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Abstract
Diamond and cubic boron nitride (BN) are important materials with a variety of technological and industrial 
applications; however, overcoming the intrinsic brittleness of these materials is still a challenge. Here, we 
synthesize a compound of crystalline BN and amorphous diamond-like carbon through BN nanotubes and fullerene 
under high pressure and high temperature conditions. The obtained composite exhibits excellent combination of a 
measured Vickers’ hardness of 86.2 GPa and fracture toughness of 10.2 MPa m1/2. Morphological and structural 
characterizations reveal that the amorphous diamond-like carbon is homogeneously embedded in a matrix of 
dense BN. The formation of the amorphous diamond-like carbon particles within the polycrystalline BN can 
effectively impede the migration of crack tips when the compound is cracking, in which most of crack tips are 
forced to deflect or confined near the boundaries of dense BN and amorphous diamond particles. The crystalline-
amorphous composite strengthening presented here may provide a promising strategy for the further improvement 
of mechanical properties of hard or superhard materials.

Keywords: Superhard materials, HPHT synthesis, boron nitride, amorphous diamond-like carbon

INTRODUCTION
Superhard materials, for example cubic boron nitride (c-BN) and diamond, are an interesting class of 
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materials that play a decisive role in the field of materials processing. The application of superhard materials 
as the cutting tools has promoted the prosperity of high-precision materials processing such as aerospace 
and mechanical manufacturing[1-5]. Among superhard materials, c-BN exhibits excellent thermal stability 
and chemical inertness, demonstrating extraordinary practicality in high-speed cutting, especially for the 
cutting of ferrous metals[6-8]. However, the Vickers’ hardness of single crystal c-BN is approximately half that 
of natural diamond. For decades, great efforts have been devoted to improving the mechanical properties, 
including Vickers’ hardness and fracture toughness; the grain boundary strengthening and twin 
strengthening are demonstrated to be the effective strategies for the improvement of mechanical properties 
of the materials[9,10]. Grain boundary strengthening is achieved by reducing grain size to increase the density 
of grain boundaries, thereby limiting dislocation movement. When the grain sizes decrease to the nanoscale, 
the hardness of the material will be increased significantly. The nanopolycrystalline state of c-BN shows a 
Vickers’ hardness almost twice that of a single crystal[11-14]. However, the calculations reveal that grain 
boundary strengthening is effective up to a threshold of eight nanometers. Below this size, an inverse Hall-
Petch effect occurs, leading to the failure of the grain boundary strengthening[15,16]. Nevertheless, twinning 
strengthening can operate even at sub-nanoscale levels. Notably, the hardness of c-BN with an average twin 
domain size of 3.4 nm surpasses that of natural diamond[17]. In industrial applications, it remains a challenge 
to prepare bulk materials with a high proportion and uniformly distributed twin structure. As a result, grain 
boundary strengthening continues to be the most widely used method in the industry. Enhancing the 
Vickers’ hardness and fracture toughness of polycrystalline boron nitride has always been a research focus. 
Due to its inherent cleavage feature, c-BN exhibits the brittleness and is prone to premature failure. 
Therefore, a new strengthening method is highly needed to improve the mechanical properties of c-BN[18,19].

Amorphous materials have a fundamentally different structure from crystalline materials and do not possess 
defects such as grain boundaries, dislocations, and twins[20-22]. As a result, the fracture behavior of 
amorphous materials differs from that of crystalline materials. Since the amorphous form is a state of 
disordered arrangement of atoms, free volume exists between atoms, and plastic deformation of amorphous 
alloys generally occurs in the form of shear bands[23-25]. According to literature, the hardness of amorphous 
diamond-like carbon materials can scratch natural diamonds, demonstrating excellent mechanical 
properties[26].

Based on the difference in strengthening mechanisms between polycrystalline and amorphous materials, it 
is particularly important to construct a crystal/amorphous superhard material system and study the 
relationship between its mechanical properties and structure. The amorphous/crystalline strategy may 
provide a promising way to achieve the high strength of materials that can resist deformation and improve 
mechanical performance. Despite the extensive successes of preparations of crystalline diamond/c-BN 
composites, there is no exploration about amorphous-crystalline compounds of amorphous diamond-like 
carbon and boron nitride[27-30].

