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Abstract
Hypoxia is a pathologic condition characterized by a tissue oxygen deficiency due to either decreased oxygen 
intake from outside and/or disruption of oxygen utilization in cells. This condition may arise when the oxygen 
demand exceeds its supply or the partial pressure of oxygen is below 10 mmHg. This situation poses a significant 
problem for glioblastoma (GBM) patients as it can activate angiogenesis, increase invasiveness and metastatic risk, 
prolong tumor survival, and suppress anti-tumor immunity, making hypoxic cells resistant to radiotherapy and 
chemotherapy. Low oxygen levels in tumors can cause severe cellular changes that can affect the release of 
extracellular vesicles (EVs), especially exosomes (EXOs), altering their proteomic profile both qualitatively and 
quantitatively. EXOs represent an adaptive response to hypoxic stress; therefore, they can be used to determine 
oxygen levels in cancer and assess its aggressiveness. They not only release signaling molecules to attract cells 
that promote the formation of small vessel walls but also send signals to other tumor cells that trigger their 
migration, which in turn plays a crucial role in the formation of metastases under hypoxia. This review investigates 
how the molecular profile of GBM-derived exosomes changes under hypoxic conditions, offering future possibilities 
for noninvasive diagnosis and monitoring of brain tumor patients.
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INTRODUCTION
Low oxygen content in numerous solid tumors, including GBM, is a condition that leads to tumor 
development, treatment resistance, and mortality. The tumor microenvironment (TME) can be divided into 
three regions based on the distance of cells from the vasculature and physiological abnormalities: normoxic, 
hypoxic, and necrotic regions. Cells in the hypoxic region adapt to low oxygen levels because they can 
reorganize the microenvironment through genetic, molecular, and metabolic changes, leading to growth, 
metastasis, and resistance to therapy. Cellular responses to hypoxia are mainly mediated by hypoxia-
inducible factor (HIF), a heterodimeric transcription factor that accumulates within cells in response to 
reduced oxygen levels. HIF consists of an oxygen-sensitive HIF-α subunit (HIF-1α, HIF-2α, or HIF-3α) and 
a HIF-1β subunit[1,2], which is constitutively expressed. During hypoxia, HIF-1α protein increases in the 
cytoplasm and migrates to the nucleus, where it combines the HIF-1β subunit and another expression 
regulator to form the conserved activated hypoxia-dependent element (HRE), which is responsible for the 
expression of genes regulating cell viability, proliferation, epithelial-to-mesenchymal transition (EMT), 
angiogenesis, metastasis, and therapy resistance[3]. Moreover, HIFs have been shown to promote EXOs 
biogenesis and secretion, as well as alteration of their cargo[4].

This unique type of cell communication within tumors has promising potential for clinical application in 
GBM treatment. Indeed, EVs are considered potential targets for GBM therapy, as numerous publications 
have reported that EVs play a central role in the GBM microenvironment, growth, angiogenesis, infiltration, 
and even diagnosis[5]. GBM is a prevalent and malignant form of brain tumor in adults. It is characterized by 
its rapid growth, lack of clear boundaries, and infiltration into surrounding tissues. Patients have a survival 
rate of approximately 15 months, with only a small percentage (3%-5%) surviving beyond 36 months due to 
the tumor’s aggressive growth[6]. The heterogeneity of GBM results in a complex and aggressive disease 
course with limited therapeutic success[7].

In addition to the phenotypic, morphologic, and cellular heterogeneity features of the tumor, GBM exhibits 
unlimited self-renewal, higher intrinsic chemo- and radioresistance, and tumorigenic cancer stem cells, 
termed GBM stem cells (GSCs), which contribute to tumor initiation and rapid activation of invasive 
growth and metastasis even in the presence of relatively small numbers of cells[8].

To promote tumor proliferation, immunosuppression, and angiogenesis, GBM cells constantly 
communicate with their surrounding heterogeneous microenvironment, which consists of cancer and non-
cancer cells (i.e., endothelial cells, immune cells, GSCs, astrocytes) and the extracellular matrix (ECM). As 
in all solid tumors, the TME of GBM is severely compromised by low oxygen levels (hypoxia), which 
promote resistance to chemotherapy and radiotherapy, immunosuppression, cancer stem cells, and 
angiogenesis[9].

