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Abstract
This paper focuses on the leader-following consensus problem of discrete-time multi-agent systems subject to chan-
nel fading under switching topologies. First, a topology switching-based channel fading model is established to de-
scribe the information fading of the communication channel among agents, which also considers the channel fading
from leader to follower and from follower to follower. It is more general than models in the existing literature that
only consider follower-to-follower fading. For discrete multi-agent systems, the existing literature usually adopts
time series or Markov process to characterize topology switching while ignoring the more general semi-Markov pro-
cess. Based on the advantages and properties of semi-Markov processes, discrete semi-Markov jump processes are
adopted to model network topology switching. Then, the semi-Markov kernel approach for handling discrete semi-
Markov jumping systems is exploited and somenovel sufficient conditions to ensure the leader-followingmean square
consensus of closed-loop systems are derived. Furthermore, the distributed consensus protocol is proposed bymeans
of the stochastic Lyapunov stability theory so that the underlying systems can achieve H∞ consensus performance
index. In addition, the proposed method is extended to the scenario where the semi-Markov kernel of semi-Markov
switching topologies is not completely accessible. Finally, a simulation example is given to verify the results proposed
in this paper. Compared with the existing literature, the method in this paper is more effective and general.

Keywords: H∞ leader-following consensus, multi-agent systems, channel fading, semi-Markov switching topologies,
semi-Markov kernel.
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1. INTRODUCTION
With the rapid development of computer technology and networks, distributed cooperative control has drawn
increasing attention due to its application in various fields, especially computer science and automation control.
A fundamental and important research topic of distributed system control is the consensus problem of multi-
agent systems. It has attracted considerable interest among many researchers in different fields in the past few
decades, due to its significant applications in civilians and militaries, such as unmanned air vehicles [1–3], au-
tonomous underwater vehicles [4], multiple surface vessels [5], robot formation [6,7]. The consensus problem es-
sentially refers to a team of agents reaching the same state by designing proper and available distributed control
algorithms that only utilize local information exchange with neighbors. Over the past decade, there have been
a wealth of interesting and instructive achievements focusing on consensus problem of multi-agent systems,
including leaderless consensus [8–13] and leader-following consensus [14–21]. The leaderless output consensus
problem ofmulti-agent systems composed of agents with different orders was studied by transforming the orig-
inal system through feedback linearization. Static feedback and dynamic feedback controllers are designed to
solve the consensus problem and sinusoidal synchronization problem under uniformly jointly strongly con-
nected topologies [8]. Under cyber-attacks, literature [9] proposed a fully distributed adaptive control protocol
to solve the leaderless consensus problem of uncertain high-order nonlinear systems. The work [11] discussed
the event-triggered coordination problem for general linearmulti-agent systems based on a Lyapunov equation
method. Leader-following consensus means that the states of all follower agents are expected to approach the
state of the leader agent. In many practical situations, leader-following consensus can accomplish more com-
plex tasks by enhancing inter-agent communication. Compared with leaderless consensus, leader-following
consensus can be beneficial in reducing control costs and save energy. The key to the leader-follower consen-
sus problem is how to design a distributed control protocol to synchronize the states of all follower agents and
the leader agent. The work [14] proposed a novel distributed observer-type consensus controller for high-order
stochastic strict feedback multi-agent systems based only on relative output measurements of neighbors. The
1-moment exponential leader-following consensus of the underlying system is ensured by adopting appropri-
ate state transformation. In [15], the sampled-data leader-following consensus problem for a family of general
linear multi-agent systems was addressed, and the distributed asynchronous sampled-data state feedback con-
trol law was designed. The event-based secure leader-following consensus control problem of multi-agent
systems with multiple cyber attacks, which contain reply attacks and DoS attacks simultaneously, was studied
in [16]. The fixed-time leader-following group consensus of multi-agent systems composed of first-order inte-
grators was realized under a directed graph [17]. By designing a nonlinear distributed controller, the follower
agents of every group can reach an agreement with its corresponding leader within a specified convergence
time. In [19], the author considered the problem of resilient practical cooperative output regulation of heteroge-
neous linear multi-agent systems, in which the dynamics of exosystem are unknown and switched under DOS
attacks. A new cooperative output regulation scheme consisting of distributed controller, distributed resilient
observer, auxiliary observer and data-driven learning algorithm was proposed to ensure the global uniform
boundedness of the regulated output. More results can be seen in [18,20,21] and references cited therein.

It is well known that there is a large amount of data transmission in the control process of multi-agents. Data
packets or signals between agents are usually transmitted through wireless communication networks. How-
ever, some special physical phenomena (such as reflection, refraction, diffraction) may occur during the trans-
mission of a signal or data packet through a communication link or channel, which will result in the loss of
signal energy and lead to the signal distorted. This type of phenomenon is often referred to the channel fading.
Typically, fading effects are closely related to multipath propagation and shadows from obstacles. In practical
applications, the factors that cause channel fading mainly include time, geographic location, and radar fre-
quency. As a result, the phenomenon of channel fading may result in the degradation of signal quality due to
the inability to receive accurate transmission information, thereby deteriorating the desired performance of
the system. This also shows that it is meaningful to consider channel fading effects for the distributed control
of multi-agent systems. In view of this, some results on channel fading have been published, such as chan-
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nel fading of single systems [22–26], channel fading for multi-agent systems [27–29]. The reference [22] designed
a nonparallel distribution compensation interval type-2 fuzzy controller to address dynamic event-triggered
control problems for interval type-2 fuzzy systems subject to fading channel, where the fading phenomenon
is characterized by a time-varying random process. The literature [23] focused on the finite-horizon 𝐻∞ state
estimation problem of periodic neural networks subject to multi-fading channels. By employing the stochastic
analysis method and introducing a set of correlated random variables, sufficient criteria to ensure the stochas-
tic stability of the estimation error system with correlated fading channels were obtained and the desired 𝐻∞
performance was achieved. In [25], the event-triggered asynchronous guaranteed that cost control problem for
Markov jump neural networks subject to fading channels could be addressed, where a novel rice fading model
was established to consider the effects of signal reflections and shadows in wireless networks. The consensus
tracking problem of second-order multi-agent systems with channel fading was investigated using the sliding
mode control method, and the feasible distributed sliding mode controller was designed by introducing the
statistical information of channel fading to the measure functions of the consensus errors [27]. It should be
pointed out that most of the literatures mentioned above on channel fading in multi-agent systems only con-
sider the fading effect among the follower agents and ignore the fading effect between the leader agent and
the follower agents. As stated earlier, the leader plays a crucial role in the leader-following consensus problem.
To improve the applicability of the controller and the ability to deal with the problem, it is reasonable and
necessary to consider both the fading effect of leader-to-follower and follower-to-follower agents at the same
time in the channel fading problem of multi-agent systems. This is one of the motivations of this paper.

On the other hand, the communication topology of multi-agent systemsmay change in practice due to various
factors, such as sudden changes in the environment, communication range limitations, link failures, packet
loss, malicious cyber attacks, etc. Given this, many researchers assume that the topology among agents is
time-varying or Markov switching. Some good consensus results for multi-agent systems under time-varying
topology and Markov switching topology have been reported in the past decade [30–34]. For example, the
work [33] investigated the coupled group consensus problem for general linear time-invariant multi-agent sys-
tems under continuous-time homogeneous Markov switching topology. The designed linear consensus pro-
tocol can achieve coupled group consensus of the considered system under some algebraic and topological
conditions. It is worth noting that since the transition probability in Markov jump process is constant and
there is no memory characteristic, there are still some limitations in using Markov jump process to model
topology switching among agents. Recently, a class of more general semi-Markov jump processes with a non-
exponential distribution of sojourn-time (the time interval between two consecutive jumps) and time-varying
transition probabilities has attracted interest of many scholars and has been used to characterize the topo-
logical switching among agents [35–38]. For example, the leader-following consensus of a multi-agent system
under a sampled-data-based event-triggered transmission schemewas realized [35], where a semi-Markov jump
process was employed to model the switching of the network topologies. The containment control problem
concerning semi-Markov jump multi-agent systems with semi-Markov switching topologies was studied by
designing static and dynamic containment controllers [37]. Under a semi-Markov switching topology with par-
tially unknown transition rates, the 𝐻∞ leader-follower consensus control of a class of nonlinear multi-agent
systems with external perturbations was achieved, and sufficient conditions for ensuring system consistency
and 𝐻∞ performance were derived based on the linear matrix inequality form [38]. However, most of the above
literature on semi-Markov switching topology is considered for the continuous system case. As a matter of
fact, in the discrete-time case, the semi-Markov jump process can exert a stronger modeling ability and have
a larger application range. The reason is that the probability density function of sojourn-time in the discrete
semi-Markov jump process can be of different types in different modes, or of the same type but with different
parameters. In order to make the modeling of switching topology more realistic, it is very necessary and valu-
able to employ discrete-time semi-Markov switching topologies. Naturally, how to deal with the consensus
problem of multi-agent systems in this situation is a key point. Recently, the discrete semi-Markov jump pro-
cess was adopted to model general linear systems and a semi-Markov kernel method was proposed to address
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its stability and stabilization problems [39,40]. This also provides an idea for solving the consensus problem of
multi-agent systems under discrete semi-Markov switching topology. To the best of our knowledge, to date,
there have been few results on the leader-following consensus problem for discrete-time multi-agent systems
subject to channel fading under semi-Markov switching topologies. Therefore, how to design a suitable dis-
tributed control protocol and how to establish leader-following consensus criteria for multi-agent systems with
channel fading under discrete semi-Markov switching topologies are the key issues. This inspires us to carry
out this work.