In this study, we utilized hexagonal boron nitride nanotubes (BNNTs) and C60 as precursors to investigate 
the structural and microstructural evolutions after high pressure and high temperature (HPHT) treatment. 
Hexagonal boron nitride (h-BN) undergoes a gradual transformation into a composite material consisting 
of wurtzite boron nitride (w-BN) and c-BN and subsequently transitions into pure c-BN. Moreover, 
fullerene (C60) is converted into amorphous carbon and then ultimately crystallizes into diamond. The 
compound of crystalline c-BN and amorphous diamond-like carbon is obtained to have the excellent 
combination of Vickers’ hardness and fracture toughness. The analysis shows that when cracking, the 
migration of the crack tip will be blocked by the amorphous diamond-like carbon particles, and the 
dislocation activities are hindered by the interface of crystalline c-BN and amorphous diamond-like carbon. 



Page 3 of Li et al. Microstructures 2024;4:2024010 https://dx.doi.org/10.20517/microstructures.2023.54 12

The present results may offer an effective strategy of crystalline/amorphous compounds for further 
strengthening of superhard materials.

MATERIALS AND METHODS
Multi-walled BNNTs with 99.9% purity were purchased from Nanjing Xianfeng Nanomaterials Co., Ltd.
Fullerene was obtained from Macklin Reagent Co., Ltd. Supplementary Figure 1A and B depicts the X-ray
diffraction (XRD) patterns of C60 fullerene and BNNTs, respectively. The diffraction peaks of C60 fullerene
align with the standard card (JCPDS No. 79-1715), signifying high crystallinity. In addition, the diffraction
peaks of the BNNTs align with the standard card (JCPDS No. 73-2095) for h-BN. The nanotubes exhibit the
inner and outer diameters of 20 and 50 nm, respectively, and the lengths vary from a few micrometers to
tens of micrometers [Supplementary Figure 1C and D]. Moreover, the selected area electron diffraction
(SAED) and high-resolution TEM (HR-TEM) image confirm the high quality of C60 [Supplementary Figure
1E and F]. The precursor was prepared by grinding BNNTs and C60 in a 4:1 mass ratio for 30 min in a
mortar. The resulting mixture was then pre-pressed into a cylindrical shape with a diameter of 1.6 mm and
a length of 2 mm. The experiments were conducted using a Kawai-type multi-anvil press (1,500-ton).
Tungsten carbide anvils with a truncation of 3 mm and a side length of 10 inches (25.4 cm) were used in the
experiments. The schematic diagram of the high-pressure and high-temperature experimental process is
presented in Supplementary Figure 2. The pressure was slowly increased by 1 bar/min to the target pressure.
The heating was performed in a constant power mode with a heating rate of approximately 100 °C/min.
Real-time temperature monitoring during the experiment was achieved using a D-type thermocouple made
(W3%Re-W25%Re), which enabled temperature measurements up to 2,300 °C under high pressure. Once
the target temperature was reached, the sample was allowed to continue heating for 10 minutes before the
heating was stopped by turning off the power. The pressure was then slowly released at a rate of
0.5 bar/min. The resulting sample was embedded in resin or rosin and polished using diamond papers with
progressively finer particle sizes of 15, 9, 5, 3, and 1 μm. The polished sample was then cleaned using
ultrasonic waves with anhydrous ethanol and air-dried in preparation for subsequent characterization.

Mechanical properties were tested using a micro-hardness tester (Qness Q60A+) with a load range of
0.1-5 kg. The instrument was pre-calibrated using a standard block, and then different loads were applied to
the sample for single-point testing, with five valid data points collected for each load. Finally, the data for
different loads were summarized.

The mechanical properties of the samples were also measured using a Nano Indenter G200 XP, employing
Berkovich indenters and the continuous stiffness measurement (CSM) method. The maximum depth of
indentation was set to 800 nm. In order to ensure representative results, we carefully selected five different
regions and obtained three data points within each region. At least five valid points were collected for
subsequent analysis and processing[31].

The hardness of the material was calculated using Equation 1, where F (in Newtons) represents the applied
load, and L (in micrometers) denotes the arithmetic mean of the two diagonals of the Vickers
indentation[32].

The fracture toughness of the material is calculated using Equation 2, where F (in Newtons) represents the
applied load, and C corresponds to the arithmetic square root of the distance from the center of the
indentation to the tip of the crack[33].
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Structure characterization was performed using an X-ray diffractometer (D8 Discover, Bruker) equipped
with a Cu Kα radiation X-ray source (λ = 1.54056 Å). Morphological analysis was conducted using scanning
electron microscopy (FESEM, JSM-7900F) at an accelerating voltage of 15 kV and a working distance of
10 mm. A Pt coating was applied to the sample to minimize charge accumulation on the surface for better
electrical conductivity.

