipifarnib, were investigated in 
Phase III trials either as monotherapy or in combination with chemotherapy in a number of different RAS-mutated tumours. Despite Phase I and II clinical 
trials showing some antitumour activity and low toxicity, no improvement in overall survival was reported in Phase III trials[21-23]. One reason for lack of “pan-
RAS” efficacy for the FTI class is that K-RAS and N-RAS membrane localisation can be achieved in the absence of farnesyltransferases, via geranylgeranyl 
transferases. Attempts were made to target these enzymes with geranylgeranyltransferase inhibitors, but these were ineffective and associated with toxicity[24]. 
In contrast, H-RAS is not a substrate for geranylgeranyl transferase and therefore its membrane localization could be suppressed solely by FTIs[25]. Tipifarnib 
has demonstrated preclinical activity against a wide panel of H-RAS-mutated head and neck squamous cell carcinoma xenograft models and is undergoing 
clinical development in advanced head and neck cancers harbouring activating H-RAS mutations (NCT02383927)[26]. These efforts highlight the differences 
between RAS isoforms and the need for a tailored, isoform-specific approach to clinical trial design.



Page 7Conroy et al. Cancer Drug Resist 2021;4:543-58 https://dx.doi.org/10.20517/cdr.2021.07

Salirasib is an S-trans, trans-farnesylthiosalicylic acid and a novel oral RAS inhibitor which competes with 
farnesylated RAS for binding sites on membranes. A recent trial demonstrated encouraging activity in 
patients with advanced solid tumours including a subset with K-RAS mutations[27]. A further target is 
isoprenylcysteine carboxyl methyltransferase (ICMT), an enzyme at the endoplasmic reticulum which 
increases RAS membrane affinity. It lacks homology with other protein methyltransferases, which adds to 
its specificity as a target. While agents that target ICMT have been isolated, and have demonstrated 
promising results in vitro against cancer cell lines, they have not been tested in the clinical setting[28]. 
Palmitoylation, the modification by the fatty acid palmitate, is necessary for the membrane interactions of 
H-RAS and N-RAS. Depalmitoylation inhibitors and palmitoyl acyltransferases have been described as 
having activity against RAS, but uncertainty regarding their specificity and concern about off-target effects, 
have impeded their further clinical development[4]. Many other proteins are modified by prenylation and 
farnesylation to ensure their correct subcellular localization, which makes off-target effects unavoidable 
even for highly specific inhibitors. Moreover, RAS can also signal from endomembranes (Golgi apparatus, 
endoplasmic reticulum) in addition to the plasma membrane[29,30]. It is unclear how localization inhibitors 
affect RAS signalling from different subcellular compartments.

Inhibitors of RAS effector signalling
Given the historic difficulties in directly targeting RAS, many efforts focused instead on inhibiting the 
downstream signal transduction pathways, either at a single point or as a combined approach targeting 
different nodal points. RAS effector families are involved in cancer initiation and maintenance, and it was 
hoped that inhibition of downstream proteins within these pathways could be an effective means of 
countering RAS-mediated oncogenesis[28]. These approaches have largely failed, perhaps mainly due to the 
inherent complexity and redundancy within these networks, but also due to a lack of specificity in the 
selection of inhibitors as well as isoform homogeneity within each subpopulation. In addition, the concept 
of linear pathways is misleading and has given way to that of signalling networks, whereby activated kinases 
interact via RAS (or other GTPases) with a large variety of signalling molecules resulting in highly 
interconnected networks.

EGFR: There is substantial crosstalk between EGFR tyrosine kinase and RAS[31]. With EGFR upstream of 
RAS, inactivation of these receptor tyrosine kinases can in theory reduce RAS activation, and this linear 
model explains the lack of clinical activity for EGFR inhibitors in colorectal cancer in the setting of K-RAS 
or N-RAS-mutant tumours[32,33]. This has also been demonstrated experimentally, through activation of the 
RAS signalling pathway by introduction of an activated K-RAS allele, confirming that as mutated RAS is 
constitutively active, disruption of signalling from EGFR impairs the therapeutic effect of anti-EGFR 
monoclonal antibodies[34]. Similarly in advanced non-small cell lung cancer (NSCLC), EGFR inhibition is 
insufficient to produce a response in the setting of RAS-mutant disease[35]. It is possible, however, that the 
specific RAS mutation plays a significant role in determining whether upstream inhibition of EGFR may be 
effective. We have seen in K-RAS G12D mutation-specific advanced solid tumours that a response can be 
achieved with pan-ERBB/EGFR inhibitors Afatinib and neratinib[36,37]. EGFR and pan-ERBB inhibitors have 
shown promise in preclinical studies in combination with both direct covalent RAS inhibitors and MEK 
inhibitors[37]. This synergistic effect between EGFR inhibitors and covalent RAS inhibitors appears to be the 
result of EGFR inhibition leading to a reduced amount of GTP-bound RAS, therefore leaving RAS in the 
unbound GDP state open to targeting by direct inhibition.