Radiotherapy is a major approach in managing GBM progression. The clinical outcome of this approach is 
based on the increased radiosensitivity of actively dividing cancer cells compared to normal tissue[10]. This 
strategy aims to eradicate tumors while minimizing damage to surrounding cells through three distinct 
pathways: direct cell death triggered by DNA double-strand breaks, indirect apoptosis resulting from 
vascular damage, and stimulation of anti-tumor immune response[11]. High-dose irradiation can have a dual 
effect on tumor immunity. On one hand, it can stimulate the immune system by promoting the release of 
tumor antigens and activating immune cells. On the other hand, it may also lead to immunosuppression by 
inducing vascular damage and, consequently, blood perfusion, which in turn increases tumor hypoxia and 
the expression of HIF-1α, the pivotal transcription factor for maintaining oxygen balance and 
immunosuppression[12]. HIF-1α not only drives tumor cells to adapt to hypoxic conditions and proliferate 
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but also serves as a central regulator of tumor-immune escape. This occurs through the transcriptional 
upregulation of a variety of genes that suppress both innate and adaptive immune responses directed against 
cancer cells. For instance, the recognition of neoplastic cells by the immune system relies significantly on 
the expression of MHC class I. While irradiation has been shown to increase MHC class I expression, 
hypoxia and HIF-1α have the opposite effect and suppress their levels, impairing the ability of antigen-
presenting cells (APCs) to recognize tumor cells[12]. Therefore, inhibition of HIF-1α emerges as a potential 
strategy to attenuate hypoxic cell survival and proliferation, while potentiating the anti-tumor immune 
response[13].

A study by Dai et al. identified an upregulation in the antisense transcript levels of hypoxia-inducible factor-
1α (AHIF) in cancerous GBM cells[14]. Knockdown of AHIF in these cells and derived EXOs increases the 
apoptotic cells, thereby inducing both cell viability and invasive capability, suggesting AHIF as a potential 
therapeutic target for GBM[14].

Notably, there is growing evidence that damage caused by ionizing radiation has a significant impact on 
exosome-mediated intercellular signaling, both by increasing the quantity of released vesicles and by 
altering their molecular content[15]. A recent study by Arscott et al. suggested that radiation-induced 
exosomes contained a great abundance of mRNA and proteins associated with cell motility and were found 
to be involved in cancer invasion[16]. In vitro irradiated GBM cell lines were also shown to induce M2-tumor 
promoting phenotype of microglia through exosome release. Furthermore, the M2-polarized microglia 
actively stimulated the growth of irradiated GBM cells via the CCL2/CCR2 axis[16].

GBMs differ from other solid tumors in that they are shielded by the brain-blood barrier (BBB), which 
prevents the entry of peripheral immune cells. Nevertheless, the integrity of the BBB is compromised by 
inflammation, rapid tumor growth, and invasion of the tumor by immunosuppressive immune cells from 
the bloodstream[17]. GBM is classified as an “immunologically silent” subtype, characterized by low numbers 
of lymphocytes and high levels of a type of macrophage population, referred to as tumor-associated 
macrophages/microglia (TAMs)[18]. In addition, this immunologically silent microenvironment is provided 
by immunosuppressive signaling molecules, e.g., transforming growth factor beta (TGF-β), interleukin 10 
(IL-10), prostaglandin E2, and other immune cells, e.g., immunosuppressive natural killer T cells (NKT), 
regulatory T/B cells (T/Breg), and myeloid-derived suppressor cells (MDSCs). In particular, TAMs are 
attracted to the TME, which induces polarization to an anti-inflammatory or pro-tumor phenotype, 
ultimately leading to the maintenance of tumor progression[19,20].

These features drive malignancy and contribute to tumor recurrence. To achieve this goal, GBM cells utilize 
various means of communication with TME cell types, including direct cell interactions via membrane 
receptors and their ligands, as well as the transport of molecules packaged and delivered by EVs[21].

