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Abstract
A significant portion of patients who are afflicted with lysosomal storage diseases (LSDs) encounter neurological 
manifestations, including cognitive issues and developmental delay, seizures, psychiatric issues, and an overall 
neurodegenerative decline. In order to enhance the development of effective therapies for these symptoms, it is 
imperative that we allude to the neuropathophysiology that underlies these manifestations. These distinct 
neurological and developmental features are particularly evident in patients with Alpha-Mannosidosis (AM), a type 
of LSD. However, there is limited published information regarding the mechanisms and pathophysiology of these 
presentations in patients with this condition. Although the precise impact of lysosomal storage on the biogenesis 
and functioning of neuronal cells has not been clearly defined, recent studies have placed emphasis on the 
significance of synaptic defects influencing this dysfunction. These defects encompass changes in synaptic spines, 
proteins, and vesicles, as well as postsynaptic densities that potentially precipitate functional disruptions in 
synaptic transmission and neurodegeneration. Ultimately, this cascade is thought to result in extensive neuronal 
loss and, consequently, the onset of cognitive manifestations. Uncovering the effects on synaptic components in 
LSDs with neurological symptoms like AM will enable a better understanding of disease progression. It will also 
allow us to identify critical targets for therapeutic intervention and the determination of optimal time frames for 
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targeted treatments, as well as the effects of these treatments on mitochondrial function. The available therapeutic 
modalities in AM are not a definitive cure for affected patients, but rather an attempt to reduce the symptomatic 
severity in their presentation, while aiming to regress/slow down disease progression. This review will aim to 
discuss and rationalize the current treatment approaches in place for AM patients in relation to their effects on the 
improvement of neurocognitive symptoms in affected AM individuals.

Keywords: Lysosomal storage disorders, Alpha-Mannosidosis, neurocognitive dysfunction, secondary 
mitochondrial dysfunction, oxidative stress, synaptic defects, psychosis, neurological complications

INTRODUCTION
Lysosomal storage disorders (LSDs) are a subgroup of metabolic disorders that can be characterized by a 
range of deficiencies of different components within lysosomal function. Specific LSDs themselves are 
individually rare, but collectively are one of the most prevalent groups of metabolic diseases and have been 
estimated to affect approximately 1 in 5,000 live births[1]. These inherited diseases stem from lysosomal gene 
defects, resulting in deficient or dysfunctional lysosomal enzymes, activator proteins, or transmembrane 
proteins[2]. This leads to the unwanted accumulation of biomolecules within the lysosome. This excess 
storage of macromolecules is thought to start during the stages of early embryonic development, but the 
clinical presentation of LSDs is highly variable, ranging from mild to severe phenotypes that may have 
either early or late onset[3]. It is the accumulation of undigested biomolecules within the lysosome that 
causes disruption to normal cellular function, resulting in the symptomatic presentation of LSDs, including 
neurocognitive impairment, worsening developmental delay, and abnormal neurological symptoms.

The involvement of the Central Nervous System (CNS) within this group of disorders is highly prevalent 
and these neurological symptoms most commonly have a slow and subtle progression. This is observed in 
the autosomal recessive LSDs such as Alpha-Mannosidosis (AM). The condition is a highly rare, progressive 
LSD that is estimated to affect 1:250,000 to 1:1,000,000 live births[4]. AM is caused by a deficiency in 
lysosomal alpha-mannosidase enzyme activity, consequent of mutations present in the MAN2B1 gene on 
chromosome 19 (19p13.13)[5]. This deficiency of alpha-mannosidase activity affects the degradation of 
glycoproteins, resulting in the accumulation of intracellular mannose-rich oligosaccharides in various 
tissues and organs, thus leading to defective cellular functions and apoptotic mechanisms[5]. AM is an 
abundantly heterogeneous condition that is defined by a wide variety of presentations regarding disease 
severity and progression, clinical manifestations, and genetic mutations.

There are currently 183 different disease-causing pathogenic variants of the MAN2B1 gene that have been 
identified[6]. However, AM is a highly heterogeneous condition with no clearly defined genotype-phenotype 
correlation[5], and despite having distinguished clinical subtypes[7], it is difficult to predict disease 
progression in patients with AM. Three clinical subtypes have been reported: a mild form (type 1) 
recognized after 10 years of age with the absence of skeletal abnormalities, myopathy, and slow progression 
[Figure 1], a moderate form (type 2) recognized before 10 years of age with the presence of skeletal 
abnormalities, myopathy, and slow progression, and a severe form (type 3) manifested as prenatal loss or 
early death from progressive CNS involvement or infection[5]. However, the disease manifestations of AM 
display a continuum of clinical severity; therefore, this classification into three phenotypic subtypes is now 
rarely used[8].

