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Abstract
Aging leads to structural and functional deterioration of the heart, reducing its capacity to withstand internal and 
external stressors and consequently increasing the risk of heart failure. Exercise is a potent modulator of 
cardiovascular and metabolic health, offering numerous physiological benefits that can persist throughout the 
aging process. Studies suggest that exercise can decelerate age-related cardiac deterioration and mitigate the risk 
of heart failure. In this review, we discuss recent advances in our understanding of exercise-mediated molecular 
and cellular adaptations that could serve as therapeutic targets for age-related cardiac remodeling and functional 
decline. We also explore how exercise-induced changes may enhance cardiac resilience with age, examine sex 
differences in cardiac aging and response to exercise, and highlight the value of murine exercise models as research 
tools for identifying novel therapeutic targets and strategies to combat heart failure.
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INTRODUCTION
While global life expectancy is predicted to rise by nearly five years by 2050, disability-free life expectancy is 
not advancing at the same rate, largely due to the increasing prevalence of chronic conditions such as 
cardiovascular disease, along with associated risk factors including hypertension, diabetes, obesity, and a 
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sedentary lifestyle[1-3].

Data from the Baltimore Longitudinal Study of Aging show that, even in the absence of overt disease, older 
adults often have maladaptive structural changes in the myocardium and a decline in cardiac function[3,4]. 
These changes reduce cardiac reserves[5], increasing the heart’s susceptibility to major pathologies, including 
heart failure with preserved ejection fraction (HFpEF). HFpEF is a syndrome commonly observed in the 
elderly, often accompanied by multiple comorbidities, substantial morbidity and mortality (with a ~65% 
mortality rate within five years of hospitalization), and few effective therapies[3,6]. Addressing these 
challenges is increasingly urgent as the global senior population continues to grow.

Exercise, defined as a structured and repetitive form of physical activity[7], is a key intervention for 
preventing cardiovascular and metabolic diseases, promoting longevity, and enhancing quality of life[8-10]. 
For instance, brisk walking for 450 min per week can extend lifespan by 4.5 years compared to a sedentary 
lifestyle[11]. Furthermore, both higher volumes and intensities of physical activity are associated with reduced 
mortality risk[12]. Long-term (over 21 years) participation in vigorous exercise, such as running, is linked to 
decreased age-related disability, a lower risk of myocardial infarction (MI) and heart failure (HF), as well as 
an increased lifespan[13-15]. Importantly, recent studies suggest that short-term (8-20 weeks) exercise can 
decelerate age-related cardiac deterioration and delay the onset of HF[4,9,16,17].

Despite these well-documented benefits, many older adults struggle to engage in regular exercise or achieve 
the recommended intensity and duration necessary to optimize health outcomes[18]. Investigating the 
molecular and cellular mechanisms underlying exercise adaptation could provide novel treatment strategies 
to enhance cardiometabolic resilience, even for individuals unable to exercise. This review explores recently 
identified molecular contributors to age-related cardiac decline and discusses emerging concepts related to 
exercise-induced benefits. We also highlight potential protective mechanisms as valuable targets for 
developing strategies aimed at enhancing cardiac resilience and counteracting the negative effects of cardiac 
aging and the development of HF.

AGE-RELATED CHANGES IN CARDIAC STRUCTURE AND FUNCTION
The most prominent morphological changes in the aging heart include left ventricular (LV) hypertrophy 
and cardiac fibrosis[19,20]. While resting cardiac function is generally maintained in the healthy aged heart, 
these structural changes often lead to, or coincide with reduced cardiac compliance and a decline in systolic 
reserves during acute exercise[4,19,21,22] [Figure 1]. By the age of 80, diastolic function and early diastolic filling 
rates decrease by approximately 50%[23]. Maximal aerobic capacity also declines progressively, with a 3%-6% 
decrease per decade between ages 30-50, and more than 20% per decade after the age of 70[21,24]. This 
reduction is linked to alterations in either the delivery of oxygen to exercising muscles (cardiac function) or 
the efficiency of oxygen utilization by the muscles.

Women have smaller LVs and higher ventricular stiffness compared to men, with these differences 
becoming more pronounced with age[3,25]. While men often experience a decline in cardiac contractility after 
the age of 50, women tend to have preserved contractility; however, diastolic dysfunction is a more common 
cause of HF in women[3,25,26]. Women also live approximately 5-7 years longer than men globally, are more 
sedentary during mid to late adulthood[27], and are more prone to multiple comorbidities and greater frailty, 
particularly in older age. Despite these factors, women demonstrate better survival rates in HF[28,29]. It 
remains unclear whether the mechanisms underlying exercise intolerance in women with HF differ from 
those in men, or whether hormonal differences may be playing a role. Investigating how sex differences 
influence cardiac aging and HF progression could provide valuable insights into mechanisms of heart 
disease and inform the development of treatment strategies.
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Figure 1. Age-related cellular, structural and functional maladaptation in the heart. Aging causes cardiomyocyte hypertrophy and 
senescence, leading to an accumulation of senescent cells that secrete pro-inflammatory factors known as the senescence-associated 
secretory phenotype (SASP). This triggers macrophage and granulocyte recruitment and myofibroblast activation in the heart. 
Mitochondrial dysfunction also occurs, reducing ATP production and increasing ROS, which contributes to endothelial cell dysfunction. 
These cellular impairments result in structural changes like pathological cardiac hypertrophy, increased myocardial stiffness, fibrosis, 
and vascular dysfunction, ultimately manifesting as diastolic dysfunction and diminished exercise tolerance.