A transmission electronic microscope (TEM, JMS-F200) was used for the characterization, with an
accelerating voltage of 200 kV. The powder sample was dispersed in ethanol and subjected to ultrasonic
processing to create a homogeneous suspension. The suspension was then dropped onto a copper grid and
allowed to undergo complete ethanol evaporation. HR-TEM and SAED were utilized to characterize the
morphology and structure of the sample. Electron energy loss spectroscopy (EELS) was performed using a
spherical aberration-corrected TEM with an accelerating voltage of 300 kV. The sample was prepared using
a focused ion beam (FIB) technique on a Scios Dual Beam instrument from Thermo Fisher. Gallium ions
were used for grinding and cutting, and thinning was carried out under a beam current of 20-40 pA at 30
kV. The amorphous layer on the sample surface was removed using 5 kV 30 pA and 3 kV 30 pA, resulting
in a final sample thickness of approximately 80 nm.

RESULTS AND DISCUSSION
As depicted in Figure 1A, the diffraction peaks of the sample recovered at 25 GPa and 500 °C support the 
presence of both w-BN and h-BN, suggesting the phase transformation of h-BN into w-BN[34,35]. The 
observed broadening of diffraction peaks indicates the disordered feature of the recovered samples at 
25 GPa and 500 °C. With the temperature increases, the characteristic peak of (002) for h-BN gradually 
shifts to a higher angle, indicating a reduction of lattice distances, for example, the (002) plane of h-BN from 
0.33 nm to approximately 0.31 nm.

The transformation of boron nitride resembles the conversion of graphite into diamond and involves an 
intermediate structure known as “compressed graphite”[36]. When the temperature reaches 1,400 °C, the 
characteristic peak of h-BN disappears, indicating the completion of the transformation of boron nitride 
into its dense phases (w-BN and c-BN) in the recovered samples. However, there are no characteristic 
diffraction peaks of C60 found in the temperature range from 1,000 to 1,600 °C, confirming the amorphous 
structure of carbon throughout the process. A composite of polycrystalline diamond and c-BN is obtained 
for the samples at 25 GPa and 1,800 °C, as seen by the (111) and (220) diffraction peaks of c-BN and the 
adjacent (111) and (220) diffraction peaks of polycrystalline diamond[37,38].

The Vickers hardness of the recovered samples at 25 GPa and the temperature from 1,000 to 1,800 °C are 
estimated using a hardness tester with a load of 9.8 N. As shown in Figure 1B and C, the Vickers hardness of 
the samples increases gradually from 1,000 to 1,400 °C. As shown in Supplementary Figure 3, the recovered 
samples at 1,400 °C achieve an asymptotic hardness of around 86.2 GPa at approximate 8 N load 
[Supplementary Figure 4], harder than polycrystalline w-BN and polycrystalline c-BN[30,39]. The increase in 
hardness is attributed to the transformation of non-dense boron nitride (h-BN and compressed h-BN) into 
dense-phase boron nitride. Above 1,400 °C, the hardness gradually decreases from 86.2 to 65.3 GPa. The 
fracture toughness of the composite exhibits a similar trend from 1,000 to 1,400 °C; the toughness gradually 
increases from 7.06 MPa m1/2 to 10.2 MPa m1/2 and then decreases to 7.55 MPa m1/2. The maximum 
toughness of the sample presented, about 10.2 MPa m1/2, is more than twice that of micrometer-sized 
polycrystalline c-BN[11]. Notably, at the temperatures above 1,400 °C, both amorphous diamond-like carbon 
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Figure 1. XRD patterns (A), the characteristic diffraction peaks of different phases (marked with different colors) and mechanical 
properties [Vickers’ Hardness (B) and Fracture Toughness (C)] of recovered samples sintered at 25 GPa and 500-1,800 °C, named as 
BNCT (T represent temperatures).

and boron nitride gradually transform into the crystalline states, which may suggest the changes of the 
strengthening mechanism from the crystalline-amorphous system to the crystalline-crystalline system. 
Figure 2 presents the results of the nanoindentation tests conducted on the samples. The sample obtained at 
1,200 °C exhibited a hardness and Young’s modulus of approximately 85 and 810 GPa, respectively, at an 
applied load of approximately 100 mN. This can be attributed to the presence of non-dense phase boron 
nitride within the material. In addition, the sample obtained at 1,400 °C demonstrated a higher hardness 
and Young’s modulus, measuring around 110 and 1,300 GPa, respectively, under the same test conditions. 
The enhanced values may be attributed to the complete transformation of the non-dense phases into its 
dense phase at high temperatures.