ERK pathway: Directly downstream of RAS signaling are the ERK and PI3K signaling pathways[38]. Active 
GTP-bound RAS results in RAF dimerization and phosphorylation, RAF kinase activity and, ultimately, 
phosphorylation of its substrates MEK1 and MEK2. The terminal kinases of this pathway, ERK1 and ERK2, 
act as growth promoting transcription factors. The RAS-RAF-MEK-ERK cascade is targeted with RAF 
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kinase inhibitors, ERK inhibitors or MEK inhibitors. Eleven RAF kinase inhibitors have reached clinical 
evaluation and four are approved for use by the US Food and Drug Administration (FDA). Vemurafenib 
and dabrafenib are two ATP-competitive RAF inhibitors that are approved for use in BRAF-mutant 
metastatic melanoma. Further clinical evidence in both lung cancer and colorectal cancer has shown benefit 
for these agents when BRAF is mutated[39,40]. The current agents used in clinical practice, dabrafenib and 
vemurafenib, act on RAF monomers. However, in RAS-mutant cancer, RAF inhibition has been 
unsuccessful and the clinical experience has been very negative. The reason for this is that clinically used 
RAF inhibitors enhance RAF kinase homo-and heterodimerization, leading to the paradoxical activation of 
ERK signalling[41]. Homo- and heterodimerization of the RAF kinases BRAF and CRAF significantly 
increases their catalytic activities. The binding of RAF molecules to active RAS drives RAF dimerization by 
inducing conformational changes, dephosphorylation of inhibitory residues, and brings RAF molecules into 
proximity of each other[42]. Due to allosteric interactions between protomers in the RAF dimer, inhibitor 
binding to the first protomer in a dimer strongly decreases the affinity of the second protomer to the 
inhibitor. In this constellation the drug-bound RAF protomer allosterically activates the drug-free protomer 
causing paradoxical pathway activation and drug resistance[42]. As oncogenic RAS proteins are effective 
drivers of RAF kinase dimerization, RAS mutations lead to intrinsic or acquired resistance to RAF 
inhibitors. Overcoming dimerization-induced resistance to RAF inhibitors could lead to effective anti-RAS 
therapy[43].

Another interesting drawback to targeting wildtype RAF in RAS-mutant disease is that inhibition of 
wildtype RAF can paradoxically upregulate the ERK pathway in the setting of RAS mutations leading to 
downstream phosphorylation of MEK and ERK[44]. There are a number of newer agents that target RAF 
dimers rather than the monomer isoform all of which appear to demonstrate less paradoxical upregulation 
of the ERK pathway[45,46]. Belvarafenib and LXH-254 are pan-RAF inhibitors, effective against the monomer 
and dimer isoform, which are under clinical evaluation both as monotherapy and in combinations for RAS-
mutant advanced solid tumours.

ERK upregulation through MEK appears to be the predominant method of resistance to BRAF directed 
monotherapy and we have seen both in preclinical and clinical studies that concurrent inhibition of BRAF 
and MEK can decrease acquired resistance and delay progression[47]. In RAS-mutant tumours, MEK 
inhibition as monotherapy has failed to demonstrate meaningful benefits largely due to the induction of 
feedback loops similar to those when RAF inhibitors are use in this setting[48]. Trametinib, Cobimetinib and 
Binimetinib are allosteric, non-ATP competitive inhibitors of MEK1 and MEK2, and are used in 
combination with RAF inhibitors in the treatment of melanoma. A number of trials have failed to show 
clinical benefit for MEK inhibition in advanced KRAS-mutant pancreatic, colorectal and non-small cell lung 
cancer[49-51]. One possible explanation for this is that inhibition of the ERK pathway induces autophagy, a 
process of cellular recycling that protects cells from the cytocidal effects of pathway inhibition[52]. Pancreatic 
cancer cells in particular utilize autophagy for growth and as a means of resistance to ERK inhibition[53]. 
Combining downstream MEK inhibition with hydroxychloroquine - an inhibitor of autophagy - displayed 
synergistic anti-proliferative effects against pancreatic ductal adenocarcinoma (PDA) cell lines and 
promoted striking regression of PDA xenografts from 2 patients with PDA which was superior to (standard 
of care) gemcitabine plus nab-paclitaxel chemotherapy. Highly encouraging clinical responses were also 
seen with this commercially available drug combination and clinical trials are ongoing [52,54].