AGING INFLUENCES CELLULAR COMPOSITION IN THE HEART
The heart’s structural integrity and function depend on complex interactions between diverse cell types that 
respond to internal and external stressors in maintaining cardiac homeostasis. With age, the heart’s limited 
capacity to regenerate cardiomyocytes diminishes[30-32]. Consequently, the loss of regenerative potential and 
compensatory interactions between cardiomyocytes and non-cardiomyocytes (e.g., fibroblasts and 
endothelial cells) play a central role in age-related cardiac dysfunction. These cellular interactions, along 
with cellular changes, such as the accumulation of senescent cells and chronic inflammation, contribute to 
pathological cardiac remodeling and functional decline. The following sections examine how aging and 
stress shape these complex cellular dynamics.

Cardiomyocytes
Cardiomyocytes constitute 30%-40% of the total cell population and 80% of the cellular volume in the 
healthy heart[33]. Aging leads to both an accumulation of senescent cardiomyocytes and a loss of functional 
cardiomyocytes[25,34] [Figure 1]. Although aging does not significantly alter the low rate of cardiomyocyte 
apoptosis in the normal human heart[35], oxidative stress, metabolic dysfunction, and chronic inflammation 
can induce replicative senescence in cardiomyocytes[34,36]. Accumulating senescent cardiomyocytes disrupt 
intracellular communication and promote both chronic inflammation and cell death[36], which contributes 
to cardiomyopathy, arrythmia, and HF[36-38]. Replicative senescence is driven by the cell cycle inhibitory 
tumor suppressor pathways p53-p21 (CDKN1A) and p16INK4A-retinoblastoma-associated protein[39]. 
Deletion of p16Ink4a in aged mice reduces cardiac hypertrophy and fibrosis, enhances cardiomyocyte 
proliferation, and extends lifespan[39-41], underscoring the role of senescent cells in age-related pathological 
remodeling.
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Senescent cardiomyocytes may also adopt a pro-inflammatory phenotype by releasing senescence-
associated secretory phenotype (SASP) factors [Figure 1], including interleukin-1α and interleukin-6 
(IL-1α/IL-6), tumor necrosis factor-alpha (TNF-α), endothelin 3 (Edn3), growth and differentiation factor 
15 (GDF15), connective tissue growth factor (CTGF), and transforming growth factor-beta (TGF-β)[42]. 
These factors can induce senescence in neighboring cells, including endothelial cells and fibroblasts[43,44], and 
activate neutrophils, promoting inflammation[45]. Edn3, GDF15 and TGF-β drive myofibroblast activation 
and cardiac fibrosis[46,47]. Reducing the accumulation of senescent cardiomyocytes has become one of the key 
strategies for mitigating the adverse effects of aging on the heart[48]. As the heart’s regenerative capacity 
declines with age, strategies aimed at enhancing cardiomyocyte turnover may restore cellular homeostasis 
and indirectly modulate inflammation, promoting a more resilient cardiac environment.

Vascular endothelial cells
Endothelial cells (EC), comprising 60% of non-cardiomyocytes in the heart[33], are the most abundant cell 
type and play a central role in cardiac homeostasis. The endothelium regulates vascular tone, angiogenesis, 
thrombosis, inflammation, and tissue homeostasis[49,50]. However, aging induces EC dysfunction, 
characterized by a shift toward a vasoconstrictive, pro-inflammatory, and pro-thrombotic phenotype[51]. EC 
dysfunction disrupts tissue homeostasis and is primarily driven by oxidative stress, with increased release of 
reactive oxygen species (ROS). While low levels of hydrogen peroxide can promote nitric oxide (NO) 
production, excessive ROS reduces NO bioavailability and impairs vasodilation[52]. High levels of ROS can 
also trigger inflammation, as evidenced by increased EC activation and increased EC cytokine expression 
via nuclear factor kappa-light-chain enhancer of B cells (NF-κB)[53]. Additionally, oxidative stress can impair 
mitochondrial function and increase mitophagy[54], although the effect on metabolic processes (e.g., 
glycolysis) remains conflicting[55].