However, when the reaction temperature was increased to 1,800 °C, a notable reduction in both hardness 
and toughness was observed. The average values for hardness and Young’s modulus were measured at 
approximately 92 and 900 GPa, respectively. XRD analysis indicated that the sample obtained at 1,400 °C 
represented an amorphous-crystalline system, while the sample obtained at 1,800 °C exhibited a composite 
polycrystalline system.

Supplementary Figure 3 depicts the typical load-displacement curves obtained from the nanoindentations 
conducted on the samples. The loading and unloading curves exhibit a smooth behavior, indicating highly 
reliable indentation results. In Supplementary Figure 3B, the maximum deformation depths after elastic 
unloading are presented for three samples, measuring at 152.6, 185.3 and 216.2 nm, respectively. This 
suggests that the sample obtained at 1,400 °C exhibits the highest resistance[40,41].
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Figure 2. Nanoindentation test results of different samples. (A) Hardness and (B) Young modulus, with error bar (gray), respectively 
(the curve labels refer to the temperature at which samples were quenched; e.g., 1,400 represents the sample obtained at 1,400 °C).

Supplementary Figure 3C and D demonstrates a “pop-in” phenomenon observed during the loading 
process of the samples obtained at 1,400 and 1,800 °C. In the case of single crystals, this phenomenon is 
typically associated with the indentation and crystal orientation[42]. However, since the synthesized samples 
are isotropic, it is likely that this “pop-in” effect is caused by the breakage of the second phase. Previous 
research indicates that the “pop-in” phenomenon is attributed to localized strength aging within the bulk 
material, which suggests a correlation with the diamond-like carbon present in the samples[43]. Furthermore, 
a comparison reveals the distinct slopes in the pop-in curves between the 1,400 and 1,800 °C samples, 
potentially indicating differences in the materials’ ability to resist cracking.

The microstructure of the recovered samples was examined using SEM and TEM. For the sample obtained 
at 25 GPa and 1,000 °C [Figure 3A and B], boron nitride displays a turbostratic structure; C60 presents an 
amorphous state, and the particle size of carbon is about 3.16 nm [Supplementary Figure 5]. SAED analysis 
indicates a mixture of “compressed h-BN” and dense boron nitride with amorphous carbon. The diffraction 
ring corresponding to the (002) base plane of “compressed h-BN” exhibits a significant broadening 
compared to the crystalline h-BN[36]. The “compressed h-BN” is found to have a lamellar morphology. 
Additionally, a significant portion of the boundary area with amorphous carbon and the “compressed 
h-BN” is observed, which further decreases the hardness and toughness. For the sample obtained at 1,200 °C 
and 25 GPa [Figure 3C and D], we find that the majority of the area consists of a combination of the dense 
boron nitride and amorphous carbon, with only a small amount of “compressed h-BN”. The increase in the 
proportion of dense boron nitride strengthens the hardness of the samples. For the samples at 1,400 °C and 
25 GPa [Figure 3E and F], SAED supports the presence of w-BN and c-BN. Additionally, carbon transforms 
into amorphous diamond-like carbon, as indicated by a distinct halo in the region of the diamond ring 
positions. However, the samples obtained at 1,800 °C transform into a polycrystalline compound 
[Figure 3G and H]. SAED reveals the presence of a complex of polycrystalline diamond and c-BN, which is 
further supported by XRD results. It is noted that the crystal-crystal system was found to exhibit lower 
mechanical properties than that of the crystal-amorphous system, which may be attributed to the different 
fracture mechanisms between them. In a crystal-amorphous system, the unique structure and combination 
of crystals and amorphous materials have a strengthening effect on the bulk material.

Elemental mapping was conducted on the sample obtained at 500 °C, revealing a uniform distribution of 
carbon within the boron nitride framework. The results are displayed in Supplementary Figure 6, where a 
curved tubular shape is visible, suggesting that the transformation of BNNTs into their dense phase is not 
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Figure 3. (A, C, E, G) SEM-EDS images of recovered samples at 25 GPa and different temperatures of 1,000-1,600 °C (red represents 
carbon element, green represents boron element, and blue represents nitrogen element); (B, D, F, H) TEM images and SAED patterns of 
recovered samples at different temperatures, 25 GPa 1,000-1,800 °C.

completed. This observation aligns with the XRD findings. Upon increasing the temperature to 1,200 °C, the 
morphology of the sample exhibits a crystalline-amorphous state, as depicted in Figure 4A. The carbon 
particles with the crystal sizes of about 0.5-2 μm are embedded in dense boron nitride. The boundaries 
between the two phases can be seen in Figure 4B, where the crystalline phase is of w-BN structure. The 
carbon region shows a disordered atomic structure. The Fourier transform image of the amorphous carbon 
region exhibits a characteristic ring halo, rather than discrete diffraction peaks [Figure 4C]. Meanwhile, the 
carbon region can be clearly distinguished by TEM-EDS mapping [Figure 4D-F].