ERK pathway: With ERK being the final kinase in the RAF-MEK-ERK pathway it would appear to be an 
attractive target to inhibit in RAS or RAF mutant tumours. Based on previous preclinical studies of the 
compound SCH-772984, a dual ERK1/2 inhibitor which demonstrated a reduction of phosphorylated ERK 
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in a number of RAS-mutant cancer cell lines, an oral version MK-8353 was developed for clinical testing[55]. 
In a Phase I study, however, with 26 patients with advanced K-RAS or N-RAS mutated tumours, no 
objective responses were seen. It is now being tested in combination with a MEK inhibitor (selumetinib) 
and the anti-PD-1 inhibitor pembrolizumab in patients with RAS-mutant cancers. In K-RAS-mutant 
tumour models, ERK inhibitors such as GDC-0944 have shown efficacy in combination with the MEK 
inhibitor cobimetinib[56]. Phase I studies of the combination were stopped prematurely due to toxicity[57]. 
The ERK inhibitor was studied as monotherapy in a Phase I trial and appeared tolerable[58]. In this study, 14 
patients had K-RAS-mutant advanced malignancies and of those 4 had stable disease and 10 had 
progression. ERK pathway suppression detected with NanoString gene expression was observed more 
commonly in those with BRAF-mutant tumours compared to those with KRAS-mutant tumours.

Ulixertinib is another ATP competitive ERK1/2 inhibitor that has shown clinical efficacy in N-RAS-mutant 
melanoma[59]. This in combination with nab-paclitaxel has been examined in a Phase 1 study in patients 
with advanced pancreas cancer and results are awaited (NCT02608229). Other studies are underway 
examining its role as monotherapy and in combination with other agents in patients with genetic alteration 
in the ERK pathway (NCT03698994, NCT04145297). LY-3214996 is a selective inhibitor of ERK1 and 
ERK2[60]. Unfortunately, however, in a Phase I study of this agent, only one patient with advanced RAS-
mutant cancer had stable disease and the remaining patients had progressive disease[60]. KO-947, similarly a 
selective ERK1/2 inhibitor, demonstrated potent and sustained reduction in phosphorylated ERK in vitro in 
RAS-mutant cell lines[61]. This is now in clinical studies for patients with advanced RAS- or RAF-mutant 
tumours (NCT03051035).

PI3K pathway: The other major target of RAS effector signalling is the PI3K-AKT-mTOR pathway. PI3K is 
implicated in RAS-dependent cancer initiation and maintenance. While there are many inhibitors of this 
signalling pathway under investigation[62], they have demonstrated little activity as monotherapy in RAS-
mutant cancers. KRAS and BRAF mutations are predictive of resistance to mTOR inhibition[63]. Moreover, 
inhibition of mTOR may lead to the upregulation and activation of MEK-ERK pathways. Therefore, the 
dual inhibition of the PI3K and the ERK pathway would appear to be a reasonable therapeutic target. With 
this in mind combination strategies have been explored in RAS mutant disease using both mTOR inhibitors 
along with RAF/MEK inhibitors[64]. Direct PI3K inhibitors have also been trialled with MEK inhibitors. 
However, in clinical trials, this combination was both toxic and only minimally efficacious[65].

AKT, which plays a key role in the activation of mTOR following its interaction with one of the 3 main 
PI3Ks, is amplified in the setting of RAS-mutant cancers[66]. Unfortunately no AKT inhibitors are approved 
for use in clinical practice. The evaluation of AKT inhibition with MEK inhibitors is under investigation, 
but similar challenging side effect profiles have been seen to that of combined mTOR and MEK 
inhibition[67].

Direct inhibitors of RAS
Attempts at direct RAS inhibition have been hampered by numerous challenges. Firstly, the activity of RAS 
is tightly governed by GEFs and GAPs, which control the high-affinity, picomolar interactions between 
GDP, GTP and RAS. Putative inhibitors struggle to overcome this affinity. Secondly, there are structural 
challenges. An effective inhibitor would typically require a deep hydrophobic pocket for binding. These 
pockets were long understood to be absent, although recent research demonstrates that they may arise 
dynamically as RAS goes through the GDP/GTP cycle[68,69]. Finally, there are selectivity and toxicity 
challenges. The “switch region”, which changes conformation upon GTP binding and recruits effector 
proteins, is highly conserved across other G-proteins in the body. Therefore, any agents which target this 
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region in RAS, would be associated with risk of toxicity elsewhere.