A major consequence of these events is EC senescence[56,57], driven largely by damage to the ECs through 
oxidative stress. This is believed to be in part due to the unique anatomical location of the ECs at the blood-
tissue interface, where they are continually exposed to circulating factors and harmful stimuli such as 
hypoxia, high glucose levels, inflammatory mediators, and oxidizing molecules, creating a feedback loop 
that promotes senescence[58]. While senotherapeutics may reduce age-related EC dysfunction, their effects 
are context-dependent and need careful consideration[56]. Interestingly, while EC dysfunction affects both 
sexes, men show EC deterioration earlier than women and post-menopausal women show an accelerated 
rate of EC decline. The mechanism underlying these sex differences remains unclear, particularly whether 
the differences are linked to a loss of protection, or acceleration of aging by undetermined factors. It is 
becoming increasingly accepted that hormone changes between sexes have the potential to confer 
protection against cellular aging; however, the role of hormones in EC decline, particularly estrogen 
therapy, is complex and still not fully understood[59,60].

Cardiac fibroblasts
Cardiac fibrosis is a major contributor to myocardial stiffness and dysfunction in the aging heart, although 
it is less severe than in HF[6,61,62]. Cardiac fibroblasts, which make up less than 20% of non-cardiomyocytes, 
increase in number with age[33,63]. Aging, inflammation, and cardiomyocyte hypertrophy activate fibroblasts 
to transform into myofibroblasts (α-smooth muscle actin expressing fibroblasts)[61,64] through signaling 
pathways involving TGF-β, angiotensin II, IL-6, and mechanical stress[65-67] [Figure 1].

TGF-β is a key mediator of ECM accumulation and fibrosis. For example, aged heterozygous TGF-β mice 
(TGF-β +/-) show reduced fibrosis (4% vs. 10%) and improved cardiac compliance[68]. In pressure-overload 
models, pharmacological TGF-β inhibition or Smad2/3 deletion decreased cardiac fibrosis and improved 
diastolic function[65,66]. Angiotensin II-AT1 receptor signaling also stimulates TGF-β expression and activates 
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cardiac fibroblasts through endothelin-1, IL-6, and periostin signaling[62,69,70]. ACE inhibitors reduced both 
cardiac hypertrophy and lowered TGF-β1 levels, implicating TGF-β as a key mediator of angiotensin II 
effects[71,72]. While TGF-β inhibition has anti-fibrotic effects, it poses challenges due to its critical role in 
inflammation resolution and tissue integrity.

Activated myofibroblasts promote fibrosis by secreting integrins, collagen, fibronectin, laminin, and 
regulating ECM composition and stiffness through proteolytic enzymes, including matrix 
metalloproteinases (MMPs) and their inhibitors plasminogen activator inhibitor-1 (PAI-1) and tissue 
inhibitors of MMPs (TIMPs)[73]. In aged hearts, fibroblasts upregulate prolyl hydroxylases and lysyl oxidase, 
enzymes involved in cross-linking ECM proteins, further increasing LV stiffness[74,75]. Myofibroblasts also 
influence the cardiac microenvironment through paracrine signaling and secretion of insulin-like growth 
factor factor-1 (IGF-1) and pro-inflammatory SASPs, exacerbating endothelial-to-mesenchymal cell 
transition (EndMT) and recruiting CCR-2-dependent monocytes (CCR2+), which promote inflammation 
and senescence[76]. Targeting prolonged myofibroblast activation could reverse cardiac fibrosis, prevent 
myocardial stiffness, and mitigate HF progression with age.

Leukocytes in the aged heart
Aging is associated with “inflammaging”, a state of chronic low-grade systemic inflammation characterized 
by altered cytokine/chemokine production, clonal hematopoiesis, myeloid cell shifts, and mitochondrial 
dysfunction[77,78], which can disrupt cardiac homeostasis[79,80]. Chronic inflammation increases the risk of HF 
and impairs myocardial function, particularly in older adults[39].

The healthy adult heart contains various leukocytes, including macrophages, neutrophils, and 
lymphocytes[81], which maintain cardiac homeostasis through cell-to-cell communication with other cardiac 
cells. Macrophages, the most abundant immune cells in the heart, represent 7%-8% of non-cardiomyocytes 
in the healthy adult mouse heart, and include at least three distinct subsets: (1) CCR2- MHC II low; (2) CCR2- 
MHC II high; and (3) CCR2+ MHC II high[82]. The CCR2- macrophages are of embryonic origin and are 
maintained by local proliferation, while CCR2+ macrophages are replenished by the influx of circulating 
monocytes[83-85].

As the heart ages, there is a shift in immune cell composition, characterized by an increase in monocyte-
derived cardiac macrophages (CCR2+) and granulocytes [Figure 1][86,87]. These macrophages secrete pro-
inflammatory cytokines (TNF-α, IL-1β, and IL-6), MMPs, and growth factors (TGF-α and -β), playing 
critical roles in myeloid cell recruitment, regulation of cardiomyocyte senescence, and ECM turnover in the 
aging heart[86,88]. Additionally, an increase in CD8+ T-cells has been observed in the aged mouse heart, 
though the implications of this are not fully understood (reviewed in[80]).