Motivated by the above discussion, in this paper, theH∞ leader-following consensus problem of discrete multi-
agent systems with channel fading is investigated under the premise of semi-Markov switching topology. The
major contributions of this paper can be highlighted as follows: (I) Compared with the literature [27,41], a more
general channel fading model based on discrete semi-Markov switching topologies is established to charac-
terize the possible effects of inter-agent signal transmission. The influences of channel fading between leader
and follower, follower and follower agents are simultaneously considered to explore the influence of channel
fading on system consensus, rather than considering only channel fading among follower agents in litera-
ture [27,41]. (II) As mentioned in the previous paragraph, discrete semi-Markov processes are more powerful
in modeling ability and application range than Markov and continuous-time semi-Markov processes. For this
reason, different from the Markov switching and continuous-time semi-Markov switching topologies adopted
in [32–38], this paper employs a discrete semi-Markov process to describe the network topology switching among
agents and switching for channel fading. A set of novel sufficient conditions to guarantee that leader-following
mean square consensus of multi-agent systems under semi-Markov switching topologies is derived via a semi-
Markov kernel approach. (III) The distributed consensus controller design scheme based on fading relative
states is proposed to solve theH∞ leader-following consensus control problem when the semi-Markov kernel
of switching topologies is fully accessible and incompletely accessible, respectively. The rest of this paper is
organized as follows. The preliminaries and problem formulation are given in section II. Section III presents
the main results. Then, simulation examples are provided in Section IV. Finally, the conclusion and future
work are introduced in Section V.

Notations: Denote that R𝑛 and R𝑛×𝑛 be the sets of 𝑛-dimensional vectors and 𝑛× 𝑛 real matrices. N represents
the sets of nonnegative integers. The sets of positive integers is denoted by N+. N≥𝑏1 and N[𝑏1,𝑏2] stand for the
sets {𝑐 ∈ N|𝑏 ≥ 𝑏1} and {𝑏 ∈ N|𝑏1 ≤ 𝑏 ≤ 𝑏2}, respectively. A matrix 𝑄 ≻ 0(≺ 0) indicates it is positive
(negative) definite. A 𝑁 × 𝑁 identity matrix is defined as 𝐼𝑁 . Denote a symmetric term in a matrix by ∗. ⊗
refers to the Kronecker product. Moreover, E{·} and ∥𝑥∥ represent the mathematical expectation operator and
the Euclidean norm of the vectors. If not specifically stated, matrices and vectors have appropriate dimensions.

2. PRELIMINARIES AND PROBLEM FORMULATION
2.1. Graph theory
In this paper, we employed an undirected graph G = {V, E,A} to depict the information interaction topology
among 𝑁 agents. V = {𝑣1, 𝑣2, ..., 𝑣𝑁 } stands for the node sets, in which 𝑣𝑖 is the 𝑖th agent. E ⊂ V × V
represents a set of edges. The adjacency matrix associated with graph G is denoted by A = [𝑎𝑖 𝑗 ] ∈ R𝑁×𝑁 .
If node 𝑣𝑖 can receive information from node 𝑣 𝑗 , there is an edge (𝑣 𝑗 , 𝑣𝑖) between node 𝑣𝑖 and node 𝑣 𝑗 . The
elements 𝑎𝑖 𝑗 of matrixA is weighted coefficient of edge (𝑣 𝑗 , 𝑣𝑖), and 𝑎𝑖 𝑗 > 0, if (𝑣 𝑗 , 𝑣𝑖) ∈ E, otherwise, 𝑎𝑖 𝑗 = 0.
Self-loop is not considered. The set of neighbors of node 𝑣𝑖 can be represented asN𝑖 = {𝑣 𝑗 ∈ V|(𝑣 𝑗 , 𝑣𝑖) ∈ E}.
The degree matrix of graph G is denoted as D = 𝑑𝑖𝑎𝑔{𝑑𝑖} ∈ R𝑁×𝑁 , where 𝑑𝑖 =

∑
𝑗∈N𝑖

𝑎𝑖 𝑗 . Then, one can
obtain that the Laplacian matrix is L = D − A. Denote matrix M = 𝑑𝑖𝑎𝑔{𝑚𝑖} ∈ R𝑁×𝑁 , where 𝑚𝑖 stands
for the information exchange of node 𝑣𝑖 and leader node. If node 𝑣𝑖 can access the information of the leader,
𝑚𝑖 = 1, otherwise, 𝑚𝑖 = 0.
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2.2. Problem formulation
Consider a linear discrete-time multi-agent system consist of one leader and 𝑁 follower agents:

𝑥𝑖 (𝑘 + 1) = 𝐴𝑥𝑖 (𝑘) + 𝐵𝑢𝑖 (𝑘), 𝑖 = 1, 2, ..., 𝑁
𝑥0(𝑘 + 1) = 𝐴𝑥0(𝑘)

(1)

where 𝑥𝑖 (𝑘) ∈ R𝑛𝑥 , 𝑢𝑖 (𝑘) ∈ R𝑚 , 𝑥0(𝑘) ∈ R𝑛𝑥 are the state, input of the 𝑖th follower, the state of leader, respec-
tively. Matrices 𝐴 ∈ R𝑛𝑥×𝑛𝑥 and 𝐵 ∈ R𝑛𝑥×𝑚 represent known constant system matrices.

In the real world, the communication network topology among agents is more likely to be time-varying. In this
paper, a switching signal 𝛾(𝑘) is used to characterize the topology switching among agents. {𝛾(𝑘), 𝑘 ∈ N+}
represents a discrete-time semi-Markov chain with values in a finite set O = {1, 2, ..., 𝑂}.

To describe semi-Markov chain more formally, the following concepts are introduced. (I) The stochastic pro-
cess {𝑈𝑛, 𝑛 ∈ N+} ∈ N+ is denoted as the mode index of the 𝑛th jump, in which taking values in O. (II) The
stochastic process {𝑘𝑛, 𝑛 ∈ N+} ∈ N+ represents the time instant of at the 𝑛th jump. (III)The stochastic process
{𝑆𝑛, 𝑛 ∈ N+} ∈ N+ stands for the sojourn-time of mode𝑈𝑛−1 between the (𝑛−1)th jump and 𝑛th jump, where
𝑆𝑛 = 𝑘𝑛 − 𝑘𝑛−1.

Definition 1 [39] The stochastic process {(𝑈𝑛, 𝑘𝑛), 𝑛 ∈ N+} is said to be a discrete-time homogeneous Markov
renewal chain (MRC), if the following conditions holds for all 𝑝, 𝑞 ∈ O, 𝜏 ∈ N+, 𝑛 ∈ N+:

𝑃𝑟{𝑈𝑛+1 = 𝑞, 𝑆𝑛+1 = 𝜏 |𝑈0,𝑈1, ...𝑈𝑛 = 𝑝; 𝑘0, ...𝑘𝑛} = 𝑃𝑟{𝑈𝑛+1 = 𝑞, 𝑆𝑛+1 = 𝜏 |𝑈𝑛 = 𝑝}
= 𝑃𝑟{𝑈1 = 𝑞, 𝑆1 |𝑈0 = 𝑝},

where {𝑈𝑛, 𝑛 ∈ N+} is named as the embedded Markov chain (EMC) of MRC.

Denote the matrix Π(𝜏) = [𝜋𝑝𝑞 (𝜏)] ∈ R𝑂×𝑂 as the discrete-time semi-Markov kernel with

𝜋𝑝𝑞 (𝜏) = 𝑃𝑟{𝑈𝑛+1 = 𝑞, 𝑆𝑛+1 = 𝜏 |𝑈𝑛 = 𝑝}

=
𝑃𝑟{𝑈𝑛+1 = 𝑞,𝑈𝑛 = 𝑝}

𝑃𝑟{𝑈𝑛 = 𝑝}
𝑃𝑟{𝑈𝑛+1 = 𝑞, 𝑆𝑛+1 = 𝜏,𝑈𝑛 = 𝑝}

𝑈𝑛+1 = 𝑞,𝑈𝑛 = 𝑝

= 𝜃𝑝𝑞𝜔𝑝𝑞 (𝜏)

(2)

where
∑∞
𝜏=0

∑
𝑞∈O 𝜋𝑝𝑞 (𝜏) = 1 and 0 < 𝜋𝑝𝑞 (𝜏) < 1 with 𝜋𝑝𝑞 (0) = 0. The transition probability of EMC is

defined by 𝜃𝑝𝑞 = 𝑃𝑟{𝑈𝑛+1 = 𝑞 |𝑈𝑛 = 𝑝},∀𝑝, 𝑞 ∈ O with 𝜃𝑝𝑝 = 0, and the probability density function of
sojourn-time is provided by 𝜔𝑝𝑞 (𝜏) = 𝑃𝑟{𝑆𝑛+1 |𝑈𝑛+1 = 𝑞,𝑈𝑛 = 𝑝}, 𝜔𝑝𝑞 (0) = 0.

Remark 1 References [35,37,38] studied the leader-following consensus and containment control problems for
multi-agent systems with semi-Markov switching topologies, respectively. A continuous-time semi-Markov
jump process is employed to describe the switching of the topology. Accordingly, the probability density func-
tion of the sojourn-time can only be of a fixed probability distribution type for the different modes. This limits
its practical application. In this paper, a discrete semi-Markov chain is introduced to characterize topology
switching among agents. The introduced probability density function of sojourn time depends on both the
current mode and the next mode, so that different parameters of the same distribution or different types of
probability distributions can coexist. Hence, the probability density function introduced in this paper is more
applicable than that in the literature [35,37,38].