A number of agents investigated were compounds that competed directly with GDP for the nucleotide 
binding site of RAS[70] and compounds that bind to RAS at the RAF binding site and inhibit RAS/RAF 
complex formation[71]. However, none were sufficiently potent to be considered for further investigation. 
More recently, however, direct targeting of RAS has been achieved for the G12C K-RAS mutation. This has 
been realised through the development of a small molecule inhibitor that binds covalently to the cysteine 
residue that results from the specific G12C mutation and has been shown to inhibit oncogenic RAS[72,73]. The 
inherently reactive nature of cysteine which is found at codon 12 of K-RAS(G12C) can be exploited for 
covalent small molecule inhibitors and the idea of targeting cysteine is one that is commonly exploited in 
drug discovery[74]. Another important feature of targeting this cysteine is that wild-type K-RAS lacks the 
cysteine in the active site unlike the mutant K-RAS(G12C).

Ostrem et al.[73] initially identified this novel allosteric binding pocket behind switch II referred to as the 
switch-II pocket, which led to the development of the first compounds to irreversibly target G12C. These 
compounds bind to K-RAS(G12C) in the GDP-bound inactive state, blocking SOS-catalysed nucleotide 
exchange and ultimately inhibiting K-RAS(G12C) association with RAF[73]. This switch II pocket is present 
in the GDP-bound inactive form of K-RAS only. Therefore, targeting of G12C needs to occur in the GDP-
bound state. K-RAS(G12C) in its steady state is in the active GTP-bound state, but the presence of a high 
level of GTPase activity leaves it open to covalent attack[75]. The identification of this pocket led to a search 
for covalent inhibitors of K-RAS. The first was a molecule ARS-853[76], and its development led to the proof 
of concept that this specific isoform of K-RAS could be targeted using a covalent inhibitor.

A number of advances in the area ultimately led to the development of AMG510 (sotorasib)[73]. This 
particular G12C inhibitor has succeeded where others had not as its potency and selectivity was optimised 
through an interaction with a previously unexploited groove His95[77]. Preclinical studies have demonstrated 
responses and regression of K-RAS mutant tumours treated with AMG510. The results of the Phase I study 
of sotorasib (AMG510) demonstrated promising anticancer activity in patients with advanced solid tumours 
harbouring K-RAS(G12C) mutations. 129 patients were treated on the dose escalation study, 59 with 
NSCLC, 42 with colorectal cancer and 28 with other solid tumours. Sotorasib appeared to be well tolerated 
with 11.6% of grade 3 or 4 toxicity. 32.2% of the NSCLC had an objective response with a total of 88.1% 
having a response or stable disease. The median progression free survival was 6.3 months. In the colorectal 
cohort 7.1% had a confirmed response with 73.8% having a response or stable disease with a median PFS of 
4 months[78]. This study represented the first clinical trial demonstrating objective response to direct KRAS 
inhibition. On December 8, 2020 the FDA granted Breakthrough Therapy designation for its investigational 
K-RAS(G12C) inhibitor, sotorasib, for the treatment of patients with locally advanced or metastatic NSCLC 
with K-RAS(G12C) mutations, as determined by an FDA-approved test, following at least one prior 
systemic therapy. Preclinical studies have also demonstrated that sotorasib was able to clear colon cancer 
from mice when given in combination with checkpoint inhibitors[79]. There is a Phase 1/2 study under way 
of sotorasib in solid tumours which will include a combination arm of sotorasib with an anti(PD-1/L1) 
(NCT03600883).

Adagrasib (MRTX849) is an additional agent under investigation in this field. It is a potent, highly selective 
inhibitor of KRAS(G12C)[80]. A Phase 1/2 study of adagrasib monotherapy in patients with pretreated 
NSCLC demonstrated an overall response rate of 45% and a high disease control rate[81]. This multiple-
expansion-cohort trial is ongoing, investigating the use of adagrasib combined with pembrolizumab in 
NSCLC, afatinib in NSCLC or cetuximab in colorectal cancer. Research on this agent in nonclinical models 
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has also demonstrated mechanisms of resistance, including KRAS nucleotide cycling and pathways that 
induce feedback reactivation or bypass KRAS dependence[80].