MITOCHONDRIAL DYSFUNCTION IN THE AGED HEART
Cardiac function relies on the ability of cardiomyocytes to maintain energy balance under varying 
workloads, hormonal levels, nutritional states, and substrate availability[89,90]. While fatty acid oxidation 
(FAO) is the primary source of adenosine triphosphate (ATP) generation in the healthy heart, aging reduces 
metabolic flexibility, shifting energy production toward anaerobic glycolysis[91]. This metabolic shift 
contributes to diminished cardiometabolic reserves and exercise intolerance[92]. Aging also decreases 
electron transport chain (ETC) activity, reduces oxidative phosphorylation (OXPHOS) and ATP 
production, and increases ROS generation[93,94].
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Studies in aged mice overexpressing mitochondria-specific antioxidant catalase (mCAT) have shown 
attenuated markers of cardiac aging, including less mitochondrial protein oxidation, cardiac hypertrophy 
and fibrosis, along with improved diastolic function and extended lifespan[95,96]. These effects were not 
observed in mice overexpressing peroxisomal catalase (pCAT) or nuclear catalase (nCAT)[96], emphasizing 
the critical role of site-specific ROS regulation (e.g., mitochondria). Mitochondria-targeted antioxidants 
MitoTEMPO and MitoQ improve mitochondrial respiration and ATP generation, leading to restored 
vascular and cardiac function in aged hearts[97-99]. The mitochondria-targeted peptide SS-31 (elamipretide), 
though not a direct antioxidant, protects mitochondrial cardiolipin from oxidation, improves ETC electron 
flow, reduces superoxide production, and reverses diastolic dysfunction in aged mice[100].

While these interventions highlight the potential of targeting mitochondrial function as a therapeutic 
strategy, recent studies have begun to investigate the distinct roles of mitochondrial subpopulations within 
cardiomyocytes. Specifically, interfibrillar mitochondria (IFM), subsarcolemmal mitochondria (SSM), and 
perinuclear mitochondria (PNM) each have unique functional roles and metabolic responses[101-104]. IFM 
primarily supply ATP for sarcomere contraction due to their higher substrate oxidation rates and enzyme 
activity compared to SSM and PNM[101]. SSM regulate metabolite transport and protein synthesis, while 
PNM are located near the nuclei and are linked with nuclear functions[103,105,106]. In aged rodents, IFM show 
reduced ETC complex III and IV activity and decreased OXPHOS capacity, while SSM remain 
unaffected[104,107,108]. While targeting mitochondrial ROS shows promise in preclinical models of HF[109], 
translating these findings into clinical practice remains challenging. Understanding the roles of 
mitochondrial subpopulations could, therefore, enable the development of targeted therapies for 
mitochondrial dysfunction and open new avenues for age-related cardiac therapeutics.

CARDIAC ADAPTATION TO EXERCISE DURING AGING
Most research demonstrating the cardiac benefits of exercise has been conducted in young populations. 
However, substantial evidence suggests that the aging heart remains responsive to exercise, which can 
prevent and mitigate cardiovascular dysfunction[14,15,17,110]. While most forms of exercise induce molecular, 
structural, and functional adaptations that protect the heart from pathological stress, aerobic exercise is 
particularly effective in reducing cardiovascular morbidity and mortality[14,15,111]. This section reviews the 
physiological and molecular adaptations induced by short- and long-term aerobic exercise, with a focus on 
cardiac aging.

Effect of exercise on pathophysiological changes associated with aging
Short-term aerobic exercise activates signaling pathways that enhance cardiac contractility and increase 
heart rate and cardiac output (CO), leading to cardiac volume overload. This adaptive response promotes 
physiological cardiac growth, distinct from pathological hypertrophy in molecular mechanisms, cardiac 
phenotype, and clinical prognosis[112,113].

Exercise has been shown to partially reverse pathological cardiac remodeling and improve cardiac function 
in the elderly. For example, performing 30 min of exercise 4-5 days per week throughout life prevented age-
related cardiac changes, such as myocardial stiffness and reduced myocardial compliance[114]. Similarly, 
shorter duration of exercise (6-12 months) improved peak oxygen consumption and aerobic capacity in 
older adults (65-79 years), resulting in a 10% increase in LV mass while preserving the mass-to-volume 
ratio[115,116]. These benefits were also seen in middle-aged patients with early-stage HFpEF, characterized by 
LV hypertrophy and elevated cardiac biomarkers, where exercise significantly improved both myocardial 
stiffness and cardiac compliance after one year[15,114]. Furthermore, Jakovljevic et al. found that high levels of 
daily physical activity ( > 12,500 steps per day) preserved cardiac metabolism and aerobic capacity in healthy 
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women across three age groups (young 20-30 years, middle-aged 40-50 years, and older 65-81 years)[117]. 
However, this activity had limited effects on age-related concentric remodeling, diastolic function, and 
overall cardiac performance in women[117], indicating potential sex differences in exercise adaptation. 
Accumulating evidence demonstrates that exercise significantly improves cardiac function[118], highlighting 
its potential as both a preventative and therapeutic strategy for HFpEF. However, a deeper understanding of 
the underlying mechanisms, as well as the optimal dose and intensity, is required to fully harness its 
benefits.