Definition 2 [39] The stochastic process {𝛾(𝑘), 𝑘 ∈ N+} is said to be an semi-Markov chain associated with
MRC {(𝑈𝑛, 𝑘𝑛), 𝑛 ∈ N+}, if 𝛾(𝑘) = 𝑈N(𝑘) ,∀𝑘 ∈ N+, N(𝑘) = max{𝑛 ∈ N+ |𝑘𝑛 ≤ 𝑘}.
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Figure 1. Multi-agent systems with channel fading under semi-Markov switching topologies

Based on the above introduction to the semi-Markov chain, the switching topology among agents in this paper
can be denoted as G𝛾(𝑘) . For convenience, let G𝛾(𝑘) = G𝑝 , 𝑝 ∈ O.

Every topological graph G𝑝 is an undirected graph. Then, the Laplacian matrix of the graph G𝑝 , the adjacency
matrix of the leader and the follower are denoted by L𝑝 ∈ R𝑁×𝑁 , A𝑝 ∈ R𝑁×𝑁 , andM𝑝 ∈ R𝑁×𝑁 .

In practice, the communication process between an agent and its neighbors is often affected by channel noise
and fading. Motivated by the channel fading model in [28,29], in this paper we assume that each agent obtains
relative state information from its neighbors through fading channels. Correspondingly, the channel fading
model among agents can be expressed as

𝑥𝑟𝑒𝑙𝑖 𝑗 (𝑘) = 𝜉𝑖 𝑗 (𝑘) (𝑥𝑖 (𝑘) − 𝑥 𝑗 (𝑘)) +𝜛𝑖 𝑗 (𝑘), 𝑥𝑟𝑒𝑙𝑖0 (𝑘) = 𝜉𝑖0(𝑘)(𝑥𝑖 (𝑘) − 𝑥0(𝑘)) +𝜛𝑖0(𝑘) (3)

where 𝜉𝑖 𝑗 (𝑘), 𝜉𝑖0(𝑘) represent the channel fading of the follower-to-follower and the leader-to-follower, re-
spectively. 𝜛𝑖 𝑗 (𝑘) and 𝜛𝑖0(𝑘) are disturbances in the channel. Based on the above channel fading model, we
design a distributed consensus controller as follows:

𝑢𝑖 (𝑘) = 𝐾𝑝{
𝑁∑
𝑗=1
𝑎
𝑝
𝑖 𝑗 (𝑘) [𝜉

𝑝
𝑖 𝑗 (𝑘)(𝑥𝑖 (𝑘) − 𝑥 𝑗 (𝑘)) +𝜛

𝑝
𝑖 𝑗 (𝑘)] + 𝑚

𝑝
𝑖 (𝑘) [𝜉

𝑝
𝑖0(𝑘)(𝑥𝑖 (𝑘) − 𝑥0(𝑘)) +𝜛𝑝

𝑖0(𝑘)]} (4)

where 𝐾𝑝 ∈ R𝑚×𝑛𝑥 is the controller gain to be determined, 𝑝 ∈ O.

Figure 1 shows the frame diagram of the system considered in this paper. Under the semi-Markov switching
communication network topology, the channel fading between agents varies randomly with the switching of
the topology. Each agent generates control inputs based on the relative information obtained from neighbors
through fading and interference, thereby further controlling the entire system to achieve consensus.

Remark 2 Compared with the channel fading model established in the literature [27–29], the channel fading
model introduced in this paper not only considers the fading influence from leader to follower and follower
to follower, but also introduces the effect of channel interference on signal transmission and the influence of
topology switching on the statistical characteristics of fading coefficients. Thismeans that themodels presented
in this paper are more general than those in the previous literature. When 𝜛𝑖 𝑗 (𝑘) = 𝜛𝑖0(𝑘) = 0, 𝜉𝑖0(𝑘) ≡ 1
in equation (3), the model degenerates to the case in [27]. If the values of 𝜉𝑖 𝑗 (𝑘) and 𝜉𝑖0(𝑘) are 0 or 1 and
𝜛𝑖 𝑗 (𝑘) = 𝜛𝑖0(𝑘) = 0, the channel fading model (3) is reduced to a packet loss model. This also indicates that
the channel fading model proposed in this paper is more general.

Define the consensus error as 𝛿𝑖 (𝑘) = 𝑥𝑖 (𝑘) − 𝑥0(𝑘), 𝑖 = 1, 2, ..., 𝑁 . Combining system (1) and consensus
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protocol (4), the dynamics of 𝛿𝑖 (𝑘) can be given by

𝛿𝑖 (𝑘 + 1) = 𝐴𝛿𝑖 (𝑘) + 𝐵𝐾𝑝{
𝑁∑
𝑗=1
𝑎
𝑝
𝑖 𝑗 (𝑘) [𝜉

𝑝
𝑖 𝑗 (𝑘) (𝛿𝑖 (𝑘) − 𝛿 𝑗 (𝑘)) +𝜛

𝑝
𝑖 𝑗 (𝑘)]

+ 𝑚𝑝
𝑖 (𝑘) [𝜉

𝑝
𝑖0(𝑘)𝛿𝑖 (𝑘) +𝜛

𝑝
𝑖0(𝑘)]}

(5)

with 𝛿𝑖 (𝑘) = [𝛿𝑇1 (𝑘), 𝛿𝑇2 (𝑘), ..., 𝛿𝑇𝑁 (𝑘)]𝑇 . Assume that all channel fading are identical, ie., 𝜉𝑖 𝑗 (𝑘) = 𝜉 (𝑘),
𝜉𝑖0(𝑘) = 𝜉0(𝑘),𝜛𝑖 𝑗 (𝑘) = 𝜛(𝑘), and𝜛𝑖0(𝑘) = 𝜛0(𝑘) for 𝑘 ≥ 0, 𝑖, 𝑗 = 1, 2, ..., 𝑁 . Then, the above equation can
be rewritten in compact form as follows:

𝛿(𝑘 + 1) = [𝐼𝑁 ⊗ 𝐴 + (𝜉𝑝 (𝑘)L𝑝 + 𝜉0𝑝 (𝑘)M𝑝) ⊗ 𝐵𝐾𝑝]𝛿(𝑘) + [𝐼𝑁 ⊗ (𝐵𝐾𝑝)]𝜔(𝑘) (6)

where 𝜔(𝑘) = [𝜔𝑇1 (𝑘), 𝜔𝑇2 (𝑘), ..., 𝜔𝑇𝑁 (𝑘)]𝑇 , 𝜔𝑖 (𝑘) =
∑𝑁
𝑗=1 𝑎

𝑝
𝑖 𝑗 (𝑘)𝜛𝑝 (𝑘) + 𝑚𝑝

𝑖 (𝑘)𝜛0𝑝 (𝑘), 𝑖 = 1, 2, ..., 𝑁 .

Before the subsequent analysis, some definition and assumptions are introduced.

Definition 3The systems (6) is said to achieve leader-following consensus in mean square sense, if the system
(6) is 𝜎-error mean square stable.

Definition 4 [39] The dynamic system (6) is said to be 𝜎-error mean square stable, if the following conditions
hold

lim
𝑘→∞
E
[
∥𝛿𝑖 (𝑘)∥2]

𝛿𝑖 (0),𝛾(0),𝑆𝑛+1≤𝑇 𝑝
𝑚𝑎𝑥 |𝑈𝑛=𝑝

= 0 (7)

for given the upper bound of sojourn-time 𝑇 𝑝𝑚𝑎𝑥 ∈ N+ and any initial conditions 𝛿𝑖 (0), 𝛾(0) ∈ O, 𝑖 ∈
{1, 2, ..., 𝑁}, 𝜔(𝑘) = 0.

Assumption 1 Every possible undirected graph G𝛾(𝑘) , 𝛾(𝑘) = 𝑝 ∈ O is connected.

Assumption 2Themean and variance of stochastic variables {𝜉𝑝 (𝑘)} and {𝜉0𝑝 (𝑘)} areE{𝜉𝑝 (𝑘)} = 𝜇𝑝 ,E{𝜉0𝑝 (𝑘)} =
𝜇0𝑝 , E{(𝜉𝑝 (𝑘) − 𝜇𝑝)2} = 𝜎2

𝑝 , and E{(𝜉0𝑝 (𝑘) − 𝜇0𝑝)2} = 𝜎2
0𝑝 .

According to the above analysis and discussion, it can be found that the leader-following consensus of system
(1) under the semi-Markov switching topologyG𝑝 is equivalent to themean square stability of system (6). Since
𝜛𝑝 (𝑘) and 𝜛0𝑝 (𝑘) are interference in the channel, we can treat the last term in equation (6) as a disturbance.
To tackle with the disturbance, the following control output are given

𝑧(𝑘) = (𝐼𝑁 ⊗ 𝐸)𝛿(𝑘) (8)

with 𝑧𝑖 (𝑘) = 𝐸 (𝑥𝑖 (𝑘) − 𝑥0(𝑘)) and 𝑧(𝑘) = [𝑧𝑇1 (𝑘), 𝑧𝑇2 (𝑘), ..., 𝑧𝑇𝑁 (𝑘)]𝑇 . 𝐸 ∈ R𝑛𝑥×𝑛𝑥 is a known constant matrix.
Then, the consensus problem of system (1) is transformed into aH∞ control problem of the system (6).