K-RAS(G12C) mutations only account for a small proportion of KRAS mutations that are found in cancer 
and are primarily found in lung cancer. As these irreversible allosteric inhibitors block RAS signalling by 
exclusively binding to the cysteine residue that results from the specific mutation, this limits their 
application to the particular allele they target. To target KRAS(G12D) and KRAS(G12V) different 
approaches are needed as these mutants lack the cysteines needed in the active state.

Attempting to design and develop drugs specifically targeting each individual RAS mutation would be 
extremely challenging and time-consuming, so direct targeting of ligand binding sites conserved on all RAS 
proteins (KRAS4A, 4B, NRAS and HRAS) has been thought to be one potential method of inhibiting RAS 
across all mutation and tumour types. In vitro studies have shown that Compound 3144, a molecule that 
binds a conserved residue Asp38 in switch-I, can block RAS effector binding[82]. This compound suppresses 
the growth of KRAS(G13D) tumours in vivo. A major concern, however, is that pan-inhibition of RAS 
potentially may lead to considerable toxicity as normal cellular function is reliant on RAS signalling in non-
cancerous cells[83]. Models by which the deletion of all three RAS isoforms is carried out are not compatible 
with life, and therefore a pan inhibition of RAS in humans is likely to result in significant off-target toxicity. 
Nevertheless, it has been suggested that if such a compound were optimised for greater potency and 
specificity, this would be a viable approach[82].

Nucleotide exchange inhibition: In order to cycle between active GTP-bound and inactive GDP-bound 
states, RAS possesses intrinsic guanine nucleotide exchange and GTP hydrolysis activities. This cycling and 
exchange are accelerated by GEF and by GAPs, both of which change the activation state of RAS through 
covalent modifications. Upon activation of GEFs, nucleotide binding is destabilized and GDP is released. As 
GTP is much more prevalent than GDP in the cell, this loss of GDP leads to a transient formation of RAS-
GTP, the active state[4]. GTP binding and activation of RAS leads to conformational changes in it, allowing it 
to bind effectors in RAS-binding domains. Mutations in RAS that are relevant to cancer usually lead to RAS 
permanently in the GTP bound active state. Efforts have been made to block this nucleotide exchange in an 
attempt to stop RAS transitioning to the active GTP bound form.

An alternative to blocking the direct nucleotide site is to inhibit the proteins that regulate the nucleotide 
exchange process. Normal RAS activation requires nucleotide exchange, processing, membrane localization 
and effector binding. Targeting any of these steps can be used to indirectly inhibit RAS. GEFs are 
responsible for releasing GDP from RAS allowing it to be replaced by GTP and ultimately leading to 
activation of RAS. In mammals, three families of RAS-specific GEFs exist: SOS, RASGRF1/Cdc25Mm and 
GRP/Cal-DAG-GEF[84]. Of these, SOS is the best known and studied of the RAS-specific GEFs and this has 
led to the development of a number of strategies and attempts to block it and ultimately inhibit RAS. SOS1 
binds RAS at its catalytic binding site and thereby promotes exchange of GDP for GTP. RAS-GTP can also 
bind at an allosteric site on SOS1 to enhance GEF activity[85]. Genetic inactivation of SOS1 has been shown 
to decrease the survival of RAS-mutant tumor cells, but not in RAS wild type cells that are not reliant on 
RAS signaling[86]. Inhibition of SOS1 has been thought of as an attractive mechanism of RAS inhibition over 
direct RAS inhibitors as it does not appear to depend on targeting specific mutations.

BI-3406 is a potent and selective SOS1:K-RAS interaction inhibitor that potently decreased the formation of 
GTP-bound RAS and reduced cell proliferation of RAS-driven cancers both in vitro and in vivo. This orally 
bioavailable agent appears to reduce RAS-GTP level and inhibits ERK pathway signaling, thereby limiting 
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the growth of tumor cells driven by RAS. Whilst most RAS variants appear to show reduction in cell 
proliferation when exposed to BI-3406, certain variants appear less sensitive. Mutations in codon 61 due to 
the resultant molecular conformation appear to have low intrinsic GTPase activity and are subsequently less 
sensitive to SOS1 inhibition[87]. Initial studies of SOS1 inhibitor BI-3406 suggest that it may benefit as many 
as 80%-90% of RAS-driven cancers[88].

