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Abstract 

Cancer is a major cause of death worldwide. Hepatocellular carcinoma (HCC) is one of the malignancies with the 
highest mortality-to-incidence ratio (> 0.9), and in some countries this value is up to 1. Unfortunately, many patients 
are diagnosed at advanced stages of the disease. Therefore, HCC early markers, as well as novel therapeutic 
approaches, are urgently needed. HCC is the main type of liver cancer and it is associated with different factors 
including alcohol use, viral infections, and fatty liver disease. A significant percentage of HCC patients previously 
had liver cirrhosis. Several ion channels have been proposed as novel potential markers and therapeutic targets 
for diverse cancers including HCC. Here, we review most of the findings associating ion channel expression with 
HCC and its etiological factors, as well as some possible pro-tumorigenic mechanisms of action for ion channels in 
HCC. Novel therapies for HCC treatment and prevention are also discussed. Ion channel targeting offers a plethora 
of opportunities for HCC prevention, early diagnosis, and therapy that may help to reduce the extremely high 
mortality-to-incidence ratio of this malignancy.
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INTRODUCTION 
Cancer is a leading cause of death worldwide, despite the existence of hundreds of clinical trials testing 
novel therapies[1,2]. There are several types of liver cancer including hepatoblastoma, cholangiocarcinoma, 
and angiosarcoma, but hepatocellular carcinoma (HCC) accounts for up to 90% of primary liver cancers[3-7]. 
Liver cancer is one of the malignancies with the worst prognosis, representing the second leading cause of 
cancer-related deaths in the world[3-5]. 

The liver plays a central role in regulating whole-body carbohydrate, lipid, and protein homeostasis, as well 
as playing additional very important physiological roles including the synthesis and transport of bile acids 
and the detoxification of endogenous and exogenous metabolites[6,8]. This very important organ is exposed 
to several factors including infections by hepatitis viruses B and C, alcohol use, aflatoxin B1, and fatty 
diet. Several of these factors lead to liver cirrhosis, which is the major HCC-associated risk factor[6,9-11]. In 
fact, a significant percentage (> 80%) of HCC patients previously had liver cirrhosis. Unfortunately, HCC 
is rarely detected at early stages, and is usually fatal within a few months of diagnosis. The percentage of 
mortality-to incidence ratio of liver cancer is very high; it is more than 90% globally, reaching up to 100% 
in some countries[1]. Therefore, novel early HCC markers and therapeutic strategies are urgently needed. 
In this regard, ion channels have gained great interest in oncology, as novel tools for both diagnosis and 
treatment[5]. Here, we summarize most of the research associating ion channels with HCC. We also discuss 
the potential tumorigenic mechanisms of action of ion channels in HCC, as well as ion channel-based 
therapies for HCC prevention and treatment. The growing research field of ion channels in cancer may lead 
to reduce the incidence and mortality of liver cancer.

ION CHANNELS AND CANCER
Ionic channels are pore-forming membrane proteins allowing ion flux across membranes, including the 
plasma membrane and those from of intracellular organelles. In most cases, these proteins selectively 
transport specific ions and the vast majority need special stimulus to be activated[12]. These gating stimuli 
include changes in membrane potential (voltage-gated ion channels), different ligands such as hormones or 
neurotransmitters, temperature, mechanical forces, etc. Thus, the role of ion channels in human physiology 
comprises very important phenomena such as neural transmission, cardiac function, hormone release, 
sensory physiology, etc. Accordingly, many channelopathies exist including epilepsy, cardiac arrhythmias, 
renal diseases, blindness, skeletal muscle disorders, etc.[12]. Cancer is a multi-factorial disease characterized 
by an increased cell proliferation rate; ion channels are essential for regulation of proliferation and are also 
involved in many relevant processes occurring during carcinogenesis, which convert these proteins into 
potential cancer diagnostic tools and therapeutic targets. 

Ion channels associated with cancer
The roles that ion channels have during carcinogenesis depend on the step of tumor development and the 
tissue type[13,14]. 

Calcium channels participate in pivotal functions in the body such as regulation of blood pressure, muscle 
contraction, secretion, metabolism, excitability, and cell proliferation[15]. These channels are important 
in the cell cycle, especially to enter and accomplish the S and M phase[14-18]; thus, their participation in 
cancer cell proliferation is very relevant[14,16,17]. In addition, because these ions are very important for cell 
migration, they also play a very important role in cancer cell migration and metastasis[16-19].