It has been hypothesized that secondary mitochondrial dysfunction may contribute to the progression of 
neurological symptoms of AM, such as myopathy, white matter changes [Figure 2], psychosis, or seizures. 
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Figure 1. Clinical manifestations in Alpha-Mannosidosis. The figure shows the location of the clinical manifestations of AM within the 
human body. Cognitive function impairment and psychosis are features affecting all these patients.

Figure 2. MRI brain scans of an adult patient with Alpha-Mannosidosis. The MRI scans depicted in the figures show subtle diffuse 
supratentorial deep white matter changes, as well as cerebellar atrophy within the brain of a 32-year-old untreated patient with AM, 
who has mild learning difficulties and new-onset psychosis.

Secondary mitochondrial dysfunction may arise in these patients, consequent on their defective lysosomal 
function, which has been observed in several other LSDs[9,10]. Secondary mitochondrial dysfunction, in 
addition to endoplasmic reticulum (ER) stress, can lead to reactive oxygen species (ROS) accumulation. 
ROS molecules contain a minimum of one oxygen atom and one or more unpaired electrons that are 
produced in small quantities under normal physiological conditions[11]. However, when produced in excess, 
they cause oxidative stress to occur within the cell, in turn leading to cellular damage and has been shown to 
have particular adverse effects on the nervous system[11].
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The available therapies for AM include enzyme replacement therapies (ERT) and hematopoietic stem cell 
transplantation (HSCT), although the latter may prove to be more effective when administered at a younger 
age before the disease has significantly progressed[12]. Therefore, the potential new therapies for this 
condition may therefore be developed in the context of the patient’s clinical symptoms consequent to 
secondary mitochondrial dysfunction. This review aims to discuss the theorized mechanisms of secondary 
mitochondrial dysfunction in AM, and the potential neurocognitive repercussions of this defect, as well as 
the potential therapies for AM in the context of its clinical manifestations.

CLINICAL MANIFESTATIONS OF ALPHA-MANNOSIDOSIS
The presentation of AM is highly diverse and features a wide range of clinical manifestations such as 
cognitive impairment, skeletal abnormalities, immunodeficiency, hearing impairment, and coarse facial 
features[13] [Figure 1]. The majority of individuals affected with AM appear to be clinically normal at birth, 
and start to present at a young age, with their symptoms gradually worsening over time[5]. The disease 
phenotypic presentation also ranges from mild to severe and there are no distinct clinical phenotypes of the 
disease due to its wide heterogeneity.

Primary CNS disease is expected in these patients, with neurological symptomatology including poor 
coordination, ataxic gait, metabolic myopathy, spastic paraplegia spasticity, rigidity, dyskinesia, slight 
strabismus, hydrocephalus, and sensorineural deafness[14]. It is also common for patients to experience 
psychiatric symptoms that predominantly present from puberty into adolescence. These CNS-related 
symptoms observed in AM will be discussed in more detail.

Ataxia
Ataxia is the most characteristic clinical manifestation of AM. It describes the impaired coordination of the 
patient, stemming partially from cerebellar atrophy and demyelination of the brain[15], thus affecting areas 
that are responsible for muscular coordination and fine motor function. Ataxia has been described as 
predominantly presenting in the second decade of life[16], but can also present in smaller children, generally 
when they learn to walk, in which affected children appear to learn to walk somewhat later[17]. Initial signs 
include general clumsiness and ataxic gait, with these symptoms often appearing to worsen progressively in 
follow-up observations as the patient ages. The cause of the ataxia is multifactorial, with myopathy, joint 
involvement, and cerebellar changes being the main contributors[18]. Patients require support while walking 
and gradually become dependent on walking aids. Moreover, their coordination is compromised, 
significantly impacting their quality of life.

Myopathy
Myopathic symptoms describe the development of muscular weakness in affected patients, as well as 
stiffness, cramps, and spasms. In patients with AM, the progression of myopathies contributes toward their 
progressing ataxia. It has been shown that the muscular strength of AM patients slowly deteriorates during 
the first decade of life and thereafter[17]. Therefore, their motor function was gradually impaired as they 
aged, and their ataxic manifestations worsened. Muscular hypotonia is also common, as well as spastic 
paraplegia[19], which are consequences of the slow progression of muscle fiber degeneration. The data on 
muscle pathology in AM are limited, but we have learned that vacuoles that can be found in the muscle cells 
are identical to those observed in lymphocytes and other cells. They contribute to muscle fiber pathology[19]. 
Reticulofibrillar material or lucent space with sparse granules has been described in muscle tissue from 
pediatric AM cases[20]; these changes were not convincing for the authors to be able to explain the muscle 
weakness. The authors did not comment on mitochondrial changes.
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To that end, myopathic changes resulting from secondary mitochondrial dysfunction have been observed in 
muscle biopsies from adults with Fabry and Pompe diseases[7]. We can therefore presume that this 
mechanism is present in untreated adult patients with AM as well.