Exercise leads to cardiomyocyte growth and proliferation
Consistent with the reported beneficial effects in humans, we and others have demonstrated that 8 weeks of 
voluntary running mitigates diastolic dysfunction, the decline in contractile reserves, and reduced 
cardiomyogenesis in aged mice[17,110,119-122]. While the adult heart has a limited capacity to generate new 
cardiomyocytes, hypertrophy serves as the primary compensatory cardiomyocyte adaptation in response to 
increased workload. However, multiple studies show that exercise-induced cardiac growth involves both an 
increase in cardiomyocyte size and cardiomyocyte proliferation in young and old mice[110,113,120,123,124] 
[Figure 2]. Despite the lower absolute number of proliferating cardiomyocytes in aged hearts, the relative 
increase in cardiomyogenesis in exercised aged mice is comparable to that detected in young sedentary 
mice, suggesting that the aging heart retains a considerable capacity for regeneration in response to aerobic 
exercise. Mechanistically, exercise-induced cardiomyocyte proliferation is regulated by CCAAT/enhancer-
binding protein β-CBP/p300-interacting transactivators with E (glutamic acid)/D (aspartic acid)-rich-
carboxyl terminal domain (C/EBPβ-CITED4) axis and microRNA-222 signaling, which drive adaptive 
cardiac growth and enhance cardiomyocyte survival. These findings highlight the potential for reactivation 
of intrinsic cardiomyocyte proliferative pathways, even in aging hearts. This adaptive cardiomyogenic 
response holds therapeutic potential, as cardiomyocyte loss is an important contributor to age-induced 
cardiac remodeling and HF.

Exercise can restore age-associated endothelial cell dysfunction
Short-term aerobic exercise (4-12 weeks) has been shown to mitigate the effects of EC aging, by restoring or 
even reversing age-related EC changes. For example, aerobic exercise increases intravascular blood flow and 
shear stress, stimulating NO production and restoring vasodilation or reversing impaired endothelial-
dependent dilation (EDD) in previously sedentary individuals and in patients with HF[125,126]. Long-term 
exercise (more than five times per week for at least 10 years) not only reduces the impact of oxidative stress 
by increasing NO, but also enhances the expression of antioxidant enzymes such as superoxide dismutase 
(SOD), catalase, and glutathione S-transferases (GST)[127]. Furthermore, regular exercise reduces serum 
inflammatory markers; for example, two weeks of voluntary wheel activity in aged mice decreased activation 
of NF-κB and aortic expression of IL-1 and IL-6[128]. In the aging population, short-term exercise (30 min, 
3 days per week for 12 weeks) promotes EC health by elevating CXC chemokine receptor (CXCR4)/Janus 
kinase (JAK-2) signaling[129].

Short-term voluntary running (10-14 weeks) can also stimulate the mobilization of circulating endothelial 
progenitor cells (EPCs) and enhance their recovery after stress, by activating vascular endothelial growth 
factor (VEGF) and MMP9, thus promoting healthy vasculogenesis[130] [Figure 2 and 3]. Mitochondrial 
health is improved by aerobic activity, by reversing impaired mitophagy in senescent ECs (e.g., by elevating 
the mitochondrial clearance regulator FUNDC1[131-133]), enhancing mitochondrial biogenesis, and 
upregulating the mitochondrial antioxidant system (reviewed in[133]). Recent data have also revealed that 
endurance aerobic exercise can regulate microRNAs to benefit EC function (e.g., exercise reduces miR-155 
to increase NO production and elevates miR-126 to enhance NO production and reduce both inflammation 
and ROS levels)[134]. While miRNA changes resulting from exercise can be protective against EC damage, the 
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Figure 2. Exercise stimulates molecular and cellular changes in the aged heart. Exercise benefits cardiac cells and molecular processes. 
Exercise enhances endothelial cell function by increasing nitric oxide (NO) production and reducing reactive oxygen species (ROS), 
while also elevating vascular endothelial growth factor (VEGF) to support angiogenesis. In fibroblasts, exercise decreases myofibroblast 
activation, reducing fibrosis and improving cardiac function. It also impacts leukocytes by lowering hematopoietic stem and progenitor 
cell (HSPC) proliferation, reducing leukocytosis and increasing myeloid-derived suppressor cells (MDSCs) to diminish inflammation. 
Additionally, exercise promotes physiological cardiac growth through cardiomyocyte proliferation and hypertrophy, improving cardiac 
function.

type and intensity of the exercise must be considered carefully, as some forms of strenuous exercise, such as 
marathon running, have been linked to elevated oxidative stress[135].