Potassium channels play crucial roles in every cell type and in all species. Based on their structure and 
function, they are categorized into three major classes: the voltage-gated (Kv), inwardly rectifying (Kir), 
and tandem pore domain (K2P) channels. Furthermore, various messengers can stimulate the ligand-
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gated (Kligand) channels[20]. Membrane hyperpolarization due to potassium channel activity is needed for 
cell cycle progression from G1 to S phase. Potassium flux is also very important for apoptosis, cell volume 
regulation, and cytokine release. Therefore, even though the precise molecular mechanism of K+ channel 
participation in cancer remains elusive, these channels have a significant role in the cell proliferation, 
migration, and angiogenesis of a variety of carcinoma cells[14,21,22]. 

Different subtypes of voltage-gated sodium channels (VGSC) are differentially expressed throughout the 
body, and they have essential roles in the generation and propagation of action potentials in electrically 
excitable cells such as neurons and cardiac and skeletal muscle[23]. Several carcinoma cells express 
VGSC[14,24,25]. Interestingly, these channels are active in metastatic cells[25]. Accordingly, sodium currents 
through VGSC enhance migration, invasion, and metastasis in vivo[26].

Chloride channels are involved in many biological functions such as epithelial fluid secretion, cell-volume 
regulation, modulation of excitability, smooth-muscle relaxation, and pH regulation. Cystic fibrosis is a 
disease where the relevance of alterations in chloride flux has been shown[27]. Cl− channels are involved in 
apoptosis, and in cancer cells these proteins promote proliferation, migration, and invasion[14,21,28-30]. These 
channels are over-expressed in many cancer tissues including liver compared to noncancerous tissues, and 
are significantly associated with tumor size, metastasis, and poor prognosis[31].

Before going into the details of ion channels in liver diseases leading to HCC, we first review some of the 
channels for which expression has been reported in the normal liver.

ION CHANNELS IN HEALTHY LIVER 
The importance of ion channels in different functions of the normal healthy liver has been reported by 
several studies. Water crosses the plasma membrane either directly through the lipid bilayer or via protein 
water channels [aquaporins (AQPs)][32]. The liver expresses at least six AQPs (AQP1, -3, -7, -8, -9, and -11). 
Immunohistochemical studies showed the expression of AQPs in different hepatic cell types including 
cholangiocytes (AQP1 and -7), endothelial cells (AQP1), Kupffer cells (AQP3), and hepatocytes, (AQP7, 
-8, and -9)[33,34]. AQP8 and -9 are relevant for bile synthesis regulation, secretion, and modification[33]. 
Additionally, AQP9 functions as a glycerol channel in the liver[35].

The ATP-sensitive potassium channel (KATP) is composed of two types of subunits, namely an inwardly 
rectifying K+ channel (Kir6.x) and a sulfonylurea receptor. Kir6.x subunits form the pore, while sulfonylurea 
receptor subunits have regulatory activity. Depending on its localization at the plasma membrane or in 
organelles, these channels are classified as sarcolemmal (“sarcKATP”), mitochondrial (“mitoKATP”), or nuclear 
(“nucKATP”) channels[36,37]. Interestingly, KATP channel opening has been shown to alleviate liver injury by 
preventing inflammation and increasing the liver tolerance to ischemia/reperfusion injury[38,39]. Besides, 
DNA synthesis demonstrated that these channels play significant roles in liver growth control[37].

Nucleotides act as extracellular signaling molecules via purinergic receptors. These receptors are separated 
into seven P2X ionotropic receptors and eight P2Y G protein-coupled receptors[40,41]. For instance, the 
P2X4 receptor is the dominant P2X isoform expressed in cholangiocytes in the liver[42,43]. ATP is released 
by hepatocytes, and it regulates hepatocyte glycogen metabolism, cell volume, bile formation, and other 
cell functions. When activated by ATP, P2X receptors function as cation-permeable channels that allow the 
influx of sodium and calcium ions[42,43]. Interestingly the expression of P2X7 receptors is decreased in HCC 
Huh-7 cells[43].

Acid sensing ion channels (ASICs) are H+ channels that mediate tumor cell migration and invasion[44], 
and store-operated calcium entry (SOCE) controls HCC cell proliferation and migration[45]. T-type Ca2+ 
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channels participate in modulating the proliferation of some HCC cells[46]. Because the expression levels of 
these channels (ASICs, SOCE, and T-type)[44,45] are increased in HCC in comparison with the normal liver, 
they may be used as markers of the disease.

In the following, we describe several findings associating ion channels with HCC, beginning with some 
liver diseases representing important HCC etiological factors.

ION CHANNELS IN LIVER DISEASES
Several liver diseases have been identified as HCC etiological factors, and many ion channels have been 
found to have a role in liver diseases. Table 1 summarizes the ion channel expression changes for the most 
common liver diseases.