Neurocognitive dysfunction
Neurocognitive impairment is observed in almost all AM patients, with varying severity amongst the 
different symptoms, although their early psychomotor development may appear normal. It has been 
suggested that intellectual disability is slowly progressing in AM patients[21], whereas others have reported 
that disease progression halts during puberty in these individuals[22]. Characteristic symptoms that may 
begin to appear first include delayed speech development and motor or mental functions[5]. Affected 
individuals may not initiate speech until their second decade of life and may also have a restricted 
vocabulary and may be difficult to understand due to their poor pronunciation. These defects in speech may 
potentially be the result of the patients’ congenital or later-onset hearing loss[5]. This combination of poorly 
developed speech and sensorineural hearing loss means that patients generally achieve better scores in non-
verbal tests. However, it is very difficult to measure total mental performance in these patients, particularly 
children, where they undergo neurodevelopmental assessment in general intelligence, language, and visual-
spatial skills, as well as their overall adaptive abilities. Conversely, patients with adult-onset disease are 
predominantly mild to moderately intellectually disabled, with an IQ of 60-80[23]. It has been shown that this 
decline in IQ occurs more drastically in the first decade of life in comparison to the second decade[24] and 
depends on the severity of the disease. Although other studies report positive cognitive development until 
the ages of 10 to 12 years, there is little development thereafter[17]. Despite this, patients with AM still present 
with a neurocognitive function that is increasingly underdeveloped compared to other non-affected 
individuals within the same age group. Behavioral problems, self-harm, emotional instability, and 
frustration due to inability to communicate are common features observed in adults with AM (personal 
observations).

Psychosis
Signs of psychiatric disorder tend to appear in the second decade of life in patients with AM[13], usually from 
late puberty to early adolescence. However, these psychiatric symptoms can often be missed or overlooked, 
particularly in patients with AM who are intellectually disabled. It has been reported that psychiatric 
symptoms and episodes of psychosis are present in more than 25% of adults affected with AM[25]. Despite 
efforts to evaluate the psychiatric syndromes in these patients, this study did not reveal that there was an 
underlying cause. Another study has described that periods of psychosis become more pronounced with 
age, rising from 33% in patients aged 11 to 20 years, up to 64% amongst patients aged 21 to 30 years[17]. 
These episodes may be recurrent and short in duration, usually lasting 3 to 12 weeks, but medication may 
sometimes be necessary to improve the patients’ symptoms. Psychosis in affected individuals may be 
preceded by a psychological stressor, inducing states of anxiety, confusion, delusions, hallucinations, and 
sometimes depression which precipitates a severe loss of function, such as decreased appetite and weight 
loss, or incontinence of both urine and feces[5]. These episodes may then be followed by a longer period of 
hypersomnia, as well as diminishment in their general ability, such as being unable to read or having 
difficulty speaking. When assessing individuals with inborn errors of metabolism (IEMs) such as AM, 
clinicians should be vigilant in recognizing atypical psychiatric symptoms due to targeted treatments 
generally being more effective in the early stages of psychosis, before irreversible neurological damage has 
occurred[25]. Importantly, the neurocognitive dysfunction and resulting psychosis occur in adulthood 
irrespective of any ERT, which does not cross the blood-brain barrier, or HSCT, which patients often 
undergo in childhood[26].
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Psychiatric symptoms distinct from intellectual disability may impact 25% or more of individuals with 
untreated AM. Typically, these symptoms manifest from late puberty to early adolescence, with psychosis 
seeming to be a more common feature of adult individuals with AM[27]. Recurrent episodes of limited 
duration may occur in these patients, and medication may be required in order to alleviate these symptoms. 
In nine individuals with AM and psychiatric symptoms, the rapid onset of confusion, delusions, 
hallucinations, anxiety, and depression occurred following a physical or psychological stressor[28]. This led to 
a significant loss of function, typically lasting 3 to 12 weeks, followed by a subsequent period of somnolence, 
asthenia, and prolonged sleep[28]. Among the nine individuals, four underwent evaluation for the psychiatric 
syndrome, but no underlying cause was identified[28].

Neuroimaging
Brain MRI in untreated individuals with AM reveals evidence of cerebellar atrophy, a partially empty sella 
turcica, and white matter signal modifications. Progressive cortico-subcortical atrophy, especially in the 
cerebellar vermis, has been described[29]. High signal abnormalities involving the parieto-occipital white 
matter are identified on axial T2-weighted scans in some individuals and may be associated with 
demyelination and gliosis as described by Dietemann et al. in 1990[15].

Upon the analysis of MRI brain images of 13 patients with AM, Majovska et al. concluded that white matter 
changes and cerebellar atrophy are proposed to be the characteristic brain MRI features in this condition 
[Figure 2][30].

Malaquias et al. have observed hyperintensities on symmetrical T2-weighted images or superior aspects of 
both thalami and dentate nuclei or cerebellum. However, this research group did not observe cerebellar 
atrophy and periventricular white matter hyperintensity on T2-FLAIR sequence was only mild[31].