Exercise inhibits the activation of fibroblasts and cardiac fibrosis
Recent evidence shows that daily swimming exercise for one to four weeks induces a distinct transcriptional 
profile in cardiac fibroblasts, reducing the expression of fibrotic markers, such as collagen genes (e.g., 
collagen type I alpha 1, Col1a1) and myofibroblast activation markers (e.g., periostin, Postn, and Acta2). 
Exercise activates nuclear factor erythroid 2-related factor (Nrf2) signaling in cardiac fibroblasts, which 
elevates the expression of antioxidant metallothioneins (Mts, including Mt1 and Mt2), enhancing resistance 
to oxidative stress and fibrotic remodeling[136]. Importantly, elevated Mts can also be transferred to 
cardiomyocytes, inhibiting apoptosis[136] and further promoting cardiac resilience.

In addition to Nrf2 activation, exercise-induced transcriptional co-activator CITED4 plays a key role in 
protecting against fibrosis. In CITED4 knockout mice, the absence of this protein resulted in cardiac 
dilation and increased fibrosis, under both short-term exercise intervention and pathological stress (such as 
pressure overload). CITED4 mediates its protective effects through mTOR signaling and the regulation of 
fibrosis-related microRNAs[137]. Similarly, four weeks of swimming (50 min daily, 6 days per week) activates 
adenosine monophosphate-activated protein kinase (AMPK) in an isoproterenol-induced mouse model, 
reducing fibrotic remodeling by inhibiting ROS production[138]. Likewise, short-term treadmill running 
activates the AMPK/SIRT1/PGC-1α pathway in aged rats, which alleviates cardiac fibrosis[138,139].

MicroRNAs, particularly miR-455 and miR-29, are identified as key mediators of exercise-induced 
physiological remodeling and cardioprotection. Increased miR-29 expression protects against pathological 
cardiac remodeling after myocardial infarction by inhibiting COL1A1 and collagen deposition[140]. Similarly, 
elevated miR-455 levels promote cardiomyocyte proliferation and reduce cardiac fibrosis by inhibiting 
MMP9[141] [Figure 3]. Both preclinical and clinical studies consistently demonstrate exercise-associated 
improvements in myocardial stiffening, cardiac compliance and fibrosis. Furthermore, cardiac fibroblasts 
contribute to physiological remodeling by producing exercise-induced growth factor IGF-1[142], highlighting 
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Figure 3. Molecular Pathways in Exercise-Induced Cardioprotection. Complex signaling pathways involved in exercise-induced 
cardioprotection, targeting age-related cardiac dysfunction and enhancing cardiac resilience. Key pathways include the activation of 
nuclear factor erythroid 2–related factor 2 (Nrf2), which upregulates metallothioneins (Mt1/2) to reduce ROS, alleviate oxidative 
stress, and prevent cardiac fibrosis. The β3-adrenergic receptor (β3-AR)/Protein kinase G (PKG) axis improves endothelial function 
and angiogenesis by increasing NO production through endothelial nitric oxide synthase (eNOS) during exercise, which activates cyclic 
guanosine monophosphate (cGMP), and PKG. Mechanical stress also boosts NO levels. AMP-activated protein kinase (AMPK) 
contributes to angiogenesis by increasing vascular endothelial growth factor (VEGF) expression, supporting cardiac performance. The 
Sirtuin 1 (SIRT1) and Peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC1α) axis synergistically enhances 
mitochondrial function and supports energy metabolism, while PGC1α also interacts with the phosphoinositide 3-kinase (PI3K) pathway 
to promote mitochondrial biogenesis and improve cardiac function. The insulin-like growth factor 1 (IGF1)/phosphoinositide 3-kinase 
(PI3K)/serine/threonine kinase 1 (AKT)/mammalian target of rapamycin (mTOR) axis is crucial for cardiomyocyte survival, 
proliferation, and exercise-induced hypertrophy. Downregulation of CCAAT/enhancer-binding protein beta (C/EBPβ) and upregulation 
of CBP/p300-interacting transactivator with E/D-rich carboxy-terminal domain 4 (CITED4) promote physiological cardiac growth and 
cardiomyocyte proliferation via the mTOR pathway. Exercise also elevates several microRNAs (miRNAs) that regulate cardiac health: 
miR-29 reduces fibrosis, miR-126 enhances endothelial function, miR-342 supports cardiomyocyte proliferation and survival, miR-455 
inhibits pathological remodeling, miR-222 promotes cardiomyocyte growth, and miR-17-3p facilitates adaptive cardiomyocyte growth 
in response to exercise.

the complexity of the system and the importance of balanced cross-talk between cardiac cell types in 
maintaining cardiac health.