Viral hepatitis and ion channels
It is estimated that 350 million people are chronic hepatitis B virus (HBV) carriers in the world, and that 
up to 30% of them develop progressive chronic liver disease appearing as hepatitis, fibrosis, cirrhosis, and 
HCC[47]. HBV infection produces chronic necro-inflammation with subsequent fibrosis and hepatocyte 
proliferation. One of the viral factors potentially involved in HBV-related hepatocarcinogenesis is the HBx 
protein, which promotes cell cycle progression and inactivates negative growth regulators. This protein also 
binds to and inhibits the expression of p53, as well as other tumor suppressor genes and senescence-related 
factors[3,48-50]. The HBx protein regulates calcium signaling through the activation of store-operated calcium 
channels (SOCs), which stimulate HBV replication[51,52]. In addition, HBx can activate SOCs by binding 
C-terminal of Orail protein channels[53]. Interestingly, co-immunoprecipitation experiments and pull-down 
assays demonstrated the interaction between HBx and the Orai1 protein; the C-terminus of the Orai1 
protein was involved in such interaction. The authors concluded that the HBx protein binds to the STIM1-
Orai1 complexes regulating the activity of SOCs[53]. In this same direction, the HBV PreS2-mutant large 
surface antigen activates store-operated calcium entry and promotes chromosome instability[54]. 

On the other hand, miR-125b inhibits HBV expression in vitro by targeting the sodium channel SCNN1A 
gene[55]. It has also been observed that P2X7 function is necessary for the infection of human hepatocytes 
by HBV. Because P2X7 activation is a major component of inflammatory responses, HBV may contribute 
to liver inflammation[56].

In the case of hepatitis C virus (HCV) infections, it is estimated that 130 million people have chronic HCV 
infection and most of them develop chronic liver disease[47]. Continuous inflammation and hepatocyte 
regeneration in the setting of chronic hepatitis and subsequent progression to cirrhosis are thought to 
lead to chromosomal damage, and possibly to initiate hepatic carcinogenesis. HCV also induces steatosis; 
oxidative stress causes steatohepatitis and these pathways lead to liver injury or HCC in chronic HCV 
infection[3,57,58]. Interestingly, the HCV p7 protein forms a cation channel in vitro[59-61], and p7 deletions and 
point mutations markedly reduce the production of infectious virions in cell culture[61-63]. p7 is a proton 
channel required for the production of infectious virions[64]. There are some small molecules that block the 
p7 channel function and virion production in culture, rendering it an attractive antiviral target[59,65-71]. 

P2X4 receptors expression form part of the purinergic signaling complex in HCV-induced liver 
pathogenesis[72,73]. Additionally, the modulation of the gamma-aminobutyric acid type A (GABA-A) 
receptor activity was observed in several chronic hepatitis failures, including hepatitis C. Increased 
expression of GABA-A α1 receptor subunit, and decreased expression of GABA-A β3 subunit have been 
found in chronic hepatitis C patients. Thus, the expression of GABA-A receptor subunits may be associated 
with either current or previous HCV infection[74]. 

Page 4 of 16                                Chávez-López et al. Hepatoma Res  2020;6:14  I  http://dx.doi.org/10.20517/2394-5079.2019.023



Liver 
disease

Channel/
Transporter

Gene 
symbol Developed name

Trans-
ported 
ion(s)

Genomic 
mapping 

(chromosome in 
homo sapiens)

Expression 
change 

(compared to 
normal tissue)

Ref.

Viral 
hepatitis

p7 -- Hepatitis C virus p7 protein Ca2+ -- Overexpression [59-61]

SCNN1A SCNN1A Sodium channel non-voltage-
gated 1 alpha 

Na+ 12 Overexpression [55]

P2X7 P2RX7 Purinergic receptor P2X, ligand-
gated ion channel 7

Na+, Ca2+ 12 Overexpression [56]

P2X4 P2RX4 Purinergic receptor P2X, ligand-
gated ion channel 4

Na+, Ca2+ 12 Overexpression [72,73]

SOCs ORAI1 Calcium release- activated 
calcium modulator

Ca2+ 12 Overexpression [51-54]

GABA Aα1 GABRA1 Gamma-aminobutyric acid type 
A receptor alpha 1 subunit

Cl- 5 Overexpression [74]

NAFLD KCa3.1 KCNN4 Calcium-activated potassium 
channel subfamily N member 4

K+ 19 Overexpression [79,80]

P2X7 P2RX7 Purinergic receptor P2X, ligand-
gated ion channel 7

Na+, Ca2+ 12 Overexpression [81-83]