EVs are lipid bilayer-enclosed nanostructures (50-1000 nm) that are secreted by both normal and tumor 
cells[22]. In 2018, the International Society for Extracellular Vesicles (ISEV) revised its extensive Minimal 
Information for Studies of Extracellular Vesicles (MISEV) guidelines to enhance standardization and quality 
in the field of EVs. As accurate categorization of EVs remains exceptionally difficult, it can routinely be 
based on (a) physical properties of EVs, such as size [“small EVs” (sEVs) and “medium/large EVs” (m/lEVs)
, with defined ranges, e.g., < 200 nm or > 200 nm] or density; (b) biochemical composition; (c) cell of origin; 
(d) biogenesis pathway[23].
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According to their biogenesis, EVs can be mainly divided into three subtypes: exosomes (EXOs, 30-200 
nm), microvesicles (MVs, ectosomes or microparticles up to 1000 nm), originating from the endosomal 
compartment or by direct shedding of the plasma membrane, respectively, and apoptotic bodies (1-5 μm in 
diameter). EXOs originate from the formation of early endosomes, in which intraluminal vesicles 
accumulate, originating multivesicular bodies (MVBs), which eventually fuse with the plasma membrane 
and release ILVs into the extracellular space[22,24]. Both EXOs and MVs are present in a variety of human 
biofluids, including urine, semen, serum, lymph, saliva, tears, nasal secretions, bile, amniotic fluid, and 
breast milk[25,26]. Various bioactive compounds can be found in EVs, such as mRNAs, microRNAs 
(miRNAs), DNA, proteins, and lipids. These molecules can be transported to recipient cells by various 
mechanisms, including clathrin- or caveolin-mediated endocytosis, phagocytosis, micropinocytosis, and 
simple fusion with the plasma membrane. Upon delivery, the cargo can trigger an intracellular signaling 
cascade either through interaction with plasma membrane receptors, direct entry into the cytoplasm or 
during transit to the nucleus[27,28].

EVs are released at all stages of disease, making them an ideal source of biomarkers for screening, early 
diagnosis, and therapy monitoring, as well as for improving clinical decision-making. This is of particular 
interest in cancer, where EVs are also emerging as a next-generation platform for liquid biopsy, in addition 
to disseminated cancer cells and circulating cell-free DNA. The considerable intrinsic heterogeneity 
observed for GBM poses a number of significant challenges, including molecular profiling, prognostic 
assessment, tumor progression monitoring, and evaluation of response to treatment[29]. These challenges are 
exacerbated by the invasive nature of brain surgery and tissue biopsy. It should also be noted that the 
informative value of a biopsy taken from a single site is limited, as it may not cover the entire tumor[11]. 
Tumors such as GBM are in a constant evolutionary process and respond to clonal selection, hypoxia, and 
different treatment modalities. Against this background, liquid biopsy could provide a minimally invasive, 
safe, and highly sensitive alternative to conventional tissue biopsies for GBM patients[30]. Liquid biopsy may 
facilitate tumor monitoring by detecting various types of biomarkers in peripheral blood or cerebrospinal 
fluid, through the analysis of tumor-derived circulating material[31]. Despite advancements in liquid biopsy 
continuously improving its utility in the diagnosis, prognosis, and monitoring of GBM, its application 
remains significantly restricted[30]. This is primarily attributed to the lack of standardized techniques for 
sample collection and processing compared to traditional tissue biopsies, consequently leading to great 
variability in results and their interpretation[32]. Moreover, while early detection of GBM is crucial for better 
treatment outcomes, liquid biopsy methods may not consistently detect the disease at early stages, limiting 
its utility in early diagnosis. However, it remains a complementary tool alongside other diagnostic and 
treatment modalities[30].

Since cancer cells release a larger amount of EVs compared to healthy cells, circulating EVs could serve as a 
valuable source for insights into tumor status and disease progression[5] and the utility of liquid biopsy is 
very important in avoiding tissue biopsies, and in the treatment of GBM, it could be an approach to 
overcome the limitations of invasive techniques and provide a tool for real-time monitoring of treatment 
and patient response, as well as information on minimal residual disease[33].

Both the molecular signature and the amount of EVs released are significantly affected by hypoxic 
conditions. This impacts the recognition and uptake of EVs by recipient cells, which in turn may alter the 
biological functions triggered by EVs; in fact, the molecules driven together with the mutant proteins or 
other oncogenic mechanisms in cancer cells work together to enable cancer proliferation and facilitate 
tumor progression[34].
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Here, we will focus on providing a comprehensive overview of the interplay between EVs, in particular 
EXOs and hypoxia in GBM. We will summarize the current literature on (a) the effect of hypoxia on EXOs 
released by GBM in terms of quantity and content; (b) the biological role of EXOs released under hypoxia in 
GBM.

ROLE OF HYPOXIA IN THE GBM MICROENVIRONMENT
Hypoxia is a pathological state in which oxygen deficiency occurs in the body when external oxygen supply 
is reduced and/or oxygen utilization in cells is impaired[35]. Cancer cells respond to this low O2 partial 
pressure by stimulating neovascularization of pre-existing blood vessels, which is an important process for 
tumor proliferation and metastasis and serves to transport nutrients and oxygen and remove metabolic 
waste from tumor cells[36].