SOS1 is phosphorylated by ERK, a kinase in the ERK pathway downstream of RAS, ultimately leading to the 
reduction of its GEF activity. It is thought that efforts to treat RAS-driven cancers with MEK inhibitors have 
failed in part as inhibition of MEK reduces the activity of ERK1/2, resulting in the release of a negative 
feedback loop, thus increasing the activity of SOS1-dependent formation of GTP-bound RAS. Combination 
therapy of a MEK inhibitor with BI-3406 blocks this negative feedback by reducing levels of phospho-MEK 
and phospho-ERK leading to sustained pathway inhibition and potentiating the benefit of SOS1 inhibition. 
A Phase I clinical trial of this combination to assess safety, tolerability and preliminary efficacy, as well as 
another SOS1 inhibitor, BI-1701963 in combination with Trametinib is ongoing (NCT040111458).

Although much less defined than SOS, another protein involved in the nucleotide exchange process is 
SHP2. SHP2 is a non-receptor protein tyrosine phosphatase that is required for the full activation of the 
ERK pathway[89]. Mutations in PTPN11, which encodes SHP2, cause “rasopathies” and are found in about 
50% of patients with Noonan syndrome[90]. Although not fully defined, SHP2 appears to act as a scaffold 
protein, binding GRB2 and SOS1 in close proximity to RAS and ultimately thereby increasing RAS 
nucleotide exchange[91]. Research has explored the role of SHP2 inhibitors in the treatment of various 
cancers. In the preclinical setting, the allosteric SHP2 inhibitor SHP099 has been shown to inhibit myeloid 
leukaemia cell lines[92], and to elicit a response in colorectal cancer cell lines[93]. Of note, in the colorectal 
cancer cells, these responses seemed limited to cells that were sensitive to lapatinib, and therefore dependent 
on EGFR signalling. By contrast, RAS- or BRAF-mutant cells were generally resistant to SHP099.

CONCLUSION AND FUTURE DIRECTIONS
Effective and safe inhibition of RAS was considered a holy grail for cancer researchers decades ago, and it 
remains so today. While extraordinary advances have been made in our understanding of RAS and 
carcinogenesis - as well as methods of targeting its downstream effectors - the direct inhibition of RAS does 
not yet have a role in everyday practice. However, our deeper understanding of molecular pathogenesis is 
the foundation on which that future progress will be built, and effective treatments are now close.

The unmet need for proven therapies in this setting is clear, given the prevalence of RAS mutations in 
common cancers, many of which are highly fatal. Our recognition of the structure and clinical significance 
of diverse RAS isoforms represents a major step forward, of relevance to all future efforts at RAS targeting. 
Their importance is clear when considering candidate inhibitors of RAS plasma membrane localization, 
which are now reaching the clinic. Even individual isoforms, like K-RAS, have a range of possible mutations 
with different responses to targeted therapies[94]. Therefore, those designing clinical trials should carefully 
consider the need for isoform and mutation-specific approaches.

The development of inhibitors of RAS effector signalling, which are in widespread clinical practice, is an 
example of the concrete achievements of research in this area. This success has been tempered over time by 
failures, many of which can be attributed to misconceptions of RAS signalling pathways as unidirectional 
and linear. A more nuanced appreciation of these as delicately balanced signalling networks can help 
researchers refine their approach, and may warrant increased focus on drug combinations, as seen in trials 
involving inhibitors of MEK and autophagy[52].
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Possibly showing greater promise than any of these initiatives, however, is efforts at direct targeting of RAS. 
The past 12 months has seen breakthroughs in this field that have been sought for years, vindicating decades 
of basic scientific endeavour. Successes here belie outdated dogma describing RAS as “undruggable”, 
demonstrating that drug exposure associated with preclinical efficacy can be achieved safely in patients[95]. 
However, these studies also raise questions - why did response rates to Sotorasib vary between cancers 
despite identical mutations, and what provoked early progression in some patients after an initial response? 
It is suggested that tumour heterogeneity or driver mutations alternative to K-RAS(G12C) may be the key to 
understanding this and that, as with inhibition of RAS effector signalling, drug combinations may be the 
next step[78]. In addition, optimizing monotherapy by developing inhibitors with higher affinity for inactive 
KRAS(G12C) or the use of pulsatile therapy has been suggested as approaches to maximise therapeutic 
effect[96].

In summary, a more textured understanding of RAS pathogenesis emerging from decades of basic scientific 
research has led to a more refined approach to RAS inhibition, which is now beginning to bear fruit. The 
coming months and years will hopefully take these efforts “over the line” to the routine use of effective 
therapeutics in the clinic setting, but it will be a long time before we have fully tapped the potential of RAS 
inhibition.
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