SOCs -- Store-operated calcium channels Ca2+ NS Overexpression [8,84] 
TPC2 TPCN2 Two-pore segment channel 2 Ca2+ 11 Overexpression [21,85]
TRPV1 TRPV1 Transient receptor potential 

cation channel subfamily V 
member 1

Non 
selective 
cation

17 Overexpression [86,87]

Fibrosis TRPV4 TRPV4 Transient receptor potential 
cation channel subfamily V 
member 4

Non-
selective 
cation

12 Overexpression [88]

TRPC6 TRPC6 Transient receptor potential 
cation channel subfamily C 
member 6

Ca2+ 11 Overexpression [89]

TRPM7 TRPM7 Transient receptor potential 
cation channel subfamily M 
member 7

Ca2+, Mg2+ 15 Overexpression [90]

ASIC1a ASIC1 Acid sensing ion channel subunit 
1

Na+ 12 Overexpression [91]

Cirrhosis TRPV2 TRPV2 Transient receptor potential 
cation channel subfamily V 
member 2

Non-
selective 
cation

17 Overexpression [95]

TRPC6 TRPC6 Transient receptor potential 
cation channel subfamily C 
member 6

Ca2+ 11 Overexpression [96]

Nav1.2 SCN2A Voltage-gated sodium channel 
alpha subunit 2

Na+ 2 Overexpression [96]

KCa3.1 KCNN4 Calcium-activated potassium 
channel subfamily N member 4

K+ 19 Overexpression [96]

ABCC3 ABCC3 ATP binding cassette subfamily C 
member 3

-- 17 Overexpression [96]

ITPRs ITPR Inositol 1,4,5-trisphosphate 
receptor

Ca2+ NS Overexpression [97]

AQP1 AQP1 Aquaporin 1 water 
channel

7 Overexpression [98-100]

KCa1.1 (BK) KCNMA1 Calcium-activated potassium 
channel subfamily M alpha 1

K+ 10 Overexpression [21,101]

NCC SLC12A3 Solute carrier family 12 member 3 Na+, Cl- 16 Overexpression [102]
HCC KCa3.1 KCNN4 Calcium-activated potassium 

channel subfamily N member 4
K+ 19 Overexpression [103,104]

KCNQ1 KCNQ1 Voltage-gated potassium channel 
subfamily Q member 1

K+ 11 Downregulation [105]

KCNJ11 KCNJ11 Inwardly rectifying potassium 
channel subfamily J member 1

K+ 11 Overexpression [106]

KATP channels -- ATP-sensitive potassium 
channels

K+ NS Overexpression [37]

Eag1 KCNH1 Voltage-gated potassium channel 
subfamily H member 1

K+ 1 Overexpression [115]

Table 1. Ion channel expression in major liver diseases

Chávez-López et al. Hepatoma Res  2020;6:14  I  http://dx.doi.org/10.20517/2394-5079.2019.023                              Page 5 of 16



Ion channels in nonalcoholic fatty liver disease and liver fibrosis
Nonalcoholic fatty liver disease (NAFLD) defines liver abnormalities ranging from simple steatosis 
(abnormal hepatic fat accumulation) or nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH) 
that have been identified as a cause of fibrosis, cirrhosis, and HCC. It is closely related to obesity and 
metabolic syndrome. The precise mechanism of HCC development from NAFLD has not yet been fully 
elucidated[3,75-77].

KCa3.1 potassium channels are expressed in non-excitable tissues such as epithelia affecting proliferation, 
migration, and vascular resistance, and play an important role in the modulation of Ca2+ signaling[78]. In 
liver disease, the KCa3.1 channel inhibitor TRAM-34 downregulates fibrosis-associated gene expression 
and reduces portal perfusion pressure[79]. It has also been found that the KCa3.1 channel inhibitor senicapoc 
mitigates both steatosis and fibrosis in non-alcoholic liver disease models[80]. P2X7 deficiency[81] or blockage 
attenuates nonalcoholic steatohepatitis[82] and liver fibrosis[83]. 

Intracellular Ca2+ homeostasis is altered in steatotic hepatocytes. Decreased Ca2+ concentration in the 
endoplasmic reticulum may lead to endoplasmic reticulum stress, which has been identified as an 
important mediator of the progression from liver steatosis to nonalcoholic steatohepatitis, type 2 diabetes, 
and HCC. SOCs are responsible for proper Ca2+ maintenance in the hepatocyte endoplasmic reticulum 

T-type Ca2+ 
channels

CACNA1G
CACNA1H
CACNA1I

Voltage-gated calcium channels Ca2+ 17
16
22

Overexpression [117]

P2X3 P2RX3 Purinergic receptor P2X, ligand 
gated ion channel 3

Na+, Ca2+ 11 Overexpression [119]