Consequently, the objective of this paper is to design the distributed consensus controller such that the follow-
ing two conditions are satisfied:
(I) when 𝜔(𝑘) = 0, the condition (7) holds;

(II) the inequality E
{ ∞∑
𝑛=0

𝑘𝑛+1−1∑
𝑘=𝑘𝑛

[∥𝑧(𝑘)∥2 − �̂�2∥𝜔(𝑘)∥2]
}
< 0 holds for zero-initial condition and any nonzero

𝜔(𝑘) ∈ 𝐿2(0, +∞).
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3.1. Consensus and H∞ performance analysis
In the subsection, the leader-following consensus and H∞ performance analysis of systems (6) and (8) are
given. Sufficient conditions for mean square consensus are derived via stochastic Lyapunov function.

Theorem 1 Given scalar 𝑇 𝑝𝑚𝑎𝑥 ∈ N≥1, if there exist a scalar �̂� > 0 and a set of symmetric matrices 𝑃(𝜈)
𝑝 ∈

R𝑛𝑥×𝑛𝑥 ≻ 0, 𝑃(𝜈)
𝑞 ∈ R𝑛𝑥×𝑛𝑥 ≻ 0, 𝜈 ∈ N[0,𝑇 𝑝

𝑚𝑎𝑥 ] such that the following inequalities

Ψ =


−(𝐼𝑁 ⊗ 𝑃(𝜈−1)

𝑝 ) ∗ ∗ ∗
0 −�̂�2𝐼𝑛𝑁 ∗ ∗
Ξ Ψ23 P (𝜈)

𝑝 ∗
(𝐼𝑁 ⊗ 𝐸) 0 0 𝐼𝑛𝑥𝑁


≺ 0 (9)

Φ =

[
−(𝐼𝑁 ⊗ 𝑃(𝜈−1)

𝑝 ) ∗
Ξ P̃ (0)

𝑞

]
≺ 0 (10)

hold for any 𝑝, 𝑞 ∈ O, 𝜈 ∈ N[1,𝑇 𝑝
𝑚𝑎𝑥 ] , then the system (6) is leader-following consensus in mean square sense

and possesses aH∞ performance index �̂�, where
Ξ = [ �̄�𝑇𝑝 𝜎𝑝L̄𝑇

𝑝 𝜎0𝑝M̄𝑇
𝑝 ]𝑇 , Ψ23 = [(𝐼𝑁 ⊗ 𝐵𝐾𝑝)𝑇 0 0]𝑇 , �̄�𝑝 = [𝐼𝑁 ⊗ 𝐴 + (𝜇𝑝L𝑝 + 𝜇0𝑝𝑀𝑝) ⊗ 𝐵𝐾𝑝],

M̄𝑝 = M𝑝 ⊗ 𝐵𝐾𝑝 , L̄𝑝 = L𝑝 ⊗ 𝐵𝐾𝑝 , P (𝜈)
𝑝 = 𝑑𝑖𝑎𝑔{−(𝐼𝑁 ⊗ 𝑃−(𝜈)

𝑝 ),−(𝐼𝑁 ⊗ 𝑃−(𝜈)
𝑝 ),−(𝐼𝑁 ⊗ 𝑃−(𝜈)

𝑝 )},
P̃ (0)
𝑞 = 𝑑𝑖𝑎𝑔{−P̃,−P̃,−P̃}, P̃ =

∑𝑇
𝑝
𝑚𝑎𝑥

𝜈=1
∑
𝑞∈O

𝜋𝑝𝑞 (𝜈)
Ω𝑝

(𝐼𝑁 ⊗ 𝑃−(0)
𝑞 ), Ω𝑝 =

∑𝑇
𝑝
𝑚𝑎𝑥

𝜈=1
∑
𝑞∈O 𝜋𝑝𝑞 (𝜈), 𝐼𝑛𝑥𝑁 = 𝐼𝑛𝑥 ⊗ 𝐼𝑁 .

Proof Construct a stochastic Lyapunov function candidate as 𝑉 (𝛿(𝑘), 𝛾(𝑘), 𝜈(𝑘)) = 𝛿𝑇 (𝑘) (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘))
𝛾(𝑘) )𝛿(𝑘),

where 𝛾(𝑘) = 𝑝 ∈ O, 𝑘 ∈ [𝑘𝑛, 𝑘𝑛+1). 𝜈(𝑘) = 𝑘 − 𝑘𝑛 represents the running time of the current mode for
topology G𝑝 . Assume that 𝛾(𝑘𝑛) = 𝑝, 𝛾(𝑘𝑛+1) = 𝑞, 𝜔(𝑘) ≡ 0. Then, one can obtain along the solution of
systems (6) and (8)

E

{
𝑉 (𝛿(𝑘 + 1), 𝛾(𝑘 + 1), 𝜈(𝑘 + 1))

}
|𝛿(𝑘),𝛾(𝑘)=𝑝 −𝑉 (𝛿(𝑘), 𝛾(𝑘), 𝜈(𝑘))

=E

{
𝛿𝑇 (𝑘 + 1)(𝐼𝑁 ⊗ 𝑃(𝜈(𝑘+1))

𝑝 )𝛿(𝑘 + 1)
}
|𝛿(𝑘),𝛾(𝑘)=𝑝 − 𝛿𝑇 (𝑘)(𝐼𝑁 ⊗ 𝑃(𝜈(𝑘))

𝑝 )𝛿(𝑘)

=E

{
𝛿𝑇 (𝑘)Ã𝑇

𝑝 (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘+1))
𝑝 )Ã𝑝𝛿(𝑘)

}
− 𝛿𝑇 (𝑘) (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘))

𝑝 )𝛿(𝑘)

=𝛿𝑇 (𝑘)
[
�̄�𝑇𝑝 (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘+1))

𝑝 ) �̄�𝑝 + 𝜎2
𝑝 L̄𝑇

𝑝 (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘+1))
𝑝 )L̄𝑝 + 𝜎2

0𝑝M̄𝑇
𝑝 (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘+1))

𝑝 )

× M̄𝑝 − (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘))
𝑝 )

]
𝛿(𝑘)

(11)

where Ã𝑝 = 𝐼𝑁 ⊗ 𝐴+ (𝜉𝑝 (𝑘)L𝑝 +𝜉0𝑝 (𝑘)M𝑝) ⊗𝐵𝐾𝑝 , Ã𝑝 ∈ R𝑛𝑥𝑁×𝑛𝑥𝑁 . It can be found from the above equation
that Δ𝑉 (𝛿(𝑘), 𝛾(𝑘), 𝜈(𝑘)) < 0 if and only if Σ ∈ R𝑛𝑥𝑁×𝑛𝑥𝑁 < 0, Σ = �̄�𝑇𝑝 (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘+1))

𝑝 ) �̄�𝑝 + 𝜎2
𝑝 L̄𝑇

𝑝 (𝐼𝑁 ⊗
𝑃(𝜈(𝑘+1))
𝑝 )L̄𝑝 + 𝜎2

0𝑝M̄𝑇
𝑝 (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘+1))

𝑝 )M̄𝑝 − (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘))
𝑝 ). Furthermore, it can be proved that the following

inequality holds:

𝑉 (𝛿(𝑘 + 1), 𝛾(𝑘 + 1), 𝜈(𝑘 + 1)) −𝑉 (𝛿(𝑘), 𝛾(𝑘), 𝜈(𝑘)) < 0 (12)

3. MAIN RESULTS
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On the other hand, the stability of the system during mode switching needs to be considered. It can be derived
along the trajectory of systems (6) and (8) that

E

{
𝑉 (𝛿(𝑘𝑛+1), 𝛾(𝑘𝑛+1), 𝜈(𝑘𝑛+1))

}
−𝑉 (𝛿(𝑘𝑛+1 − 1), 𝛾(𝑘𝑛+1 − 1), 𝜈(𝑘𝑛+1 − 1))

=E

{
𝛿𝑇 (𝑘𝑛+1 − 1)Ã𝑇

𝑝 (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘𝑛+1))
𝑞 )Ã𝑝𝛿(𝑘𝑛+1 − 1)

}
− 𝛿𝑇 (𝑘𝑛+1 − 1)(𝐼𝑁 ⊗ 𝑃(𝜈(𝑘𝑛+1−1))

𝑝 )𝛿(𝑘𝑛+1 − 1)

=E

{
𝛿𝑇 (𝑘𝑛+1 − 1)Σ𝑇

𝑝
𝑚𝑎𝑥

𝑆𝑛+1=1Σ𝑞∈O
𝜋𝑝𝑞 (𝑆𝑛+1)

Ω𝑝
Ã𝑇
𝑝 (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘𝑛+1))

𝑞 )Ã𝑝𝛿(𝑘𝑛+1 − 1)
}

− 𝛿𝑇 (𝑘𝑛+1 − 1)(𝐼𝑁 ⊗ 𝑃(𝜈(𝑘𝑛+1−1))
𝑝 )𝛿(𝑘𝑛+1 − 1)

=𝛿𝑇 (𝑘𝑛+1 − 1)
[
Σ𝑇

𝑝
𝑚𝑎𝑥

𝑆𝑛+1=1Σ𝑞∈O
𝜋𝑝𝑞 (𝑆𝑛+1)

Ω𝑝

(
�̄�𝑇𝑝P �̄�𝑝 + 𝜎2

𝑝 L̄𝑇
𝑝PL̄𝑝 + 𝜎2

0𝑝M̄𝑇
𝑝PM̄𝑝

)
− (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘𝑛+1−1))

𝑝 )
]
𝛿(𝑘𝑛+1 − 1)

(13)

with P = (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘𝑛+1))
𝑞 ). By means of the condition (10) and Schur complement lemma, one can get that

E

{
𝑉 (𝛿(𝑘𝑛+1), 𝛾(𝑘𝑛+1), 𝜈(𝑘𝑛+1))

}
−𝑉 (𝛿(𝑘𝑛+1 − 1), 𝛾(𝑘𝑛+1 − 1), 𝜈(𝑘𝑛+1 − 1)) < 0.