Figure 5A displays a TEM image showing the boundary between the amorphous and crystalline phases. 
Different regions are selected for selected area electron diffraction (SAED). In Figure 5B, the SAED pattern 
is corresponding to the black circular area in Figure 5A, representing the two-phase region. In Figure 5C, 
the SAED pattern of the crystalline region (red circular area) suggests the presence of both w-BN and c-BN 
phases in this area. Figure 5D shows the SAED pattern of the amorphous region (yellow circular area), 
where the amorphous halo appears blurred. Notably, there is a correlation between the halo region and the 
diffraction position of crystal diamond. Additionally, the amorphous halo in the carbon region corresponds 
to amorphous diamond-like carbon. Further analysis was conducted using a spherical aberration-corrected 
TEM equipped with EELS. Figure 5E and F illustrates the EELS results for the crystalline boron nitride and 
amorphous carbon regions, respectively. In Figure 5E, the peak position of the EELS spectrum at about 
197 eV represents the 1s-σ* loss peak of the B element, indicating the sp3 bonding between boron and 
nitrogen. In Figure 5F, the clear peak position for the C element EELS spectrum is located at 293 eV, which 
is the 1s-σ* loss peak of the C element. The 1s-π* loss peak does not appear at the position of 285 eV, 
indicating a sp3 bonding[44,45]. The results demonstrate that the samples obtained at 25 GPa 1,400 °C are a 
compound of dense boron nitride and amorphous diamond-like carbon.

The materials usually crack when they are impacted by a large load, beyond a critical point of tolerance 
limit, the fracture occurs and the materials break. Figure 6A-D shows the indentations and cracks of the 
samples after indentation tests. Notably, the cracks observed for the sample at 1,200 °C [Figure 6A] are 
relatively longer and the bending occurred during crack propagation, which indicate that the more severe 
fractures are required to release the energy, likely due to the presence of a non-dense phase within the 
material. Nevertheless, the observed cracks become shorter in the samples of 1,400 °C [Figure 6B] and 1,600 
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Figure 4. TEM images of the samples obtained at 1,200 °C; (A) Composite of amorphous carbon and boron nitride (B) Zooming in 
image of boundary (w-BN and amorphous diamond-like carbon); (C) Zooming in image of amorphous diamond-like carbon area and 
Fourier transform diagram; (D-F) EDS mapping of Figure 3A, green represent boron, blue represent nitrogen, and red represent carbon.

Figure 5. SAED and HRTEM images of samples obtained at 25 GPa 1,400 °C, (A) TEM image of crystalline-amorphous boundary; (B) 
Diffraction pattern of amorphous-crystalline phases (black cycle region); (C) Diffraction pattern of crystalline region (red cycle region); 
(D) Diffraction pattern of amorphous region (yellow cycle region); (E and F) EELS spectrum of boron and carbon.

°C [Figure 6C], suggesting that the energy can be rapidly released upon indention and cause a smaller 
cracks. This phenomenon can be attributed to the formation of crystal/amorphous composite. For the 
recovered sample at 1,800 °C, however, a direct break observed under the same load [Figure 6D] indicates 
that the crystal-crystal system is not as effective as a crystal-amorphous system in improving mechanical 
properties.

To gain a deep understanding of the excellent mechanical properties of the samples with the crystalline-
amorphous structure, further investigations are conducted using TEM to observe crack extension at the 
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Figure 6. SEM images of the indentation area (load: 9.8N); recovered samples synthesized at 25 GPa, 1,200 °C (A), 1,400 °C (B), 
1,600 °C (C), 1,800 °C (D).

nanoscale. Elemental mapping of the sample obtained at 1,200 °C is presented in Supplementary Figure 7. 
Within the figure, a noticeable crack can be observed traversing through both the boron nitride and carbon 
regions, which indicates that the harder diamond-like carbon particles are insufficient to resist fracture. The 
EELS spectra of the K-edge absorption of boron and carbon in the 1,200 °C sample in 
Supplementary Figure 8 reveal the presence of sp2 bonds, suggesting the existence of non-dense phases in 
the system. This non-dense phase is a contributing factor to the lower mechanical strength of the bulk 
material.