SOCs ORAI1 Store-operated calcium channels Ca2+ 12 Overexpression [120,121]
CIC-3 CLCN3 Voltage-gated chloride channel 3 Cl- 4 Overexpression [122]
CLIC1 CLIC1 Chloride intracellular channel 1 Cl- 6 Overexpression [123]
VGSCβ1 SCN1B Voltage-gated sodium channel 

beta subunit 1
Na+ 19 Downregulation [124]

Nav1.2 SCN2A Voltage-gated sodium channel 
alpha subunit 2

Na+ 2 Overexpression [96]

AQP5 AQP5 Aquaporin 5 water 
channel

12 Overexpression [125,126]

AQP9 AQP9 Aquaporin 9 water 
channel

15 Downregulation [127,128]

TRPC6 TRPC6 Transient receptor potential 
cation channel subfamily C 
member 6

Ca2+ 11 Overexpression [129-131]

TRPC1 TRPC1 Transient receptor potential 
cation channel subfamily C 
member 1

Non-
selective 
cation

3 Overexpression [132,133]

TRPV1 TRPV1 Transient receptor potential 
cation channel subfamily V 
member 1

Non-
selective 
cation

17 Downregulation [134,135]

TRPV2 TRPV2 Transient receptor potential 
cation channel subfamily V 
member 2

Non-
selective 
cation

17 Overexpression [136]

TRPV4 TRPV4 Transient receptor potential 
cation channel subfamily V 
member 4

Non-
selective 
cation

12 Overexpression [137]

TRPM7 TRPM7 Transient receptor potential 
cation channel subfamily M 
member 7

Ca2+, Mg2+ 15 Overexpression [138]

ASIC1a ASIC1 Acid sensing ion channel subunit 
1

Na+ 12 Overexpression [139]

ITPR3 ITPR3 Inositol 1,4,5-trisphosphate 
receptor type 3

Ca2+ 6 Overexpression [141]

NS: no specific channel indicated in the original source; HCC: hepatocellular carcinoma; NAFLD: nonalcoholic fatty liver disease; NCC: 
NaCl cotransporter
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lumen. Accordingly, SOCE is substantially inhibited in steatotic hepatocytes. This inhibition enhances 
lipid accumulation by positive feedback and may contribute to the development of NASH and insulin 
resistance[8,84]. The antidiabetic drug exendin-4 reverses the lipid-induced inhibition of SOCE and decreases 
liver lipid with rapid onset[8]. 

Two-pore channels (TPCs) are cation-selective intracellular ion channels, and their activation mediates 
calcium release from lysosomal stores. TPC2-deficient mice show hepatic cholesterol accumulation, 
hyperlipoproteinanemia, and finally NASH[21,85]. Interestingly, the activation of transient receptor potential 
type vanilloid 1 (TRPV1) by capsaicin prevents nonalcoholic fatty liver disease[86,87]. Additionally, the 
TRPV4, TRPC6, TRPM7, and acid-sensing ion channels (ASIC1a) have been suggested as liver fibrosis 
mediators. The blockage of these channels inhibits hepatic fibrosis, positioning them as promising 
therapeutic targets[88-91]. 

Liver cirrhosis and ion channels
Liver cirrhosis from any cause is the most important clinical risk factor for HCC with an annual incidence 
between 2% and 4%. The transition from chronic liver disease to cirrhosis involves inflammation 
and activation of hepatic stellate cells with ensuing fibrogenesis and angiogenesis. Liver cirrhosis is 
characterized by diffuse regenerative nodule of hepatocytes surrounded by dense fibrotic septa with 
subsequent parenchymal extinction and liver structure collapse. Over time, compensated cirrhosis may 
progress to decompensated cirrhosis that results in liver failure and death[3,92-94]. 

As stated above, TRPV4, TRPC6, TRPM7, and ASIC1a channels could act as liver fibrosis mediators. 
Fibrosis is the prelude to cirrhosis, thus these channels might somehow also modulate cirrhosis. Other 
studies have also observed over-expression of TRPV2[95], TRPC6, Nav1.2, and KCa3.1 channels as well as the 
Abcc3 transporter[96] in liver cirrhosis, suggesting them as potential markers of the disease. Ca2+ signals 
mediate the hepatic effects of numerous hormones and growth factors. Liver Ca2+ signals are elicited by 
the intracellular Ca2+ channel inositol trisphosphate receptor (ITPRs). Three isoforms of this receptor have 
been identified, and cirrhosis affects the isoform expression[97]. 