Exercise can modulate immune responses
Immune cells are important regulators of the heart’s response to disease-induced stress and the progression 
of chronic HF[78,80,143,144]. Preclinical and clinical studies have linked exercise to reduced systemic and cardiac 
inflammation during aging and disease[122,145-148]. However, the cardiac immune response to exercise, 
especially in young vs. old heart, is unclear, and the roles of resident vs. recruited immune cells require 
further exploration.
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Several studies suggest that exercise can reduce inflammation; however, this effect varies depending on sex 
differences and exercise intensity. For example, the MoTrPAC study revealed sex-specific changes in pro-
inflammatory cytokines across tissues in young rats after eight weeks of endurance exercise[149]. In a different 
context, short-term exercise in aged diabetic mice lowered systemic cytokine and chemokine levels while 
increasing the expression of peroxisome proliferator-activated receptor gamma co-activator-1 alpha 
(PGC-1α), macrophage infiltration, and inflammatory markers such as iNOS and TNF-α in the heart[150]. 
Additionally, short-term exercise activated the IL-10/STAT3/S100A9 pathway, which promotes the 
expansion of myeloid-derived suppressor cells (MDSCs), reducing inflammation and mitigating HF 
progression in a mouse model of isoproterenol-induced HF[151] [Figure 2]. However, high-intensity acute 
exercise resulted in increased inflammation, suggesting an intensity-dependent relationship between 
exercise and inflammation[148].

Further evidence highlights how short-term exercise can modulate immune function. Frodermann et al. 
demonstrated that six weeks of voluntary running reduces inflammatory leukocyte production by lowering 
leptin levels in bone marrow-derived hematopoietic stem and progenitor cells (HSPCs)[152]. Mice lacking the 
leptin receptor had fewer leukocytes post-MI and improved cardiac function, highlighting leptin’s role in 
regulating HSPC activity and leukocyte production[152].

On the clinical side, studies have shown that short-term exercise can modulate inflammation through 
epigenetic regulation. For example, exercise induces methylation of the pro-inflammatory ASC gene (an 
adaptor molecule that mediates pro-inflammatory signaling), which decreases ASC expression and lowers 
pro-inflammatory cytokines such as IL-1β and IL-18[153-155]. In HF patients, increased ASC methylation 
correlates with less severe symptoms, improved cardiac function, and a reduced risk of adverse 
outcomes[153,154]. More findings on the effects of exercise on the murine immune system can be found in 
these excellent studies[149,156,157]. These findings underscore the importance of further investigating exercise-
induced immune system changes, particularly with age.

MOLECULAR MECHANISM OF EXERCISE ADAPTATION
Molecular mediators driving cardiomyocyte adaptation to exercise in healthy animals underpin its 
protective effects in aging and HF. Preclinical rodent studies have identified key signaling pathways that 
mediate the heart’s adaptive response to exercise and confer protection against pathological stress[158]. Here, 
we focus on molecular pathways consistently linked to beneficial cardiac remodeling and cardioprotection.

Endurance training increases circulating IGF-1 levels[159], promoting physiological cardiac remodeling 
through the phosphoinositide 3-kinase/serine/threonine kinase 1 (PI3K-AKT) signaling cascade (IGF-1-
PI3K-AKT)[159,160] [Figure 3]. This pathway enhances cardiomyocyte anti-apoptotic capacity and survival; 
however, IGF-1 activity must be tightly regulated, as prolonged expression can impair cardiac 
function[159,160]. Short-term swimming activates phosphoinositide 3-kinase (PI3K), particularly the p110α 
isoform, and increases antioxidant enzyme levels and heat shock proteins, promoting physiological 
hypertrophy and cardioprotection in mice[161,162]. Notably, activation of the AKT1 pathway enhances 
myocardial glucose uptake and cardiomyocyte survival[163,164], while PI3K overexpression induces 
physiological hypertrophy without adverse effects, suggesting its therapeutic potential in HF[161,162]. 
Conversely, mice with a dominant negative PI3K mutation show an impaired exercise-induced 
hypertrophic response and greater cardiac dysfunction under stress[161,162].

The C/EBPβ-CITED4 axis, a downstream target of the PI3K-AKT pathway, is a central regulator of exercise-
induced cardiac growth and protection against pathological hypertrophy[165] [Figure 3]. In hearts from 
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exercised mice, C/EBPβ downregulation promotes cardiomyogenesis, while preventing pathological changes 
by inhibiting NF-κB activation[120,165,166] [Figure 3]. This activates the mTORC1 pathway, which confers anti-
apoptotic effects on the injured heart[124,165]. Importantly, C/EBPβ downregulation upregulates miR-222, 
miR-342, and miR-17 expression, which further enhances cardiomyocyte proliferation[123,124] [Figure 3]. 
Specifically, miR-222 induces physiological cardiomyocyte hypertrophy and proliferation by directly 
inhibiting Kip1/homeodomain-interacting protein kinase 1 (HIPK1/P27) and homeobox containing 1 
(HMBOX1)[167], while elevated miR-17-3p promotes cardiomyocyte survival and proliferation by targeting 
TIMP3[168] [Figure 3]. Clinically, men with chronic heart failure (HFrEF and HFpEF) exhibit increased 
serum levels of miR-222 and miR17-3p following acute exercise (2.5-11 min on a bicycle ergometer), 
suggesting their potential as markers of exercise-induced cardiac adaptation[167,168].