In Supplementary Figures 9 and 10, cracks in the samples at 1,400 °C are only observed in the boron nitride 
region, and most of cracks are blocked at the boundaries between carbon and boron nitride. This 
observation explains the high hardness of the sample, as the diamond-like carbon particles effectively 
inhibit crack tip migration. The EELS spectrum in Supplementary Figure 8 indicates that at 1,400 °C, boron 
nitride has completely transformed into sp3 bonding, and almost all of the carbon elements are also bonded 
by sp3 bonds. For the sample obtained at 1,800 °C, the EELS spectrum reveals that all carbon and boron 
nitride in the sample are sp3 bonded, as shown in Supplementary Figure 8. The sample obtained at 1,800 °C 
represents a composite consisting of polycrystalline diamond and c-BN. Supplementary Figure 11 
demonstrates cracks in both the boron nitride and carbon regions. Polycrystalline diamond and boron 
nitride composites are reinforced by grain boundaries.

As shown in the Supplementary Figure 11, there was no phenomenon of large angle deviation or 
obstruction of cracks when the crack tip migrated to the boundaries of crystal diamond and c-BN.

Polycrystalline diamond and c-BN composites are reinforced by grain boundaries. Remarkably, in the 
observed figure, no significant occurrence of large-angle deviation or crack obstruction was noted when the 
crack tip traversed the boundaries between the crystal diamond and c-BN. This finding suggests that the 
migration of crack tips toward these boundaries proceeded smoothly without encountering substantial 
obstacles or deviations.

microstructures4054-SupplementaryMaterials.pdf
microstructures4054-SupplementaryMaterials.pdf
microstructures4054-SupplementaryMaterials.pdf
microstructures4054-SupplementaryMaterials.pdf
microstructures4054-SupplementaryMaterials.pdf
microstructures4054-SupplementaryMaterials.pdf
microstructures4054-SupplementaryMaterials.pdf
microstructures4054-SupplementaryMaterials.pdf


Page 10 of Li et al. Microstructures 2024;4:2024010 https://dx.doi.org/10.20517/microstructures.2023.5412

This phenomenon explains the cracking of the bulk sample under higher load for the sample obtained at 
25 GPa 1,800 °C, the material exhibits intrinsicbrittleness, as shown in Figure 6D. Comparing the different 
samples, it can be inferred that the polycrystalline composite exhibits lower fracture resistance compared to 
the polycrystalline amorphous composite.

It is well-known that crack tip migration in polycrystalline materials is impeded by grain boundaries[46]. In 
the case of crystalline-amorphous compounds, when the crack tips reach the boundaries between the 
amorphous and crystalline regions, if the energy of the load is large enough exceeding the yield limit of 
amorphous diamond, the embedded amorphous diamonds fracture directly, intercepting the failure, as 
depicted in Supplementary Figure 12. However, when the crack strength remains below a critical value 
required for initiating amorphous fracture, the energy is insufficient to destroy the diamond-like carbon 
particles, resulting in the blockage of crack tips at the boundaries. Supplementary Figure 13 presents a 
model illustrating the fracture behavior of the crystalline-amorphous phase under indentation. This 
crystalline-amorphous system improves fracture resistance and contributes to excellent mechanical 
properties.

CONCLUSIONS
We investigated the structural evolution of the multi-walled BNNTs and C60 mixture after recovery under 
HPHT conditions; a new type of crystalline-amorphous compound is synthesized with excellent mechanical 
properties. Characterizations demonstrated that the non-dense-phase boron nitride will reduce the 
mechanical properties of bulk materials. The crystalline-amorphous compound exhibited the excellent 
mechanical performance, with a Vickers’ hardness of 86.2 GPa and fracture toughness of 10.2 MPa m1/2. 
However, the polycrystalline c-BN and diamond compound caused the brittle failure compared to the 
crystalline-amorphous composite. The diamond-like carbon was uniformly embedded within the boron 
nitride dense phase. Furthermore, as crack tips migrated towards the boundaries between the amorphous 
and crystalline regions, they encountered obstruction and experienced significant bending.  The diamond-
like carbon particles in boron nitride dense phases can effectively hinder the continued cracking, thus 
enabling the crystalline-amorphous compound to have excellent mechanical properties.
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