Tumor hypoxia is a hallmark of GBM and is related to the abnormal neovascularization observed in this 
tumor type[37]. There are numerous hypoxic regions and extensive invasion in the expanding periphery of 
the main GBM tumor mass[38]. The characteristic cell structure of GBM includes pseudopalisades, resulting 
from the migration of tumor cells away from a central hypoxic region, leading to the formation of an 
invasive front[39,40]. Tumor growth in GBM results in inadequate oxygen supply and hypoxic regions due to 
neovascularization, increased cell proliferation, and microvascular thrombosis causing vascular 
occlusion[37], as well as high hydrostatic pressure outside the GBM vasculature, which induces intratumoral 
edema, a significant contributor to morbidity in GBM patients[41]. These effects depend on the pathological 
features of GBM vessels, which are irregular, unstructured, extensively permeable, and easily collapsible, 
and have increased diameters and robust basement membranes. One of the major factors driving 
angiogenesis is the overexpression of vascular endothelial growth factor (VEGF), particularly VEGF-A, 
released in the TME under the stimulation of HIF, which triggers the upregulation of various pro-
angiogenic factors[1]. High levels of VEGF-A stimulate the formation of leaky blood vessels to supply 
nutrients and oxygen to the rapidly growing tumor cells, by binding to VEGFR-1 and VEGFR-2 receptors 
on the endothelial cell membrane. This interaction triggers a cascade of events that stimulates mitogenesis 
and migration of endothelial cells[42,43]. In this context, altered organization and instability of the vasculature, 
following excessive recruitment of VEGF, lead to fluctuating oxygen supply within the tumor mass, a 
condition known as “cyclic hypoxia”, characterized by a dynamic phase of hypoxia and reoxygenation[44] 
[Figure 1].

Hypoxia is a serious problem for GBM patients as it promotes cell survival and tumor metastasis 
progression in primary and distant brain tissues through the degradation and restructuring of the ECM, 
which allows tumor cell proliferation and spread from the original tumor site by creating spaces and 
scaffolds[45]. This poses a major problem not only for surgery but also for radiotherapy and chemotherapy. 
Oxygen status in GBM can be monitored using magnetic resonance imaging if a substantial limitation of 
oxygen diffusion is identified, corresponding to the absence or impairment of blood flow[46-48].

THE INTERPLAY BETWEEN HYPOXIA AND EVS RELEASE
EXOs secreted by tumor cells can be used to determine the extent of hypoxia in a tumor and to predict its 
aggressiveness. Specifically, EXOs derived from hypoxic GBM cells not only release signaling molecules to 
attract cells that regulate the formation of small vessel walls, but they also send signals to other tumor cells, 
triggering their migration, which plays a pivotal role in the formation of metastases[49,50].
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Figure 1. GBM tumor microenvironment. The abnormal neovascularization, due to uncontrolled tumor growth, leads to poor oxygen 
diffusion and hypoxic regions in the tumor mass, promoting the expression of HIF-1α. This mediator of hypoxia is responsible for the 
regulation of various processes, including angiogenesis, by enhancing the levels of VEGF that, in turn, act as an inducer of mitogenesis 
and migration of endothelial cells. This process leads to “cyclic hypoxia” characterized by a dynamic phase of hypoxia and 
reoxygenation within the tumor mass. Moreover, HIFs have been shown to promote EXOs biogenesis and secretion, promoting cancer 
metastasis and therapy resistance by mediating both the migration of glioma cells and the proliferation and migration of endothelial 
cells. Figure was created with https://www.biorender.com/. GBM: glioblastoma; HIF: hypoxia-inducible factor; VEGF: vascular 
endothelial growth factor; EXOs: exosomes.

The uncontrolled division of tumor cells leads to the formation of cell clusters that are far from blood 
vessels and, therefore, do not receive sufficient oxygen. Normally, hypoxia is one of the factors that trigger 
apoptosis. However, in the case of a tumor, these conditions may lead to the selection of more viable cells, 
such as cells with mutations in apoptosis-associated genes. Such cells no longer respond to pro-apoptotic 
signals, so other deleterious mutations may accumulate in them, leading to a more aggressive behavior of 
such a cancerous tumor (more intense cell division, ability to form metastases, etc.)[51]. For example, a lack of 
oxygen in tumor cells has been shown to alter the genes responsible for cell adhesion. As a result, tumor 
cells can detach from neighboring cells, contributing to the formation of metastases[52]. Nonetheless, HIF, as 
the primary mediator of hypoxia, seems to play a crucial role in microvascular formation by controlling the 
expression of angiogenic molecules, including VEGF, which stimulates the expansion of endothelial cells 
and thus the creation of new vasculature in the tumor to supply it with oxygen[53].