Together with the condition (12), there exists a positive constant 𝛽 such that gives

E

{
𝑉 (𝛿(𝑘𝑛+1), 𝛾(𝑘𝑛+1), 𝜈(𝑘𝑛+1)) −𝑉 (𝛿(𝑘𝑛), 𝛾(𝑘𝑛), 𝜈(𝑘𝑛))

}
< −𝛽𝛿𝑇 (𝑘𝑛)𝛿(𝑘𝑛) (14)

Then, it follows that

E
{
𝛿𝑇 (𝑘𝑛)𝛿(𝑘𝑛)

}
< − 1

𝛽
E

{
𝑉 (𝛿(𝑘𝑛+1), 𝛾(𝑘𝑛+1), 𝜈(𝑘𝑛+1)) −𝑉 (𝛿(𝑘𝑛), 𝛾(𝑘𝑛), 𝜈(𝑘𝑛))

}
Summing both sides of the above equation from 0 to 𝑙 yields

E
{
Σ𝑙𝑛=0𝛿

𝑇 (𝑘𝑛)𝛿(𝑘𝑛)
}
<

1
𝛽

[
𝑉 (𝛿(𝑘0), 𝛾(𝑘0), 𝜈(𝑘0)) − E

{
𝑉 (𝛿(𝑘 𝑙+1), 𝛾(𝑘 𝑙+1), 𝜈(𝑘 𝑙+1))

}]
(15)

Let 𝑙 → ∞, then lim
𝑙→∞
E
{
Σ𝑙𝑛=0𝛿

𝑇 (𝑘𝑛)𝛿(𝑘𝑛)
}
< 1

𝛽𝑉 (𝛿(𝑘0), 𝛾(𝑘0), 𝜈(𝑘0)). Then, we have lim
𝑛→∞
E{𝛿𝑇 (𝑘𝑛)𝛿(𝑘𝑛)} =

lim
𝑘→∞
E{𝛿𝑇 ) (𝑘𝛿(𝑘)} = 0. Furthermore, it can be shown that lim

𝑘→∞
E
{
∥𝛿𝑖 (𝑘)∥2} = 0. By Definition 3 and Defini-

tion 4, systems (6) and (8) with 𝜔(𝑘) ≡ 0 is leader-following mean square consensus.

Next, theH∞ consensus performance of the underlying system is discussed. Then, for 𝜔(𝑘) ≠ 0, we have

E

{
𝑉 (𝛿(𝑘 + 1), 𝛾(𝑘 + 1), 𝜈(𝑘 + 1))

}
|𝛿(𝑘),𝛾(𝑘)=𝑝 −𝑉 (𝛿(𝑘), 𝛾(𝑘), 𝜈(𝑘)) + 𝑧𝑇 (𝑘)𝑧(𝑘) − �̂�2𝜔𝑇 (𝑘)𝜔(𝑘)

=E

{[
𝛿𝑇 (𝑘)Ã𝑇

𝑝 + 𝜔𝑇 (𝑘) [𝐼𝑁 ⊗ (𝐵𝐾𝑝)]𝑇
]
(𝐼𝑁 ⊗ 𝑃(𝜈(𝑘+1))

𝑝 )
[
Ã𝑝𝛿(𝑘) + [𝐼𝑁 ⊗ (𝐵𝐾𝑝)]𝜔(𝑘)

]}
|𝛿(𝑘),𝛾(𝑘)=𝑝

− 𝛿𝑇 (𝑘) (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘))
𝑝 )𝛿(𝑘) + 𝛿𝑇 (𝑘)(𝐼𝑁 ⊗ 𝐸)𝑇 (𝐼𝑁 ⊗ 𝐸)𝛿(𝑘) − �̂�2𝜔𝑇 (𝑘)𝜔(𝑘)

(16)

Denote 𝜂(𝑘) = [𝛿𝑇 (𝑘) 𝜔𝑇 (𝑘)]𝑇 , then the equation (16) can be transformed into

E{Δ𝑉 (𝛿(𝑘), 𝛾(𝑘), 𝜈(𝑘))} + 𝑧𝑇 (𝑘)𝑧(𝑘) − �̂�2𝜔𝑇 (𝑘)𝜔(𝑘)

=E

{
𝑉 (𝛿(𝑘 + 1), 𝛾(𝑘 + 1), 𝜈(𝑘 + 1))

}
|𝛿(𝑘),𝛾(𝑘)=𝑝 −𝑉 (𝛿(𝑘), 𝛾(𝑘), 𝜈(𝑘)) + 𝑧𝑇 (𝑘)𝑧(𝑘) − �̂�2𝜔𝑇 (𝑘)𝜔(𝑘)

=𝜂𝑇 (𝑘)Θ𝜂(𝑘)

(17)
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where Θ =

[
Σ + (𝐼𝑁 ⊗ 𝐸)𝑇 (𝐼𝑁 ⊗ 𝐸) ∗

(𝐼𝑁 ⊗ (𝐵𝐾𝑝))𝑇 (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘+1))
𝑝 ) �̄�𝑝 [𝐼𝑁 ⊗ (𝐵𝐾𝑝)]𝑇 (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘))) [𝐼𝑁 ⊗ (𝐵𝐾𝑝)] − �̂�2𝐼𝑛𝑁

]
According to Schur complement lemma and the condition (9), it gives that Θ ∈ R2𝑛𝑥𝑁×2𝑛𝑥𝑁 < 0. This implies
that

E{Δ𝑉 (𝛿(𝑘), 𝛾(𝑘), 𝜈(𝑘))} + 𝑧𝑇 (𝑘)𝑧(𝑘) − �̂�2𝜔𝑇 (𝑘)𝜔(𝑘) < 0

Further, we can obtain

E

{
Σ∞
𝑛=0Σ

𝑘𝑛+1−1
𝑘=𝑘𝑛

[∥𝑧(𝑘)∥2 − �̂�2∥𝜔(𝑘)∥2]
}
< −(E

{
lim
𝑘→∞

𝑉 (𝛿(𝑘), 𝛾(𝑘), 𝜈(𝑘))
}
−𝑉 (𝛿(0), 𝛾(0), 𝜈(0))) < 0

under the zero initial conditions. Thus, theH∞ performance condition (II) holds. This proof is completed.

In Theorem 1, the leader-following consensus and H∞ performance of the system (6) with channel fading
is analyzed, in which data transmission between agents takes into account not only channel fading but also
channel interference. Assuming that the channel interference 𝜛𝑝

𝑖 𝑗 (𝑘) = 0, 𝜛𝑝
𝑖0(𝑘) = 0, that is 𝜔(𝑘) = 0. Then,

the system (6) can be reduced to

𝛿(𝑘 + 1) = [𝐼𝑁 ⊗ 𝐴 + (𝜉𝑝 (𝑘)L𝑝 + 𝜉0𝑝 (𝑘)M𝑝) ⊗ 𝐵𝐾𝑝]𝛿(𝑘) (18)

In this case, the following corollary gives the leader-following mean square consensus analysis of the system
(18) under no-channel interference fading model.

Corollary 1 Given scalar 𝑇 𝑝𝑚𝑎𝑥 ∈ N≥1, if there exist a sets of symmetric matrices 𝑃(𝜈)
𝑝 ∈ R𝑛𝑥×𝑛𝑥 ≻ 0, 𝑃(𝜈)

𝑞 ∈
R𝑛𝑥×𝑛𝑥 ≻ 0, 𝜈 ∈ N[0,𝑇 𝑝

𝑚𝑎𝑥 ] such that the following inequalities[
−(𝐼𝑁 ⊗ 𝑃(𝜈−1)

𝑝 ) ∗
Ξ P (𝜈)

𝑝

]
≺ 0

[
−(𝐼𝑁 ⊗ 𝑃(𝜈−1)

𝑝 ) ∗
Ξ P̃ (0)

𝑞

]
≺ 0

hold for 𝑝, 𝑞 ∈ O, 𝜈 ∈ N[1,𝑇 𝑝
𝑚𝑎𝑥 ] , 𝜏 ∈ N[1,𝑇 𝑝

𝑚𝑎𝑥 ] , then the system (18) is leader-following mean square consensus,
where Ξ, P (𝜈)

𝑝 , and P̃ (0)
𝑞 have been defined in Theorem 1.

The proof of Corollary 1 is similar to that of Theorem 1, so it is omitted.

3.2. Consensus controller gain design
Although Theorem 1 addresses a family of leader-following consensus conditions, these conditions cannot
be directly utilized to solve controller gains 𝐾𝑝 . Aiming at solving the leader-following consensus control
problem of systems (6) and (8) under switching topologies, sufficient conditions on the existence of the desired
controller gains are presented in the following theorem.