Some reports have shown an overexpression of AQP1 in liver cirrhosis[98]; this protein contributes to 
microvascular resistance in cirrhosis[99]. It has been also proposed that AQP1 polymorphism may be 
involved in the genetic susceptibility to develop water retention in patients with liver cirrhosis[100]. The 
large conductance KCa1.1 K

+ channels (BK) are activated by membrane depolarization and/or elevations in 
intracellular Ca2+ concentration. Cirrhotic livers display increased activity of BK channels; accordingly, 
blockage of these channels increased the baseline portal perfusion pressure in cirrhotic livers[21,101]. 
Liver cirrhosis is associated with enhanced renal tubular sodium retention, but the mechanism involved 
is unknown. Interestingly, liver cirrhosis is associated with increased renal abundance of the NaCl 
cotransporter[102]. Then, diverse ion channels may serve as potential markers and drug targets for several 
liver diseases leading to HCC; if so, these proteins could be used as targets for HCC prevention.

Ion channels in hepatocellular carcinoma
Because the above-mentioned liver diseases may lead to HCC, and because cancer is a multi-factorial 
disease, a significant amount of ion channels have been studied as potential markers and therapeutic targets 
of this very poor prognosis malignancy.

Potassium channels play an important role in a variety of carcinoma cells. KCa3.1 channels are over-expressed 
in HCC and the channel blockade with TRAM-34 inhibits HCC cell proliferation in a time- and dose-
dependent manner[103,104]. A recent work showed that KCNQ1 was frequently downregulated in HCC cell 
lines and HCC tissues, and that HCC patients with low KCNQ1 expression had poor prognosis. Gain-of-
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function studies showed that KCNQ1 exhibited remarkable inhibitory roles on tumor metastasis in vitro 
and in vivo; thus, this channel could represent a prognostic marker, as well as a promising therapeutic 
target for HCC[105]. Another study found that the KCNJ11 channel was differentially expressed in HCC, 
and it predicted the poor prognosis in HCC patients. KCNJ11 promotes tumor progression through 
interaction with lactate dehydrogenase A (LDHA). Pharmacological inhibition of LDHA or knockdown of 
KCNJ11 expression inhibited cell proliferation, promoted apoptosis, and reduced cell invasive capacity[106]. 
KATP channels regulate mitogen-induced proliferation in the human liver cell lines HepG2, which could 
have implications for liver growth control and serve as a potential therapeutic target[37]. The voltage-gated 
potassium channel ether à-go-go-1 (Eag1) has gained enormous interest in cancer research because of 
its oncogenic properties[107-109]. Eag1 channels have also been proposed as early tumor biomarkers and 
therapeutic targets for different types of cancers[110,111]. Moreover, the inhibition of Eag1 reduces tumor 
cell proliferation in vitro and in vivo[112-114]. We reported that HepG2 and HuH-7 HCC cells displayed Eag1 
channel expression, and that the anti-histamine astemizole (a non-specific Eag1 inhibitor) decreased cell 
proliferation and induced apoptosis in both cell lines. In addition, an increase in Eag1 expression was 
found during HCC development in rats. Astemizole treatment prevented HCC development and seems to 
induce tumor regression in rats with HCC[115]. 

T-type calcium channels play an important role in cell cycle progression in different types of cancer[116]. 
The expression of the three T-type calcium channel subunits was observed in HCC cell lines and T-type 
channel blockage with mibefradil decreased cell proliferation in the SNU449 cell line[117]. P2 purinergic 
receptors are overexpressed in certain cancer tissues; the levels of P2Y2 receptor are enhanced in HCC 
compared with human normal hepatocytes. These receptors are involved in ATP-induced (Ca2+)i increase. 
Silencing P2Y2R expression inhibited ATP-induced human HCC cell proliferation and migration, and 
P2Y2R blockage inhibited cell growth in mice[21,118]. In addition, high P2X3 receptor expression is associated 
with poor recurrence-free survival in HCC, while high P2Y13 expression is associated with improved 
recurrence-free survival. Moreover, extracellular nucleotide treatment induce cell cycle progression and 
extracellular ATP-mediated activation of P2X3 receptors promotes proliferation of HCC cells[119]. SOCE 
is a major Ca2+ influx pathway controlling the intracellular Ca2+ concentration in normal hepatocytes and 
HCC cells, and Ca2+ influx has been demonstrated to be involved in liver oncogenesis. Accordingly, the 
blockade of SOCE inhibits hepatocarcinoma cell migration and invasion, by regulating focal adhesion 
turnover[120]. The activation of SOCE channels is implicated in cancer cell chemoresistance, although the 
underlying molecular mechanisms are not well understood. However, inhibition of Orai1-mediated Ca2+ 
entry enhances chemosensitivity to 5-fluorouracil of HepG2 hepatocarcinoma cells[121]. The specific roles 
and molecular mechanisms of calcium entry in drug response deserve further investigation.