In addition, Borgwardt et al. have demonstrated in a large cohort of 97 patients that the combination of 
MRS/MRI changes, elevated concentrations of cerebrospinal fluid (CSF) biomarkers, and CSF-
oligosaccharides suggests gliosis and reduced myelination, as part of the CNS pathology in AM[32].

Leukodystrophy is a feature of other LSDs as well as mitochondrial diseases, and given that secondary 
mitochondrial dysfunction and autophagy have been postulated as a cause of lysosomal dysfunction, it is 
postulated that they are also responsible for neurodegenerative dysfunction and psychosis in AM [Table 1].

POTENTIAL MECHANISMS OF NEURODEGENERATION IN ALPHA-MANNOSIDOSIS
Current therapies in AM and psychosis
The current therapeutic options for the treatment of AM include ERT with velmanase alfa and allogeneic 
HSCT, as well as best supportive care that addresses symptoms as they arise [Table 2]. However, there is still 
a lack of studies on the monitoring of treatment response and associated complications outside of clinical 
trials and published case reports[115]. HSCT is an effective therapy commonly used in the treatment of several 
metabolic diseases with associated neurological dysfunction. Post-HSCT treatment, the normal donor stem 
cells are able to differentiate into different cell lineages, which can colonize a range of organs and tissues. 
These differentiated cells have the capacity to secrete the normally functioning enzyme that is otherwise 
deficient or dysfunctional in the patient, which is then widely distributed due to cell-to-cell contact amongst 
the transplanted cells[116]. This was first tested in the treatment of AM in cat models, in which it was shown 
that HSCT has the ability to significantly increase the levels of alpha-mannosidase within the neuronal cells 
of the CNS[25]. There have since been further trials into the effectiveness of HSCT in patients with AM, with 
one study showing that patients who had undergone HSCT had a significantly higher recorded IQ post-
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Table 1. A summary description of neurodegenerative mechanisms in LSDs

Lysosomal storage 
disorder

Clinical manifestation of 
neurodegenerative dysfunction in 
humans

Pathomechanism of CNS involvement Reference

Mucopolysaccharidosis Neuroinflammation [33-35]

I Mental retardation (variable); skeletal, heart, 
respiratory, corneal abnormalities

Oxidative stress (animal models and human blood) [36,37]

II As above; cognitive impairment Oxidative stress (human blood) 
Accumulation of heparan sulfate and dermatan sulfate in cerebrospinal fluid 
Increased cathepsin B activity in the brain tissue leads to leakage of this enzyme from the lysosome into the cytoplasm in a 
MPSII neuronal cell line, which in turn activates the inflammasome pathway (mouse model); 
Defects in the DCC-regulated signaling pathway, lysosomal acidification, and Rab7 protein levels in neurons, affecting early 
stages of development, as well as abnormalities in glial fibrillary acid protein (GFAP) levels, suggesting early activation of 
glial cells (zebrafish model); 
Undigested GAGs in the extracellular matrix lead to the impairment of the integrin involved in signaling axon guidance and 
vesicular pathways that integrate neural circuit development in the early stages of neuronal development

[38] 
[39] 
[40] 
[41] 
[42] 
[43]

III A Developmental delay, behavioral disturbances, 
hyperactivity; speech delay, intellectual 
disability

Reduced excitatory synaptic strength on the somatosensory cortex (mouse model); inhibition of soluble NSF attachment 
receptor (SNARE) complex assembly and synaptic vesicle recycling, possibly caused by perikaryal accumulation of insoluble 
α-synuclein and increased proteasomal degradation of cysteine string protein α, resulting in low availability of these proteins 
at the synaptic terminal; 
HS accumulation in the brain causes changes in oligodendrocyte cell state (zebrafish model)

[44] 
[45] 
[46] 
[47]

III B Developmental delay, behavioral disturbances; 
speech delay, intellectual disability

Oxidative stress (animal models); Golgi involvement; 
HS accumulation in the brain causes changes in oligodendrocyte cell state (zebrafish model); 
Time-dependent accumulation of HS and HS-NRE and progressive increase in LAMP1 staining in the forebrain and 
cerebellum leads to lysosomal enlargement, atrophy of white matter, loss of Purkinje neurons, and progressive increase in 
microgliosis (cortex and cerebellum) and astrogliosis (cerebellum). Raised Iba1 is an indicator of microglial activation 
(Canine model); 
Early vacuolation of glial cells and vacuolation of neurons, along with increased glial expression of GFAP and Iba1, suggest 
neuroinflammation occurs early on in disease within the spinal cord and dorsal root ganglion (DRG) (Canine model)

[48,49] 
[46] 
[47] 
[50] 
[51]

III C Developmental delay, behavioral disturbances, 
hyperactivity; speech delay, intellectual 
disability