Moreover, tumor cells can positively reprogram the cells surrounding the tumor by secreting membrane 
vesicles, containing signals that stimulate cell division and prevent the mechanism of apoptosis.

Several studies have shown that EXOs can mediate hypoxia-dependent intercellular signaling in GBM[54]. 
These vesicles, released by hypoxic GBM cells, can facilitate cell-to-cell communication, and cause 
substantial alterations in gene expression in neighboring normal oxygenated tumor cells, many of which are 
involved in cancer infiltration and therapy resistance[55]. Hypoxia also induces glioma cells to secrete EVs 
with specific pro-angiogenic molecules, such as cytokines, growth factors, proteases, and miRNAs, affecting 
endothelial cells and fostering angiogenesis. In turn, these endothelial cells, altered by glioma EVs, release 
potent growth factors and cytokines, inducing the proliferation of pericytes, vascular smooth muscle cells, 
and glioma cell migration[56].

https://www.biorender.com/
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Figure 2 reports a schematic representation of the main effects of EXOs released under hypoxic conditions.

In vitro studies on glioma cells have unveiled a notable enrichment of hypoxia-regulated mRNAs and 
proteins within EXOs[56]. These proteins include matrix metalloproteinases, lysyl oxidase, platelet-derived 
growth factor, IL-8, and caveolin[57]. Interestingly, several of these exosome-enriched factors have been 
linked to unfavorable prognoses in GBM patients. A recent study demonstrated that EXOs originating from 
GBM cells, cultured under hypoxic conditions, possess the ability to induce angiogenesis both in ex vivo and 
in vitro conditions, through the phenotypic alteration of endothelial cells[58]. Intriguingly, hypoxic EXOs 
derived from GBM cells induce endothelial cells to secrete various robust growth factors and cytokines, 
stimulating PI3K/AKT signaling in pericytes activation and, in turn, promoting migration[56]. Furthermore, 
it was observed that EXOs derived from hypoxic conditions exhibited enhanced autocrine activation, 
improving the migratory behavior of GBM cells. These findings correlated with a significant increase in 
tumor vascularization, vascular pericyte proliferation, and GBM cell invasiveness in a mouse xenograft 
model, compared to exosomes from normoxic conditions[59].

Increased secretion of EVs by breast cancer cell lines mediated by HIF-1α in hypoxic environments has been 
observed[60,61]. Similarly, lung cancer cells also show an increase in EXO release and higher levels of exosomal 
proteins such as CD9, CD81, and HSP70 under hypoxia[62]. In general, the TME, which includes oxygen 
levels, significantly influences the response of cancer cells to chemotherapy and radiotherapy[63]. Previous 
studies have demonstrated that alterations in the TME result in a modification to the proteome and 
transcriptome of a cell. In line with recent findings, these changes are mirrored in the content of exosomes 
released by cells. Glioma cells cultured under hypoxic conditions show a marked increase in HIF-1α and 
galectin-1 levels, both of which are typically upregulated in hypoxic environments and have cytoprotective 
effects[55].

HYPOXIA-DERIVED EXOSOMAL MIRNAS
miRNAs are small single-stranded noncoding RNAs that act as guiding molecules in RNA silencing[64]. 
Studies have shown that miRNAs are capable of regulating different pathways, including loss of cellular 
identity and proliferation, and changes in the regulatory mechanisms controlling cell death, suggesting their 
potential involvement in cancer[64].

The biogenesis of miRNAs starts in the nucleus, where DNA harboring miRNAs is transcribed by RNA 
polymerase II to produce primary miRNAs (pri-miRNAs). These molecules undergo processing by Drosha 
(double-stranded RNA-specific ribonuclease), resulting in the formation of hairpin RNAs comprising 
70-100 nt. Subsequently, the hairpin pre-miRNAs are conveyed to the cytoplasm by exportin 5, where they 
are further processed by a Dicer (double-stranded ribonuclease). Upon maturation, double-stranded 
miRNAs convert into single-stranded miRNAs, and mature miRNAs are selectively packaged into EXOs[65].