CIC-3 chloride channels have multiple functions in tumorigenesis and tumor growth in HCC; the CIC-3 
channel blocker DIDS (4,4’-diisothiocyanostilbene-2,2’-disulfonic acid) arrests the cell at the G1 phase, 
inhibiting the proliferation of Hep3B HCC cells[122]. Proteomic approaches found that the chloride 
intracellular channel 1 (CLIC1) is upregulated in HCC tissues, and that it participates in HCC migration 
and invasion by targeting maspin[123].

The voltage-gated sodium channel β1 subunit was proposed as a cell adhesion molecule in some HCC 
cell lines. The analgesic-antitumor peptide (a scorpion toxin polypeptide with antitumor activity) inhibits 
the migration and invasion of HepG2 cells by an upregulated VGSC β1 subunit[124]. Additionally the over-
expression of Nav1.2 channels has been observed in an HCC in vivo model[96]. 

AQP5 is highly expressed in HCC cell lines and its downregulation inhibits HCC cell invasion and tumor 
metastasis. Downregulation of AQP5 suppressed the epithelial-to-mesenchymal transition process in HCC 
cells[125]. Another report found that microRNA-325-3p inhibits cell proliferation and induces apoptosis 
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in HBV-related hepatocellular carcinoma by downregulation of AQP5[126]. These findings suggest that 
AQP5 may be a potential therapeutic target for HCC. AQP9 is the main aquaglyceroporin in the liver 
and its mRNA and protein levels are downregulated in HCC tissues compared to normal hepatocytes. 
Moreover, AQP9 over-expression inhibits hepatocellular carcinoma by upregulating FOXO1 expression, 
and suppresses invasion by inhibiting epithelial-to-mesenchymal transition. These findings suggest that the 
restoration of AQP9 expression can inhibit development of liver cancer[127,128].

The TRP channel family has gained great relevance due to its role in several diseases. A recent study 
investigated the roles of the Na+/Ca2+ exchanger 1 (NCX1) and the canonical transient receptor potential 
channel 6 (TRPC6) in regulating TGFβ in human HCC. They found that TGFβ induces the formation and 
activation of a TRPC6/NCX1 molecular complex, which mediates the effects of TGFβ on the migration, 
invasion, and intrahepatic metastasis of HCC. These findings suggest TRPC6 and NCX1 as potential 
targets for HCC therapy[129,130]. HCC develops multi-drug resistance in most cases; interestingly, multi-
drug resistance regulation by TRPC6 and calcium-dependence has been shown in HCC cells[131]. Silencing 
of TRPC1 channels suppressed cell proliferation while store-operated Ca2+ entry was significantly 
increased[132,133]. On the other hand, it has been found that high expression of the vanilloid receptor-1 
(TRPV1) is associated with better prognosis of HCC patients[134].

The combined effect of static magnetic field and anti-cancer drugs has gained great interest in cancer. Static 
magnetic field enhances the anti-cancer effect of capsaicin on HepG2 cells through the mitochondria-
dependent apoptosis pathway. This synergy may be explained if static magnetic field increased the binding 
efficiency of capsaicin to TRPV1 channels[135]. TRPV2 contributes to the stemness of liver cancer and is 
a potential target in the treatment of human liver cancer patients[136]. TRPV4 is over-expressed in HCC 
tissues when compared with non-tumoral liver. Furthermore, pharmacological inhibition of TRPV4 
suppressed cell proliferation, induced apoptosis, and decreased the cell migration capability by attenuating 
the epithelial-to-mesenchymal transition process in HCC via modulation of the ERK signaling pathway[137]. 
TRPM7 channels play a role in the migration and invasion of different types of cancer; actually, bradykinin 
promotes cell migration and invasion of HCC cells via TRPM7 channels[138]. 

ASICs are H+-, Ca2+-, and Na+-gated cation channels activated by changes in the extracellular pH, and 
ASIC1α (ASIC1a) has been associated with tumor proliferation and migration. ASIC1α is overexpressed 
in HCC tissues and associated with advanced clinical stage. Silencing of ASIC1α expression inhibited the 
migration and invasion of HCC cells, suggesting a novel approach for HCC therapy[139].

The R-Tf-D-LP4 cell-penetrating peptide derived from the mitochondrial multifunctional protein VDAC1 
(voltage-dependent anion channel) induced apoptosis in liver cancer cell lines and inhibited liver tumor 
growth in vivo, representing a promising therapeutic approach for HCC[140]. Inositol 1,4,5-trisphosphate 
receptors (ITPRs) are intracellular Ca2+ channels. ITPR3 is either absent or expressed at low levels in 
normal hepatocytes, but it is over-expressed in HCC patients; its increased expression level was associated 
with poor survival. Besides, cell proliferation and liver regeneration were enhanced in vivo, and ITPR3 
deletion in human HCC cells increased apoptosis[141].