The primary accumulation of HS in microglial cells and neurons results in impaired autophagy, leading to secondary neuronal 
storage of GM2/GM3 gangliosides and misfolded proteins, neuroinflammation, and abnormalities in mitochondrial energy 
metabolism. This cascade of events ultimately leads to neuronal death. Within the terminals of MPSIIIC hippocampal 
neurons, synaptic vesicles are reduced; these neurons exhibit changes in distribution of excitatory synaptic markers and in 
transmission. There is a progressive deficiency in mitochondrial function, with a selective reduction in OXPHOS complexes 
and decreased coenzyme Q10. 
HS accumulation in the brain causes changes in oligodendrocyte cell state (zebrafish model) 
Significant decrease in the frequency and amplitude of excitatory and inhibitory miniature synaptic events (mEPSCs and 
mIPSCs) (mouse model)

[52] 
[53] 
[54] 
[55] 
[46] 
[47] 
[54]

Multiple sulphatase 
deficiency

Neurological deterioration, ichthyosis, skeletal 
anomalies, and organomegaly

Autophagy and mitophagy accumulation fragmentation decreased ATP content [55] 
[56]

Niemann-pick

Severe deterioration of the central nervous 
system (CNS), accompanied by the storage of 
sphingomyelin in both visceral and cerebral 

A/B TRPML1-mediated Ca2+-release is compromised [57] 
[58]
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regions

C Sub-acute nervous system involvement, 
characterized by a relatively moderate 
progression and less prominent visceral storage 
pathology; cerebellar ataxia, dysarthria, 
dysphagia, progressive dementia, and 
occasionally seizures; progressive neurological 
regression, seizures, spasticity

Synaptic pathology (mouse model); impairment of SNARE function; mitochondrial cholesterol accumulation; the 
simultaneous primary storage of cholesterol, coupled with the secondary storage of sphingomyelin, is a prime driver for 
NPC1 pathology, interfering with TRPML1 and TRPML1-dependent maintenance of lysosomal homeostasis. Sphingolipids 
show mislocalization from the Golgi apparatus to lysosomes, as demonstrated by impaired trafficking of lactosylceramide in 
NPC1 cells. Abnormal lipid accumulation in NPC1 patient lysosomes results in secondary lysosomal storage by blocking 
TRPML1- and Ca2+-dependent lysosomal trafficking; this storage could be reverted by the TRPML agonist ML-SA1. 
Sphingosine storage induces calcium depletion in lysosomes, possibly through an inhibitory effect on Na+/Ca2+ exchangers. 
Neuroinflammation; Peroxisomal dysfunction; Decreased oxidative respiration/reduced ATP levels; Increased vulnerability 
to oxidative stress; Decrease in mitochondrial GSH resulting in Cytochrome c release

[59] 
[60] 
[61] 
[62] 
[63] 
[61] 
[63] 
[64] 
[65,66] 
[67] 
[68]

Gaucher disease I-III Progressive neurological regression, seizures, 
spasticity (mainly III), 
cognitive impairment, psychiatric disturbances 
(GD I and III)

Neuroinflammation, dysregulated calcium homeostasis, decreased mitochondrial membrane potential, selective reduction of 
OXPHOS complexes, accumulation of APP and α-synuclein, Reduced O2 consumption/reduced ATP levels 
Significant systemic oxidative stress demonstrated by altered GSH status and lowered catalase enzymatic activity, as well as 
elevated lipid peroxidation (GD I) (human) 
Increased Tmem119 mRNA expression leads to abnormal microglia growth and proliferation, as well as increased Iba1 
expression exhibiting a higher degree of microglial cell activation; correlated by increases in pro-inflammatory cytokines 
Tnfa, Il1b, and Il6, as well as chemokines Cxcl10, Ccl2, Ccl5, and Cxcl9. Markedly raised antigen-presenting cell receptor Cd86, 
a cell surface protein identifying M1 microglia (adult genetic nGD model) 
The active, phosphorylated form of c-Abl is increased, and interacts with RIPK3, which is in turn phosphorylated at a tyrosine 
site, and RIPK3 phosphorylation is reduced when c-Abl is inhibited. This shows that c-Abl signaling is the upstream pathway 
that activates RIPK3 in GD (adult human and mice GD models) 
Accumulating Β-glucosylceramide in GD activated microglia through macrophage-inducible C-type lectin induces 
phagocytosis of living neurons, exacerbating symptoms of GD. This is augmented by tumor necrosis factor (TNF) secreted 
from activated microglia that sensitizes neurons for phagocytosis (human model) 
Deleterious effects of Wnt/β-catenin downregulation in neuronopathic GD may be ameliorated by the prevention of Dkk1 
binding to the Wnt co-receptor LRP6 (mouse model) 
In the presence of GBA1 mutations, increased chaperone and LONP1 activity may promote the degradation of 
damaged/misfolded intramitochondrial GCase. Complex I activity is ameliorated with LONP1 inhibition in GBA1 mutant HEK 
cells, with the opposite being observed in WT-Gcase cells. This is also observed in iPSC neurons, showing that in the 
presence of mutant GCase, LONP1 proteolytic activity is more pronounced than its chaperone function. This increased 
interaction between mutant GCase and LONP1 may also interfere with the folding properties of LONP1, leading to 
mitochondrial protein aggregation, which may result in decreased CI activity and mitochondrial α-synuclein accumulation in 
iPSC-derived neurons