Recent research indicates that miRNAs contribute to the development of GBM[66]. Specifically, miR-21 was 
the first miRNA to be significantly increased in six GBM cell lines and is now recognized as a key oncogene 
that acts on various components of p53 and TGF-β signaling pathways in GBM cells[67]. Additional studies 
on other miRNAs that are abnormally expressed in GBM cells, such as miR-10bmiR-34a, miR-146b, 
miR-221, and miR-222 showed an impact on cell cycle, migration, and invasion of glioma cells, as well as on 
stem cell properties[68]. Moreover, miRNAs have also been reported to function as crucial mediators of 
hypoxia response, influencing the regulation of cell cycle, apoptosis, metastasis, and resistance to anticancer 
therapy. Some of them were found to contain HIF-1α response elements (HREs) in their promoters and 
were demonstrated to be under the regulation of HIF-1α[69]. Interestingly, a known hypoxia-regulated 



Page 8 Di Giulio et al. Extracell Vesicles Circ Nucleic Acids 2024;5:1-15 https://dx.doi.org/10.20517/evcna.2023.52

Figure 2. The generation of EVs and the characteristics of hypoxia-induced EVs in the recipient cells. EXOs originate within MVBs by 
budding into the endosomal membrane, resulting in the release of small vesicles within this compartment. MVBs fuse with the cell 
membrane to release EXOs into the extracellular space, while MVs form directly from the outward shedding of the plasma membrane. 
Both EVs types carry diverse cargos, including DNA, mRNA, ncRNA, proteins, and metabolites. In hypoxic cells, there is an increased 
release of exosomes, which play a multitude of roles upon reaching the recipient cells. Hypoxic EVs play roles in invasion, migration, 
angiogenesis,  proliferation, immune responses, and drug resistance of cancer cells.  Figure was created with 
https://www.biorender.com/. mRNA: messenger RNA; ncRNA: noncoding RNA; EVs: extracellular vesicles; EXOs: exosomes; MVBs: 
multivesicular bodies.

miRNA (HRM), miR-210-3p, exhibited strong induction in hypoxic glioma cell lines (U-87MG and U-
251MG) as well as in hypoxic GBM tumor samples, indicating its utility as a marker for hypoxia or as a 
therapeutic target in GBM. These findings demonstrate that miR-210-3p contributes to GBM cell survival in 
the TME and enhances aggressiveness by conferring temozolomide resistance and targeting HIF-3α, a 
known negative regulator of hypoxia-inducible gene expression[70]. It has been demonstrated that miRNAs 
are packaged into GBM cells-derived EXOs [Table 1].

Yue et al. demonstrated that exosomal miR-301a (exo-miR-301a) is selectively released by hypoxic GBM 
cells and is associated with HIF-1α status[87]. Therefore, it has the potential to function as a diagnostic and 
prognostic biomarker for human GBM. Moreover, the authors have shown that exo-miR-301a, produced by 
hypoxic GBM cells, can affect sensitivity to radiotherapy by modulating the Wnt/ β-catenin signaling 
pathway. To assess the expression of miR-301a, which is significantly increased in glioma tissues, and 
exosomal miR-301a, the authors examined the expression of HIF-1α as a biomarker of hypoxia. ELISA 
results showed that GBM cells exhibited a response to hypoxia with an increase in nuclear HIF-1α. The 
levels of all exosomal markers, such as CD9, CD63, CD81, and HSP70, were higher in hypoxic cells than in 
normoxic cells. Interestingly, hypoxia markedly upregulated the expression of miR-301a and exo-miR-301a, 
while downregulation of HIF1α resulted in a decrease in their expression[87].

To explore the impact of tumor cells on endothelial cells, human umbilical vein endothelial cells (HUVECs) 
were plated in the presence of EXOs derived from normal human astrocytes (HA) and U-251MG and 
U-87MG GBM cells, in a hypoxic environment. Results showed that EXOs from hypoxic U-251MG and 
U-87MG cells promoted invasion and tube formation of HUVECs, endothelial permeability, and migration 
of tumor cells across endothelial barriers. These data suggest that hypoxic EXOs from glioma cells promote 
angiogenesis and disrupt the endothelial cell barrier, leading to intravasation and extravasation of tumor 

https://www.biorender.com/
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Table 1. Main miRNAs found in GBM-derived EVs

miRNAs in GBM-derived EVs Tumorigenic functions Refs

miR-21 ↑, miR-148a ↑, miR-130b-3p ↑, miR-182-5p ↑ Angiogenesis and invasiveness [71-74]

miR-221 ↑, miR-222 ↑, miR-34a ↓, miR-146b ↓, miR-10b ↑, miR-543 ↓, miR-486-5p ↓, 
miR-485-3p ↓, miR-185 ↓

Tumor cell proliferation and 
migration

[75-81]

miR-210-3p ↑, miR-1238 ↑ Temozolomide resistance [82,83]

miR-301a ↑ Radiation resistance [84]

miR-10a ↑, miR-29a ↑, miR-1246 ↑ Immunosuppression [85,86]