Theorem 2 Given a scalar 𝑇 𝑝𝑚𝑎𝑥 ∈ N≥1, if there exist a scalar �̂� > 0 and sets of symmetric matrices 𝑃(𝜈)
𝑝 ∈

R𝑛𝑥×𝑛𝑥 ≻ 0, 𝑃(𝜈)
𝑞 ∈ R𝑛𝑥×𝑛𝑥 ≻ 0, and matrices 𝑍𝑝 ∈ R𝑛𝑥×𝑛𝑥 , 𝑌𝑝 ∈ R𝑛𝑥×𝑛𝑥 , 𝑝, 𝑞 ∈ O, 𝜈 ∈ N[0,𝑇 𝑝

𝑚𝑎𝑥 ] such that the
following inequalities

Ψ̄ =


−(𝐼𝑁 ⊗ 𝑃(𝜈−1)

𝑝 ) ∗ ∗ ∗
0 −�̂�2𝐼𝑛𝑥𝑁 ∗ ∗
Ξ̄ Ψ̄23 −P−(𝜈)

𝑝 −Z𝑝 −Z𝑇
𝑝 ∗

(𝐼𝑁 ⊗ 𝐸) 0 0 −𝐼𝑛𝑥𝑁


≺ 0 (19)
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Φ̄ =

[
−(𝐼𝑁 ⊗ 𝑃(𝜈−1)

𝑝 ) ∗
Ξ̄ Υ(0)

𝑞

]
≺ 0 (20)

hold for any 𝑝, 𝑞 ∈ O, 𝜈 ∈ N[1,𝑇 𝑝
𝑚𝑎𝑥 ] , where

Ξ̄ = [ �̃�𝑇𝑝 𝜎𝑝L̃𝑇
𝑝 𝜎0𝑝M̃𝑇

𝑝 ]𝑇 , Ψ̄23 = [(𝐼𝑁 ⊗ 𝑌𝑃) 0 0]𝑇 , �̃�𝑝 = 𝐼𝑁 ⊗ 𝐴 + (𝜇𝑝L𝑝 + 𝜇0𝑝M𝑝) ⊗ 𝑌𝑝 ,
L̃𝑝 = L𝑝 ⊗ 𝑌𝑝 , M̃𝑝 = M𝑝 ⊗ 𝑌𝑝 ,Z𝑝 = 𝑑𝑖𝑎𝑔{𝐼𝑁 ⊗ 𝑍𝑝 , 𝐼𝑁 ⊗ 𝑍𝑝 , 𝐼𝑁 ⊗ 𝑍𝑝} ∈ R3𝑛𝑥𝑁×3𝑛𝑥𝑁 , Υ(0)

𝑞 = 𝑑𝑖𝑎𝑔{Υ,Υ,Υ},
Υ = Σ𝑇

𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O
𝜋𝑝𝑞 (𝜈)
Ω𝑝

(𝐼𝑁 ⊗ 𝑃(0)
𝑞 − 𝐼𝑁 ⊗ 𝑍𝑝 − 𝐼𝑁 ⊗ 𝑍𝑇𝑝 ),

then the system (6) is leader-following consensus in mean square sense and possess aH∞ performance index
�̂�. Moreover, the controller gains are given by 𝐾𝑝 = (𝐵𝑇𝐵)−1𝐵𝑇 (𝑍𝑇𝑝 )−1𝑌𝑝 .
Proof Performing congruence transformations 𝑑𝑖𝑎𝑔{𝐼𝑛𝑥𝑁 , 𝐼𝑛𝑥𝑁 ,Z𝑇

𝑝 , 𝐼𝑛𝑥𝑁 } to (9), 𝑑𝑖𝑎𝑔{𝐼𝑛𝑁 ,Z𝑇
𝑝 } to (10), one

can obtain 
−(𝐼𝑁 ⊗ 𝑃(𝑣−1)

𝑝 ) ∗ ∗ ∗
0 −�̂�2𝐼𝑛𝑥𝑁 ∗ ∗

Z𝑇
𝑝Ξ Z𝑇

𝑝Ψ23 Z𝑇
𝑝P

(𝑣)
𝑝 Z𝑝 ∗

𝐼𝑁 ⊗ 𝐸 0 0 −𝐼𝑛𝑥𝑁


≺ 0 (21)

[
−(𝐼𝑁 ⊗ 𝑃(𝜈−1)

𝑝 ) ∗
Z𝑝Ξ Z𝑇

𝑝 P̃
(0)
𝑞 Z𝑝

]
≺ 0 (22)

According to the literature [40], we can obtain that for the positive definite matrix𝑈 ∈ R𝑛×𝑛 and the real matrix
𝑋 ∈ R𝑛×𝑛, there must be (𝑈−𝑋)𝑇𝑈−1(𝑈−𝑋) ⪰ 0. Performing cholesky decomposition on the matrix𝑈, there
must be a lower triangular matrix 𝐿 ∈ R𝑛×𝑛 such that 𝑈 = 𝐿𝐿𝑇 . Further, we can get (𝑈 − 𝑋)𝑇𝑈−1(𝑈 − 𝑋) =
𝑄𝑇𝑄 ⪰ 0, where 𝑄 = 𝐿𝑇 − 𝐿−1𝑋 . When the matrix 𝑄 is full rank, (𝑈 − 𝑋)𝑇𝑈−1(𝑈 − 𝑋) ≻ 0 holds. Based on
this, the inequalities

𝑇 (𝐼𝑁 ⊗ 𝑃−(𝜈)
𝑝 ) [(𝐼𝑁 ⊗ 𝑃(𝜈)

𝑝 ) − (𝐼𝑁 ⊗ 𝑍𝑝)] ⪰ 0

[(𝐼𝑁 ⊗ 𝑃(0)
𝑞 ) − (𝐼𝑁 ⊗ 𝑍𝑝)]𝑇 (𝐼𝑁 ⊗ 𝑃−(0)

𝑞 ) [(𝐼𝑁 ⊗ 𝑃(0)
𝑞 ) − (𝐼𝑁 ⊗ 𝑍𝑝)] ⪰ 0

can ensure
−(𝐼𝑁 ⊗ 𝑍𝑇𝑝𝑃

−(𝜈)
𝑝 𝑍𝑝) ⪯ (𝐼𝑁 ⊗ 𝑃(𝜈)

𝑝 ) − (𝐼𝑁 ⊗ 𝑍𝑝) − (𝐼𝑁 ⊗ 𝑍𝑇𝑝 ),

−(𝐼𝑁 ⊗ 𝑍𝑇𝑝𝑃
−(0)
𝑞 𝑍𝑝) ⪯ (𝐼𝑁 ⊗ 𝑃(0)

𝑞 ) − (𝐼𝑁 ⊗ 𝑍𝑝) − (𝐼𝑁 ⊗ 𝑍𝑇𝑝 )
(23)

for any 𝑝, 𝑞 ∈ O, 𝜈 ∈ N[1,𝑇 𝑝
𝑚𝑎𝑥 ] . Then, it can be shown that the inequalities (21) and (22) can ensure that the

conditions (19) and (20) hold. Furthermore, it implies that the inequalities (9) and (10) are true. ByTheorem 1,
we can get that systems (6) and (8) is leader-following consensus in mean square sense with aH∞ performance
index �̂� under the controller (4) and the controller gains 𝐾𝑝 = (𝐵𝑇𝐵)−1𝐵𝑇 (𝑍𝑇𝑝 )−1𝑌𝑝 . This proof is completed.

Supposing that the channel inferences 𝜛𝑝
𝑖 𝑗 (𝑘) and 𝜛

𝑝
0𝑖 (𝑘) in (4) are ignored, that is, 𝜛𝑝

𝑖 𝑗 (𝑘) = 0, 𝜛𝑝
𝑖0(𝑘) = 0.

Then, we have 𝜔(𝑘) = 0 in (6). Consequently, the leader-following consensus control of system (18) under
semi-Markov switching topology is realized in the following corollary.

Corollary 2 Given a scalar 𝑇 𝑝𝑚𝑎𝑥 ∈ N≥1, if there exist a sets of symmetric matrices 𝑃(𝜈)
𝑝 ∈ R𝑛𝑥×𝑛𝑥 ≻ 0, 𝑃(𝜈)

𝑞 ∈
R𝑛𝑥×𝑛𝑥 ≻ 0, and matrices 𝑍𝑝 ∈ R𝑛𝑥×𝑛𝑥 , 𝑌𝑝 ∈ R𝑛𝑥×𝑛𝑥 , 𝑝, 𝑞 ∈ O, 𝜈 ∈ N[0,𝑇 𝑝

𝑚𝑎𝑥 ] such that the inequalities hold:[
−(𝐼𝑁 ⊗ 𝑃(𝜈−1)

𝑝 ) ∗
Ξ̄ −P−(𝜈)

𝑝 −Z𝑝 −Z𝑇
𝑝

]
≺ 0

[
−(𝐼𝑁 ⊗ 𝑃(𝜈−1)

𝑝 ) ∗
Ξ̄ Υ(0)

𝑞

]
≺ 0
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for any 𝑝, 𝑞 ∈ O, 𝜈 ∈ N[1,𝑇 𝑝
𝑚𝑎𝑥 ] , then the system (18) is leader-following consensus in mean square sense under

the controller gains 𝐾𝑝 = (𝐵𝑇𝐵)−1𝐵𝑇 (𝑍𝑇𝑝 )−1𝑌𝑝 , where P (𝜈)
𝑝 , Ξ̄,Z𝑝 , and Υ(0)

𝑞 are defined in Theorem 1 and 2.
By employing the same approach as Theorem 2, the Corollary 2 can be proved directly, omitting the proof
process here.