[64] 
[65,66] 
[58] 
[69] 
[70] 
[71] 
[72] 
[73] 
[74] 
[75] 
[76] 
[77] 
[78]

Krabbe disease Developmental delay, peripheral neuropathy, 
hearing/visual impairment, seizures

Synaptic pathology (mouse model) Peroxisomal dysfunction - downregulates the peroxisome proliferator-activated 
receptor-alpha (PPAR-alpha). Decreased mitochondrial membrane potential oxidative stress/GSH Dysregulation of Ca2+ 
signaling Cytochrome c release 
GALC deletion causes growth and motor coordination defects, and inflammatory gliosis due to the significant accumulation 
of psychosine in the nervous system. This was shown to result in profound neuro-axonal degeneration with a mild effect on 
myelin structure (mouse model) 
α-synuclein aggregation in the brain tissue to form fibrils (human)

[79] 
[80,81] 
[82] 
[83] 
[84] 
[85]

GM1 gangliosidosis Progressive neurological regression, seizures, 
spasticity

Synaptic pathology (feline model) Neuroinflammation; enhanced autophagy and mitochondrial dysfunction. Dysregulated 
calcium signaling. Decreased mitochondrial membrane potential. Increased vulnerability to oxidative stress-induced 
Cytochrome c release 
Microglial activation with increased levels of LC3 autophagy regulator; increased microglial activation and proliferation in the 
cerebral cortex (mouse model)

[86,87] 
[88] 
[89] 
[90] 
[91]
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GM2 gangliosidosis 
(Tay Sachs)

Progressive neurological regression, seizures, 
spasticity, deceleration in movement, ataxia, 
tremors; 
psychosis

Dysregulated ER calcium homeostasis 
Neuroinflammation; the production of inflammatory mediators, cytokines and chemokines, Ccl2, Ccl3, Ccl4, Cxcl10, Cxcl13. 
Ccl2 displays chemotactic activity for monocytes, lymphocytes, and neutrophils. Ccl3 influences monocyte, lymphocyte, and 
neutrophil migration together with Ccl2, and activation of T cells and macrophages with Ccl4. Cxcl10 produced by 
astrocytes recruits activated T lymphocytes by increasing their migration to the site of tissue damage in the cortex and 
cerebellum. This leads to cytoplasmic vacuolation of nerve cells, deterioration of Purkinje cells, and neuronal death, 
preceded by activated microglia expansion, macrophage and astrocyte activation (mouse model)

[58] 
[92] 
[93]

Mucolipidosis IV Mental impairment, speech impairment, 
spasticity, neuroaxonal dystrophy, blindness; 
intellectual disability

Lack of the endolysosomal ion channel mucolipin1/ TRPML1/MCOLN1, with evidence of lysosomal accumulation of 
gangliosides and heavy metals such as zinc and iron; Ca2+ abnormalities; secondary mitochondrial dysfunction 
Changes in cytokine release (IFN-α1, IP-10) in response to TRPML1 loss of function and upregulation of interferon-gamma 
signaling results in defective brain myelination, oligodendrocyte dysfunction and pro-inflammatory activation of microglia 
and astrocytes 
Significant delays in expression of mature oligodendrocyte markers Mag, Mbp, and Mobp in the cortex early in life result in 
hypomyelination and diminished oligodendrocyte maturation between the cortex/forebrain and cerebellum (mouse model) 
Mitochondria-lysosome contacts facilitate the direct transfer of Ca2+ from lysosomes into the mitochondria, mediated by 
TRPML1 which is disrupted in IV

[94] 
[7,95] 
[96] 
[97] 
[98]

Fabry disease Progressive motor and nonmotor 
neurodegeneration; it remains unclear whether 
these are associated with Parkinsonian 
neurodegeneration

Disrupt the autophagy-lysosomal pathway, leading to autophagosomal accumulation of phosphorylated a-synuclein in the 
mouse brain TRPML1-mediated Ca2+-release is compromised

[7,99] 
[57]

Neuronal ceroid 
lipofuscinoses

Dementia, motor disturbances, epilepsy, loss of 
vision, and early death. 
Cognitive decline and seizures.