In parallel, the β3-adrenergic receptor-nitric oxide (β3-Ars-NO) axis has emerged as a novel mechanism 
underlying exercise-induced cardiac remodeling. Animal studies show that eight weeks of voluntary 
running increases cardiac β3-Ars expression, which protects against ischemia-reperfusion injury by 
activating endothelial nitric oxide synthase (eNOS) and enhancing NO production[169]. NO subsequently 
activates soluble guanylate cyclase, elevating cyclic guanosine monophosphate (cGMP) and protein kinase 
G (PKG) signaling[170] [Figure 3]. While the precise molecular mechanisms of exercise-induced cardiac 
benefits are still being explored, findings from exercised mouse models provide critical insights into 
therapeutic strategies for combating age-related cardiac decline and heart failure progression.

EXERCISE IMPROVES MITOCHONDRIAL BIOGENESIS
One of the key adaptations of aerobic exercise in cardiomyocytes is the enhancement of metabolism and 
mitochondrial biogenesis. Exercise counteracts age-related metabolic changes by increasing mitochondrial 
numbers, enhancing antioxidant capacity, and reversing metabolic fuel shifts in the heart[92,171-174].

Central to these adaptations is the transcriptional co-activator PGC-1α, which regulates metabolic 
adaptation to exercise in the heart, promoting mitochondrial biogenesis, oxidative phosphorylation, and 
mitochondrial abundance[173]. PGC-1α exerts its effects by interacting with the estrogen-related receptors 
(ERRs), peroxisome proliferator-activated receptor (PPARs), and NRF-1/NRF-2, pathways that are 
regulated by sirtuin 1 (SIRT1)-mediated deacetylation and AMPK phosphorylation in response to nutrient 
availability or acute exercise[175-178]. For example, long-term exercise in a diabetic cardiomyopathy mouse 
model reduced ROS generation and mitigated cardiac metabolic impairments through activation of the 
PGC-1α-AKT signaling cascade[179]. Interestingly, older individuals show a reduced PGC-1α expression in 
skeletal muscle following long-term exercise, which may explain the smaller metabolic adaptations observed 
with aging[180].

Short-term exercise responses in skeletal muscle are primarily mediated by AMPK activation, with PPARδ 
contributing to longer-term transcriptional regulation that complements AMPKs immediate metabolic 
effects[181]. While selective PPARδ ligands are being tested as exercise mimetics for HF, AMPK activators 
pose potential risks, including glycogen accumulation, pathological cardiac hypertrophy, and conduction 
system abnormalities[182]. Interestingly, cardiometabolic therapies, such as Metformin and Empagliflozin 
(AMPK activators) or Resveratrol (SIRT1/PGC-1α/AMPK activators), target pathways modulated by 
exercise. Long-term administration of metformin at a therapeutic dose in healthy non-human primates has 
shown anti-aging effects at the molecular and tissue levels, including reduced SASPs and cardiac fibrosis, via 
activation of AMPK and Nrf2 antioxidant pathways[183]. This suggests that mimicking exercise-induced 
benefits could offer clinically relevant targets for treating age-related cardiac dysfunction.
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CONCLUSION
This review highlights the complex interplay between cardiac aging and metabolic comorbidities, which 
obscure efforts to promote healthy cardiac aging. Key challenges include restoring cardiomyocyte turnover, 
improving vascular function, and alleviating oxidative stress and cardiac fibrosis. Although the molecular 
and cellular mechanisms of exercise in human cardiac aging are incompletely understood, evidence from 
preclinical models and clinical studies supports exercise as the most effective intervention for preventing 
and alleviating age-related cardiac dysfunction. Optimizing exercise duration and intensity, particularly for 
elderly populations, is essential to maximize its benefits, with consistent adherence to the recommended 
exercise regimens being equally critical for achieving meaningful outcomes.

The limited availability of human cardiac tissue is a major challenge for studying exercise-related 
mechanisms in cardiac aging. However, structural similarities between aging human and rodent hearts 
emphasize the value of small animal models as complementary tools to clinical studies. Addressing the 
fundamental mechanisms underlying the benefits of exercise could lead to innovative strategies for 
preventing, managing, and treating cardiometabolic diseases while also advancing our understanding of the 
aging process. Additionally, incorporating sex differences into studies of cardiac aging and exercise is 
essential for developing more effective, personalized therapies. Recent findings emphasize the therapeutic 
potential of exercise in mitigating multiple aspects of cardiac aging, offering promising avenues to improve 
cardiac health across diverse aging populations.
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