↑: increased; ↓: decreased.

cells. Microarray analysis showed that the levels of miR-182-5p, miR-543, miR-486-5p, miR-485-3p, and 
miR-185 increased in primary cells under hypoxic conditions, and only miR-182-5p was significantly 
increased in glioma cell lines in comparison to HA cells. Moreover, when HIF-1α was knocked down in 
U-251MG and U-87MG cells, the increase in miR-182-5p levels in EXOs failed to occur under hypoxic 
conditions[74]. Considering the great importance of miRNAs in hypoxic TME, it is crucial to identify and 
analyze hypoxia-regulated miRNA in GBM. This may provide insights into the molecular mechanism of 
hypoxia resistance in GBM and potentially impact the diagnosis and treatment of the disease.

A Swedish research group investigated in detail the molecular composition of EXOs secreted by GBM 
cells[56]. One of the goals of the study was to investigate whether the composition of EXOs is related to the 
state of the cells, including the degree of hypoxia. For this purpose, it was necessary to determine if EXOs 
secreted by tumor cells under oxygen deficiency differed from those secreted by cells in normal conditions. 
EXOs purified from the blood plasma of patients with GBM or produced by different GBM cell lines 
cultured under different oxygen conditions were used. EXOs recovered from cells deprived of oxygen 
contained proteins important for GBM development and associated with a state of hypoxia. Furthermore, 
these vesicles also contained a variety of mRNAs: among the approximately 15,000 types of RNA molecules 
found in GBM cells, 6,500 were present in EXOs. In addition, eight different RNA molecules found in EXOs 
varied between hypoxic and nonhypoxic cells. These RNAs were associated with genes involved in tumor 
progression, i.e., lysyl oxidase (LOX), IGF binding protein (IGFPB) 3, adrenomedullin (ADM), inhibitor of 
DNA binding 2 (ID2), Bcl-2/adenovirus E18 19-kDa-interacting protein 3 (BNIP3), N-Myc downstream-
regulated gene 1 (NDRG1), procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2), and plasminogen 
activator inhibitor 1 (PAI1). Interestingly, the amount of RNA present in GBM cells was linked to the level 
of hypoxia, and higher levels of hypoxia were associated with a more aggressive form of the tumor[56].

A recent clinical study by Graziano et al. shows that the chaperone Hsp60 was increased in GBM cells and 
the depletion in vitro was associated with tumor regression. Hsp60 levels are subject to regulation by 
molecular factors, including miRNAs[88]. The authors also revealed that Hsp60-related miRNAs released into 
the extracellular space and circulation were significantly increased in EVs isolated from the plasma of 
patients with malignant glioma, in a manner reflecting the status of the disease[88].

HYPOXIA-DERIVED EXOSOMAL PROTEINS
Different studies have shown that hypoxic cells produce greater amounts of EXOs compared with normoxic 
cells[60]. Additionally, over 50% of the proteome secreted by hypoxic carcinoma cells may be linked to 
EXOs[89]. These findings provide quantitative evidence for the complex role of EXOs in the hypoxic 
response. Interestingly, recent evidence has shown that the tumorigenic and pro-metastatic function of 
exosomes can be effectively antagonized by downregulation of the small GTPase Rab27a[90], which has been 
shown to participate in exosome biogenesis.
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Similar to microRNA, protein loading in EXOs has been reported to be mediated by endosomal sorting 
complexes required for transport (ESCRT), which are involved in the formation of multivesicular bodies, 
and ceramide pathways, known to be an important apoptosis-inducing factor in various tumor cells. 
Exosome protein composition reflects the state of the producing cells, including those associated with 
hypoxia. Thus, it was found that the molecular composition of EXOs reflects the degree of hypoxia state in 
the tumor and allows for the prediction of its aggressiveness [Table 2].