Neuroinflammation. Mitochondrial dysfunction. Reduced ATP levels. Deficient mitochondrial Ca2+ buffering. Mitochondrial 
vacuolation 
Cysteine string protein alpha (CSPα) mislocalizes as aggregates to the neuronal soma instead of being targeted to the 
presynapse. This results in the decreased interaction between CSPα and SNAP-25, causing increased SNAP-25 degradation 
and impaired synaptic SNARE-complex assembly 
Failed autophagy results in accumulation of impaired neuronal mitochondria; mROS accumulation is observed in Cln7 
neurons that mediate glycolytic enzyme PFKFB3 activation (mouse model) 
CLN8 deficiency decreases the complexity and size of the somatodendritic compartment, leading to neurodegeneration (rat 
model) 
CLN5 is a substrate of CRL3-KCTD7 E3s. In NCL, KCTD7 mutations result in the disruption of the interaction between 
KCTD7-CUL3 or KCTD7-CLN5, leading to excessive CLN5 accumulation in the endoplasmic reticulum. CLN5 accumulation 
disrupts the CLN6-CLN8 interaction and lysosomal enzymes, which causes the impaired trafficking of ER-to-Golgi lysosomal 
enzymes. The C128Y mutation causes abnormal palmitoylation of CSPα and aggregates formation, also triggering lipofuscin 
deposits in adult-onset NCL (human)

[100] 
[101] 
[102] 
[103] 
[104] 
[105] 
[106] 
[107] 
[108]

Pompe disease Limb–girdle muscle weakness. 
Intellectual disability, impaired visuospatial 
functioning.

Mitochondrial calcium excess, increased ROS generation, decreased mitochondrial membrane potential, and decreased 
oxygen consumption and ATP production

[7] 
[109] 
[110]

treatment, as well as improved overall cognitive function, compared to patients who had not received HSCT therapy[117]. Patients who received HSCT also 
showed no further decline in their IQ compared to untreated individuals. HSCT has also been shown to improve intellectual function in four patients with 
AM, as well as improving their adaptive skills and verbal memory function in all patients[118]. All four patients also demonstrated improved speech and hearing, 
with no new skeletal abnormalities reported. A normalization in leukocyte alpha-mannosidase enzymatic activity was also observed in all four patients post-
HSCT. HSCT has more recently been shown to improve the clinical symptoms in patients with AM, mainly with intermediate or severe disease and symptoms 
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Table 2. A summary description of neurodegenerative mechanisms in Alpha-Mannosidosis

Lysosomal 
storage 
disorder

Clinical manifestation of 
neurodegenerative dysfunction in 
humans

Pathomechanism of CNS involvement Reference

Alpha-
Mannosidosis

Cerebellar dysfunction, developmental delay, 
absent tendon reflexes, spasticity, 
developmental delay, impaired speech, hearing 
impairment, psychosis, cognitive impairment 
Impaired visual function, reasoning, visuo-
spatial skills, memory, and attention

Sural nerve biopsies showed neuropathy with myelin 
degeneration and metachromatic deposits 
CNS pathology of reduced myelination with elevated mannose 
complexes and gliosis, increased CSF-oligosaccharides. 
Significant elevations in Cho/Cr and ml/Cr reflect reduced 
myelination and gliosis. Raised NFLp concentrations due to 
axonal injury, degeneration, and myelin loss 
Iron deposits at the basal ganglia 
Dilated endoplasmic reticulum, increased levels of aberrant 
mitochondria with reduced mitochondrial mass; oxidative stress 
with increased ROS

[27] 
[111] 
[112] 
[18] 
[113] 
[114]

CNS: Central nervous system; CSF-oligosaccharides: cerebrospinal fluid- oligosaccharides; ROS: reactive oxygen species; Cho/Cr: 
choline/creatine ratio; ml/Cr: myo-inositol/creatine; NFLp: neurofilament light polypeptide.

of neurodevelopmental delay, by Mynarek[119], which is also the largest retrospective analysis of HSCT 
treatment in patients with AM. It was reported that the mortality and morbidity of patients were improved, 
in addition to developmental improvement observed in all patients. Some patients also displayed improved 
hearing ability and preservation of neurocognitive function.

These improvements in neurological function post-HSCT are likely due to the ability of HSCT to cross the 
blood-brain barrier (BBB)[13]. However, HSCT treatment is considered to predict better clinical outcomes 
when administered at an earlier age[12]. Nevertheless, this does not necessarily result in the prevention of 
psychosis during adulthood, as this is more likely to develop with age, but there have been reports of 
altering the course of the rapid neurological disease progression in infantile Globoid Cell Leukodystrophy 
(GLD)[119], which may be applied to AM. Despite these reports, there is no evidence to suggest that HSCT 
has any significant long-term effects on the outcomes of patient neurological function and psychiatric state 
post-treatment and its effects on their long-term development, nor are there many studies using an adult 
cohort. It is, therefore, prudent that further study should be carried out into the long-term HSCT in patients 
with AM during adulthood, as this is when psychosis and neurological dysfunction are most likely to 
develop.