Remark 3Theorem 2 realizes the consistent controller design of systems (6) and (8) under the channel fading
model (3). A set of sufficient conditions to ensure the consensus of systems and the existence of controller
gains is established based on the linear matrix inequality form. To solve the controller gain matrix 𝐾𝑝𝑚 , some
unknown variables are introduced into the inequality conditions ofTheorem 2. The computational complexity
of solving the inequality conditions in Theorem 2 can be analyzed according to the total number of unknown
variables. It can be obtained by calculation that the total number of unknown variables inTheorem 2 is 𝑣𝑎𝑟𝑡 =
Σ𝑂𝑝=1 [(𝑇

𝑝
𝑚𝑎𝑥+1)𝑛2

𝑥]+Σ𝑂𝑝=1 [𝑁𝑛
2
𝑥+2(𝑁𝑛𝑥)2]. It can be found that with the increase of the number𝑂 of topological

modes, the upper bound 𝑇 𝑝𝑚𝑎𝑥 of the sojourn time of mode 𝑝, and the number of agents 𝑁 , the computational
complexity of solving Theorem 2 also increases accordingly. Assuming that the upper bound 𝑇 𝑝𝑚𝑎𝑥 , 𝑝 ∈ O
of the sojourn time is the same in each topological mode, the total number of unknown variables is 𝑣𝑎𝑟𝑡 =
𝑂 (𝑇 𝑝𝑚𝑎𝑥+1)𝑛2

𝑥+𝑂 [𝑁𝑛2
𝑥+2(𝑁𝑛𝑥)2]. Similarly, the computational complexity of solving the inequality conditions

in Theorem 3 can also be analyzed.

3.3. Extension results
In this subsection, it is assumed that the information of the semi-Markov kernel Π(𝜏) is not completely acces-
sible. By using the similar method in [40], the index set O of the semi-Markov chain 𝛾(𝑘) can be partitioned
into the following form:
O𝑎𝑝 = {𝑞 ∈ O|if 𝜋𝑝𝑞 (𝜏) is accessible },
O𝑏𝑝 = {𝑞 ∈ O|if 𝜋𝑝𝑞 (𝜏) is inaccessible },
O𝑐𝑝 = {𝑞 ∈ O|if 𝜔𝑝𝑞 (𝜏) is accessible, 𝜃𝑝𝑞 is inaccessible },
O𝑑𝑝 = {𝑞 ∈ O|if 𝜔𝑝𝑞 (𝜏) is inaccessible, 𝜃𝑝𝑞 is accessible },
O𝑒𝑝 = {𝑞 ∈ O|if 𝜔𝑝𝑞 (𝜏) is inaccessible, 𝜃𝑝𝑞 is inaccessible },
where O = O𝑎𝑝 ∪ O𝑏𝑝 , O𝑏𝑝 = O𝑐𝑝 ∪ O𝑑𝑝 ∪ O𝑒𝑝 , O𝑎𝑝 ∩ O𝑏𝑝 = ∅, O𝑐𝑝 ∩ O𝑑𝑝 = ∅.

In this paper, only the case of O = O𝑎𝑝 ∪O𝑒𝑝 for incompletely accessible semi-Markov kernel is considered. In
other words, the transition probability 𝜃𝑝𝑞 of EMC and the probability density function𝜔𝑝𝑞 (𝜏) of sojourn-time
are partially accessible. Before presenting the results of this subsection, we make the following assumptions,
which are crucial for subsequent derivations.

Assumption 3 Given a positive scalar 𝜌, the selection of the upper bounds 𝑇 𝑝𝑚𝑎𝑥 for sojourn time can be guar-
anteed by the following prerequisite:

Σ𝑇
𝑝
𝑚𝑎𝑥

𝜏=1 𝜔𝑝𝑞 (𝜏) ≥ 𝜌, 0 < 𝜌 < 1,∀𝑝 ∈ O,∀𝑞 ∈ O𝑑𝑝 ∪ O𝑒𝑝 (24)

Then, the followingTheorem proposes the leader-following mean-square consensus conditions for systems (6)
and (8) under incompletely accessible semi-Markov kernel of switching topologies.

Theorem 3 Given a scalar 𝑇 𝑝𝑚𝑎𝑥 ∈ N≥1, if there exist a scalar �̂� > 0 and sets of symmetric matrices �̃�(𝜈)
𝑝 ∈

R𝑛𝑥×𝑛𝑥 ≻ 0, �̃�(𝜈)
𝑞 ∈ R𝑛𝑥×𝑛𝑥 ≻ 0, and matrices �̃�𝑝 ∈ R𝑛𝑥×𝑛𝑥 , 𝑌𝑝 ∈ R𝑛𝑥×𝑛𝑥 , 𝑝, 𝑞 ∈ O, 𝜈 ∈ N[0,𝑇 𝑝

𝑚𝑎𝑥 ] such that the
following inequalities

Ψ̃ =


−(𝐼𝑁 ⊗ �̃�(𝜈−1)

𝑝 ) ∗ ∗ ∗
0 −�̂�2𝐼𝑛𝑥𝑁 ∗ ∗
Ξ̌ Ψ̃23 −P−(𝜈)

𝑝 − Z̃𝑝 − Z̃𝑇
𝑝 ∗

(𝐼𝑁 ⊗ 𝐸) 0 0 −𝐼𝑛𝑥𝑁


≺ 0 (25)
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Φ̃ =

[
−(𝐼𝑁 ⊗ �̃�(𝜈−1)

𝑝 ) ∗
Ξ̃ Υ̃(0)

𝑞

]
≺ 0 (26)

hold for any 𝑝 ∈ O𝑎𝑝 , 𝑞 ∈ O𝑒𝑝 , 𝜈 ∈ N[1,𝑇 𝑝
𝑚𝑎𝑥 ] , where

Ξ̌ = [ �̌�𝑇𝑝 𝜎𝑝Ľ𝑇
𝑝 𝜎0𝑝M̌𝑇

𝑝 ]𝑇 , Ψ̃23 = [(𝐼𝑁 ⊗ 𝑌𝑃) 0 0]𝑇 , �̌�𝑝 = 𝐼𝑁 ⊗ 𝐴 + (𝜇𝑝L𝑝 + 𝜇0𝑝M𝑝) ⊗ 𝑌𝑝 ,
Ľ𝑝 = L𝑝 ⊗ 𝑌𝑝 , M̌𝑝 = M𝑝 ⊗ 𝑌𝑝 , Z̃𝑝 = 𝑑𝑖𝑎𝑔{𝐼𝑁 ⊗ �̃�𝑝 , 𝐼𝑁 ⊗ �̃�𝑝 , 𝐼𝑁 ⊗ �̃�𝑝} ∈ R3𝑛𝑥𝑁×3𝑛𝑥𝑁 ,
Ξ̃ = [ �̌�𝑇𝑝 𝜎𝑝Ľ𝑇

𝑝 𝜎0𝑝M̌𝑇
𝑝 �̌�𝑇𝑝 𝜎𝑝Ľ𝑇

𝑝 𝜎0𝑝M̌𝑇
𝑝 ]𝑇 , Υ̃

(0)
𝑞 = 𝑑𝑖𝑎𝑔{Υ̃1, Υ̃1, Υ̃1, Υ̃2, Υ̃2, Υ̃2},

Υ̃1 = Σ𝑇
𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O𝑎𝑝

𝜋𝑝𝑞 (𝜈)
�̄�𝑝

(𝐼𝑁 ⊗ �̃�(0)
𝑞 − 𝐼𝑁 ⊗ �̃�𝑝 − 𝐼𝑁 ⊗ �̃�𝑇𝑝 ), Υ̃2 = (1 − 𝜂𝑝)(𝐼𝑁 ⊗ 𝑃(0)

𝑞 − 𝐼𝑁 ⊗ �̃�𝑝 − 𝐼𝑁 ⊗ �̃�𝑇𝑝 ),
𝜂𝑝 = Σ𝑇

𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O𝑎𝑝𝜋𝑝𝑞 (𝜈), �̄�𝑝 = 𝜂𝑝 + (1 − 𝜃𝑝)𝜌, 𝜃𝑝 = Σ𝑝∈O𝑎𝑝𝜃𝑝𝑞 ,

then systems (6) and (8) is leader-followingmean square consensus under incompletely accessible semi-Markov
kernel of switching topologies and possess aH∞ performance index �̂�. Moreover, the controller gains are given
by 𝐾𝑝 = (𝐵𝑇𝐵)−1𝐵𝑇 (�̃�𝑇𝑝 )−1𝑌𝑝 .

Proof Since the stability proof of the system at non-switching time of topologies is independent of the semi-
Markov kernel, the corresponding proof is easy to obtain by Theorem 1. For incompletely accessible semi-
Markov kernel, only the stability of the system at the switching time is given in this theorem.