In a study conducted by Kucharzewska et al., GBM-derived EXOs were compared with age and sex-
matched controls[56]. The results showed that EXOs were enriched in different hypoxia-regulated proteins 
that may be involved in tumor migration and invasiveness. Among these, the most notable include matrix 
metalloproteinase 9 (MMP9), pentraxin 3 (PTX3), IL-8, platelet-derived growth factor receptor (PDGFR), 
CD26 (also known as dipeptidyl peptidase-4), and plasminogen activator inhibitor 1 (PAI1)[56]. Increased 
expression of membrane raft domain-associated caveolin-1 protein (CAV1) in GBM cells and tumors 
compared to normal astrocytes and human brain tissue has been reported in the literature[64,94,99-101]. 
Additionally, hypoxic regions of GBM stained with glucose transporter 1 (GLUT1) also show increased 
expression of CAV1[55]. In addition, Western blotting analysis of GBM hypoxia exosome proteins revealed 
increased levels of lysine-6-oxidase (LOX), disintegrin, thrombospondin-1 (TSP1), A disintegrin-like and 
metalloproteinase with thrombospondin type 1 motif 1, (ADAMTS1), and VEGF. These proteins are known 
to be associated with hypoxia-induced neovascularization and metastasis, as well as vascular function/
activation status[55], suggesting that this exosomal protein signature may comprehensively reflect hypoxic 
signaling of high-grade gliomas.

The invasiveness of GBM under hypoxic conditions has also been linked to their increased production of 
hyaluronic acid (HA)[101], which is one of the major components of the ECM in the brain. Moreover, GSCs 
have been identified by their marked expression of the stem marker and HA receptor, CD44, which 
contributes to the migratory and invasive abilities of these cells[102].

The hypoxic environment stimulates GBM cells to release EVs containing proteins involved in actin 
cytoskeleton remodeling, ECM-receptor interaction, focal adhesion, and transendothelial migration of 
leukocytes, suggesting that EVs derived from hypoxic gliomas contribute to the migration phenotype in 
GBM cells[103].

There is cumulative evidence supporting that EVs secreted by GBM cells are enriched in heat-shock 
proteins (HSPs), associated with cancer progression and metastasis[96]. Particularly, Hsp60 and Hsp70 are 
highly expressed in glioma cells and released enclosed into EVs under stress conditions, including hypoxia, 
hyperthermia, ischemia, heavy metal or ionizing radiation exposure, and infections[104]. Consequently, there 
is a notable upregulation of HSP expression in tumor cells compared to their normal counterparts. Hsp70 is 
a pivotal factor in controlling malignancy, cellular growth, resistance to treatments, and unfavorable 
prognosis. In addition, Hsp60 levels are elevated in numerous tumor types, and its increased expression 
plays an essential role in carcinogenesis. Hsp60 acts not only within cells but also in the extracellular 
environment and contributes to intercellular communication. Increased HSP expression has also been 
associated with tumor resistance to chemotherapy and radiation, suggesting the potential use of these 
proteins as prognostic or diagnostic indicators[97].

CONCLUSIONS
It is widely known that high-grade gliomas, such as GBM, display characteristics of hypoxia, intense 
angiogenesis, neovascularization, and resistance to chemotherapy and radiotherapy. Research has shown 
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Table 2. Diagnostic and prognostic protein markers carried within GBM exosomes

Protein cargos in GBM-derived EXOs Tumorigenic functions Refs

MMPs, TGF-β1, PAI1, VEGF Angiogenesis, cell proliferation and migration [56]

PTX3, IL-8 Inflammation, angiogenesis, invasiveness [56]

PDGFR Tumor cell proliferation (poor prognosis) [91]

EGFR Resistance to apoptotic stimuli and to chemotherapy [92]

CD26, CD44, CD133 Chemoresistance markers [93]

CAV-1 Glioma progression, drug resistance, and invasiveness by regulating cell adhesion [94,95]

LOX, TSP1, ADAMTS1 Tumor progression, metastasis, and angiogenesis [55]

HSPs Cancer progression metastasis, radio- and chemoresistance [88,96,97]

Semaphorin 3A Increased vascular permeability [98]

MMPs: matrix metalloproteinases; TGF-β1: transforming growth factor-beta 1; PAI1: plasminogen activator inhibitor 1; VEGF: Vascular endothelial 
growth factor; PTX3: pentraxin 3; IL-8: interleuchin-8; PDGFR: platelet-derived growth factor receptor; EGFR: epithelial growth factor receptor; 
CAV-1: caveolin 1; LOX: lysine-6-oxidase; TSP1: thrombospondin-1; ADAMTS1: A disintegrin-like and metalloproteinase with thrombospondin 
type 1 motif 1; HSPs: heat-shock proteins.

that GBM cells in hypoxic regions release EXOs that contain increased levels of proteins and RNA, which 
are associated with tumor aggressiveness. Additionally, the molecular composition of these vesicles is 
significantly representative of the oxygenation status and aggressiveness of GBM. In the future, these 
findings may lead to the use of EXOs as a minimally invasive "liquid biopsy" technique, which is rapid, cost-
effective, and can identify tumors at an early stage.
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