ERT is the most commonly used therapy in the treatment of LSDs. ERT is specifically used in the long-term 
treatment of adults, adolescents, and children with mild to moderate AM disease using velmanase alfa (VA), 
also known as Lamzede, which is known to not cross the BBB, similar to all other recombinant lysosomal 
enzymes used in ERT[118]. There are studies of ERT using VA in the treatment of AM, with many reports of 
improved clinical symptoms and quality of life post-treatment due to the reduction in mannose-rich 
oligosaccharide levels in bodily tissues, thereby altering disease progression and abating clinical 
complications. There have been reports of reduction in pain and disability in AM patients post-ERT[120], as 
well as patients showing improved scores in motor proficiency and increased skill acquisition in comparison 
to healthy peers after receiving ERT therapy[121]. This may potentially improve the psychiatry of patients by 
positively influencing their behavior as a consequence of their pain improvement. Treatment with VA has 
shown clinical benefit that was maintained for up to 4 years in patients with AM[122]. This long-term follow-
up is specifically important in relation to neurocognitive decline, in which there is a need for the 
involvement of a neuropsychiatrist, neurologist, and neuropsychologist. However, the limitation of these 
studies discussed is the lack of investigation into evidence of neurocognitive improvement post-ERT, with 
the outcomes of these trials focusing mainly on the effects on mobility, ataxia, and respiratory dysfunction. 
This is because, unlike HSCT, ERT does not cross the BBB[12] and instead targets the periphery and soft 
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Figure 3. A summary of the potential cellular mechanisms of secondary mitochondrial dysfunction in LSDs/Alpha-Mannosidosis. The 
diagram depicted illustrates the putative cellular mechanism of secondary mitochondrial dysfunction in AM and other LSDs. RER: 
Rough endoplasmic reticulum; ROS: reactive oxygen species; AM enzyme: Alpha-Mannosidase enzyme; MRO: mannose-rich 
oligosaccharides; ATP: adenosine triphosphate.

tissues, therefore making it more difficult to assess whether ERT has any effect on the neurological function 
of patients with AM.

Potential new therapeutic developments in AM
CoQ10 analog and uncouplers
In view of the suggested involvement of mitochondrial dysfunction in the pathophysiology of AM , the use 
of therapeutic strategies that target the mitochondria and decrease cellular oxidative stress may be judicious. 
Coenzyme Q10 (CoQ10) may be an appropriate candidate therapy to consider in view of its ability to 
increase mitochondrial respiratory chain (MRC) activity in addition to its antioxidant capacity to decrease 
cellular oxidative stress[123]. Furthermore, cerebral ataxia, which is a characteristic clinical feature of AM, is 
commonly associated with a CoQ10 deficiency, and therefore, it may be appropriate to determine the 
endogenous status of this quinone prior to supplementation with exogenous CoQ10[123]. However, the ability 
of CoQ10 to cross the BBB is as yet uncertain, and therefore, the short-chain analog of CoQ10, idebenone, 
which is able to cross the BBB, may be more suitable for the treatment of cerebral mitochondrial 
dysfunction[123]. Another synthetic analog of CoQ10, EPI-743, has shown some therapeutic efficacy in the 
treatment of patients with MRC dysfunction due to its ability to cross the BBB and restore the level of the 
cellular antioxidant, GSH[123]. The restoration of cellular GSH levels is thought to protect the enzymes of 
MRC from oxidative stress-induced dysfunction, preventing further loss of function[123]. Mitochondrial 
uncouplers such as dinitrophenol (DNP), which can cross the BBB, may be considered to target the 
increased ROS associated with AM[113,124]. Uncoupling the mitochondrion decreases ROS generation through 
a number of mechanisms, such as by lowering the amount of oxygen in the mitochondrion and, therefore, 
the availability of oxygen for one-electron reduction by the MRC, which can generate the ROS, 
superoxide[125]. The extent to which mitochondrial dysfunction contributes to the cognitive impairment and/
or psychosis reported in AM remains to be elucidated, although these conditions have been previously 
reported in primary mitochondrial disease patients[125]. However, it has been mentioned that secondary 
mitochondrial dysfunction may impact synaptic transmission and plasticity, as the mitochondria have 
several major functions in neurons, including the regulation of Ca2+, redox signaling, and synaptic 
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development and plasticity[126] [Figure 3]. The inclusion of candidate therapies that target both 
mitochondrial dysfunction and ameliorate oxidative stress may have some potential benefits for patients if 
included in the treatment regime of patients from the early stages of the disease.

CONCLUSION
Many different LSDs present with psychosis and neurological dysfunction, including patients with AM. 
These clinical manifestations are still poorly understood within AM disease presentation, and AM requires 
further elucidation into its pathophysiology, mechanisms, and long-term outcomes in relation to its 
neurologic and psychiatric presentation. There have been some clinical trials into the effectiveness of HSCT 
and ERT in AM patients, although the latter has no reported evidence of any neurologic improvement in 
these patients due to the inability of ERT to cross the BBB. HSCT appears to be the better option for AM 
treatment, particularly for the amelioration of neurocognitive symptoms and prevention of further 
neurodegenerative decline, despite the lack of clinical data to show improvement and/or prevention of 
psychosis and neurocognitive dysfunction in adult AM patients.
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