Discussion: ion channels as potential tools for chronic liver diseases and HCC prevention, 
diagnosis, and therapy
HCC is a leading cause of cancer-death worldwide and is one of the most chemo-resistant tumors[3,142]. 
The combination of new therapeutic targets with existing therapies may be very helpful. Several ion 
channels play very important roles in cancer-associated processes including inflammation, oxidative stress, 
cell proliferation, apoptosis, migration, invasion, angiogenesis, metastases, and drug response. These 
proteins are differentially expressed in HCC and liver diseases compared to their expression in the healthy 
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liver. Thus, patients at risk of developing some liver diseases, e.g., people infected with hepatitis viruses, 
patients with liver cirrhosis, or those suffering from alcoholism, might be candidates in whom ion channel 
expression can be studied. Nevertheless, an important issue to solve is how to detect ion channel expression 
in not easily accessible tissues such as the liver. An option may be ion channel detection by imaging studies. 
For instance, Eag1 channel expression has been detected in vivo with labeled antibodies and near-infrared 
imaging techniques, even in non-palpable tumors, in mice[143]. Another option may be the detection of ion 
channels in extracellular vesicles released to the bloodstream by the liver. The investigation of ion channel 
expression in extracellular vesicles released by the liver in different pathological conditions is needed. These 
approaches should benefit patients by being diagnosed at earlier stages of the disease.

The precise molecular mechanisms involved in the association of ion channel function with cancer remain 
elusive. The antiproliferative effect of channel blockage on cell proliferation indicates that ion flux may 
play an important role. However, non-canonical functions of ion channel may also play a role, as occurs in 
other tissues and diseases[144]. For instance, mutant non-conducting Kv10.1 potassium channels partially 
preserve their oncogenic potential[145]. On the other hand, cleavage and translocation to the nucleus of a 
fragment of the carboxy-terminus of some calcium channels induce the transcription of genes associated 
with proliferation[146]. Thus, the potential role of non-canonical functions of ion channels in liver diseases 
warrants investigation. 

In accordance with the potential role of ion channels in liver diseases, blockage of over-expressed ion 
channels or activation of downregulated channels results in the inhibition of hepatitis virus replication, 
development of NAFLD, NASH, liver cirrhosis, and/or HCC [Table 2]. 

However, because of the relevance of ion channels in normal physiology, targeting these proteins may 
have non-desirable side-effects. In this direction, drug repurposing is a very good alternative to reduce 
costs and time for approval, as well as unknown side effects. Actually, several drugs have been suggested 
for repurposing in cancer, including anti-histamines such as astemizole (which also blocks potassium 
channels) and loratadine, as well as calcium and potassium channel blockers such as mibefradil and 
glibenclamide, respectively[147,148]. 

Inhibitor Targeted ion channel Ion channel gene symbol* Ref.
TRAM-34 KCa3.1 KCNN4 [103,104]
ASTEMIZOLE Eag1, Herg KCNH1, KCNH2 [115]
MIBEFRADIL T-type Ca2+ channels -- [117]
2-APB, SKF96365 SOCs -- [21,118,121]
DIDS CIC-3 CLCN3 [122]
MicroRNA-325-3P AQP5 AQP5 [126]
CAPSAICIN TRPV1 TRPV1 [135]
HC-067047 TRPV4 TRPV4 [137]

Table 2. Ion channel inhibitors as potential therapeutic agents studied in HCC

*When the specific ion channel has been reported to be targeted. HCC: hepatocellular carcinoma

Channel Gene symbol Expression in HCC Association to prognosis Ref.
KCNQ1 KCNQ1 Downregulated Poor prognosis [105]
KCNJ11 KCNJ11 Differentially expressed Poor prognosis [106]
P2X3 P2RX3 Overexpression Poor recurrence-free survival [119]
TRPV1 TRPV1 Overexpression Better prognosis [134]
ASIC1a ASIC1 Overexpression Advanced clinical stage [139]
ITPR3 ITPR3 Overexpression Poor survival [141]

Table 3. Ion channels suggested as HCC prognostic markers

HCC: hepatocellular carcinoma
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CONCLUSION
Ion channels offer a plethora of opportunities for the prevention, diagnosis, and treatment of liver diseases 
[Figure 1], as well as represent potential tools as HCC prognostic markers [Table 3]. This ion-channel-
based approach may help to reduce the mortality of this very poor prognosis disease. 
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