Similar to inequality (13), we have

E

{
𝑉 (𝛿(𝑘𝑛+1), 𝛾(𝑘𝑛+1), 𝜈(𝑘𝑛+1))

}
−𝑉 (𝛿(𝑘𝑛+1 − 1), 𝛾(𝑘𝑛+1 − 1), 𝜈(𝑘𝑛+1 − 1))

=E

{
𝛿𝑇 (𝑘𝑛+1 − 1)Ã𝑇

𝑝 (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘𝑛+1))
𝑞 )Ã𝑝𝛿(𝑘𝑛+1 − 1)

}
− 𝛿𝑇 (𝑘𝑛+1 − 1)(𝐼𝑁 ⊗ 𝑃(𝜈(𝑘𝑛+1−1))

𝑝 )𝛿(𝑘𝑛+1 − 1)

=E

{
𝛿𝑇 (𝑘𝑛+1 − 1)Σ𝑇

𝑝
𝑚𝑎𝑥

𝑆𝑛+1=1Σ𝑞∈O
𝜋𝑝𝑞 (𝑆𝑛+1)

Ω𝑝
Ã𝑇
𝑝 (𝐼𝑁 ⊗ 𝑃(𝜈(𝑘𝑛+1))

𝑞 )Ã𝑝𝛿(𝑘𝑛+1 − 1)
}

− 𝛿𝑇 (𝑘𝑛+1 − 1)(𝐼𝑁 ⊗ 𝑃(𝜈(𝑘𝑛+1−1))
𝑝 )𝛿(𝑘𝑛+1 − 1)

=E

{
𝛿𝑇 (𝑘𝑛+1 − 1)Σ𝑇

𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O
𝜋𝑝𝑞 (𝜈)
Ω𝑝

Ã𝑇
𝑝 (𝐼𝑁 ⊗ 𝑃(0)

𝑞 )Ã𝑝𝛿(𝑘𝑛+1 − 1)
}

− 𝛿𝑇 (𝑘𝑛+1 − 1)(𝐼𝑁 ⊗ 𝑃(𝜈−1)
𝑝 )𝛿(𝑘𝑛+1 − 1)

(27)

for 𝛾(𝑘𝑛+1) = 𝑞, 𝜈(𝑘𝑛+1) = 0, 𝛾(𝑘𝑛+1 − 1) = 𝑝, 𝜈(𝑘𝑛+1 − 1) = 𝜈 − 1 = 𝑆𝑛+1 − 1. For Π(𝜈), 𝑝 ∈ O𝑎𝑝 , 𝑞 ∈ O𝑒𝑝 ,
the equation (27) can be written as

E

{
𝑉 (𝛿(𝑘𝑛+1), 𝛾(𝑘𝑛+1), 𝜈(𝑘𝑛+1))

}
−𝑉 (𝛿(𝑘𝑛+1 − 1), 𝛾(𝑘𝑛+1 − 1), 𝜈(𝑘𝑛+1 − 1))

=𝛿𝑇 (𝑘𝑛+1 − 1)
[
Σ𝑇

𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O𝑎𝑝

𝜋𝑝𝑞 (𝜈)
Ω𝑝

(
�̄�𝑇𝑝 P̄ �̄�𝑝 + 𝜎2

𝑝 L̄𝑇
𝑝 P̄L̄𝑝 + 𝜎2

0𝑝M̄𝑇
𝑝 P̄M̄𝑝

)
+ Σ𝑇

𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O𝑒𝑝

𝜋𝑝𝑞 (𝜈)
Ω𝑝

(
�̄�𝑇𝑝 P̄ �̄�𝑝 + 𝜎2

𝑝 L̄𝑇
𝑝 P̄L̄𝑝 + 𝜎2

0𝑝M̄𝑇
𝑝 P̄M̄𝑝

) ]
𝛿(𝑘𝑛+1 − 1)

− 𝛿𝑇 (𝑘𝑛+1 − 1)(𝐼𝑁 ⊗ 𝑃(𝜈−1)
𝑝 )𝛿(𝑘𝑛+1 − 1)

=𝛿𝑇 (𝑘𝑛+1 − 1)
[
Σ𝑇

𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O𝑎𝑝

𝜋𝑝𝑞 (𝜈)
Ω𝑝

(
�̄�𝑇𝑝 P̄ �̄�𝑝 + 𝜎2

𝑝 L̄𝑇
𝑝 P̄L̄𝑝 + 𝜎2

0𝑝M̄𝑇
𝑝 P̄M̄𝑝

)
+ Σ𝑇

𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O𝑒𝑝

𝜋𝑝𝑞 (𝜈)
Ω𝑝 − 𝜂𝑝

×
Ω𝑝 − 𝜂𝑝

Ω𝑝

(
�̄�𝑇𝑝 P̄ �̄�𝑝 + 𝜎2

𝑝 L̄𝑇
𝑝 P̄L̄𝑝 + 𝜎2

0𝑝M̄𝑇
𝑝 P̄M̄𝑝

) ]
𝛿(𝑘𝑛+1 − 1)

− 𝛿𝑇 (𝑘𝑛+1 − 1)(𝐼𝑁 ⊗ 𝑃(𝜈−1)
𝑝 )𝛿(𝑘𝑛+1 − 1)

(28)

withP̄ = 𝐼𝑁 ⊗ 𝑃(0)
𝑞 ∈ R𝑛𝑥𝑁×𝑛𝑥𝑁 . Noting the fact Σ𝑇

𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O𝑒𝑝𝜋𝑝𝑞 (𝜈) = Ω𝑝 − 𝜂𝑝 , 𝑝 ∈ O, it can be found that
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Σ𝑇
𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O𝑒𝑝

𝜋𝑝𝑞 (𝜈)
Ω𝑝−𝜂𝑝 = 1, 0 ≤ 𝜋𝑝𝑞 (𝜈)

Ω𝑝−𝜂𝑝 ≤ 1, 0 ≤ �̄�𝑝 < Ω𝑝 ≤ 1. Further, it can be derived that

E

{
𝑉 (𝛿(𝑘𝑛+1), 𝛾(𝑘𝑛+1), 𝜈(𝑘𝑛+1))

}
−𝑉 (𝛿(𝑘𝑛+1 − 1), 𝛾(𝑘𝑛+1 − 1), 𝜈(𝑘𝑛+1 − 1))

≤𝛿𝑇 (𝑘𝑛+1 − 1)Σ𝑇
𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O𝑒𝑝

𝜋𝑝𝑞 (𝜈)
Ω𝑝 − 𝜂𝑝

[
Σ𝑇

𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O𝑎𝑝

𝜋𝑝𝑞 (𝜈)
�̄�𝑝

(
�̄�𝑇𝑝 P̄ �̄�𝑝 + 𝜎2

𝑝 L̄𝑇
𝑝 P̄L̄𝑝 + 𝜎2

0𝑝M̄𝑇
𝑝 P̄M̄𝑝

)
+ (1 − 𝜂𝑝)

(
�̄�𝑇𝑝 P̄ �̄�𝑝 + 𝜎2

𝑝 L̄𝑇
𝑝 P̄L̄𝑝 + 𝜎2

0𝑝M̄𝑇
𝑝 P̄M̄𝑝

)
− (𝐼𝑁 ⊗ 𝑃(𝜈−1)

𝑝 )
]
𝛿(𝑘𝑛+1 − 1)

(29)

Then, E
{
𝑉 (𝛿(𝑘𝑛+1), 𝛾(𝑘𝑛+1), 𝜈(𝑘𝑛+1))

}
−𝑉 (𝛿(𝑘𝑛+1−1), 𝛾(𝑘𝑛+1−1), 𝜈(𝑘𝑛+1−1)) < 0, if the following inequality

holds:

Σ𝑇
𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O𝑎𝑝

𝜋𝑝𝑞 (𝜈)
�̄�𝑝

(
�̄�𝑇𝑝 P̄ �̄�𝑝 + 𝜎2

𝑝 L̄𝑇
𝑝 P̄L̄𝑝 + 𝜎2

0𝑝M̄𝑇
𝑝 P̄M̄𝑝

)
+ (1 − 𝜂𝑝)

(
�̄�𝑇𝑝 P̄ �̄�𝑝 + 𝜎2

𝑝 L̄𝑇
𝑝 P̄L̄𝑝 + 𝜎2

0𝑝M̄𝑇
𝑝 P̄M̄𝑝

)
− (𝐼𝑁 ⊗ 𝑃(𝜈−1)

𝑝 ) < 0.

By Schur complement lemma, the above inequality can be further transformed into

Φ̃ =

[
−(𝐼𝑁 ⊗ �̃�(𝜈−1)

𝑝 ) ∗
Ξ̃ P̂ (0)

𝑞

]
≺ 0 (30)

where Ξ̃ = [ �̄�𝑇𝑝 𝜎𝑝L̄𝑇
𝑝 𝜎0𝑝M̄𝑇

𝑝 �̄�
𝑇
𝑝 𝜎𝑝L̄𝑇

𝑝 𝜎0𝑝M̄𝑇
𝑝 ]𝑇 , P̂

(0)
𝑞 = 𝑑𝑖𝑎𝑔{−P̂1,−P̂1,−P̂1,−P̂2,−P̂2,−P̂2}, P̂1 =

Σ𝑇
𝑝
𝑚𝑎𝑥

𝜈=1 Σ𝑞∈O𝑎𝑝

𝜋𝑝𝑞 (𝜈)
�̄�𝑝

(𝐼𝑁 ⊗ 𝑃−(0)
𝑞 ), P̂2 = (1 − 𝜂𝑝) (𝐼𝑁 ⊗ 𝑃−(0)

𝑞 ).
Applying congruence transformation 𝑑𝑖𝑎𝑔{𝐼𝑛𝑁 , Ẑ𝑇

𝑝 } to (30), we can get[
−(𝐼𝑁 ⊗ �̃�(𝜈−1)

𝑝 ) ∗
Z̃𝑝Ξ̃ Ẑ𝑇

𝑝 P̂
(0)
𝑞 Ẑ𝑝

]
≺ 0 (31)

with Ẑ𝑝 = 𝑑𝑖𝑎𝑔{Z̃𝑝 , Z̃𝑝}. According to condition (23), one can proof that inequality (31) can guarantee
that condition (26) can hold. The rest of the proof can be directly derived in a similar way to Theorem 1 and
Theorem 2. This proof is completed.

Remark 4 The controller design and consensus conditions proposed in Theorem 2 and Theorem 3 are based
on the same channel fading. However, in practice, the fading variables and interference of communication
channels between agents are more likely to be different, due to different complex external environments or
different geographic locations of the agents. This restricts the issues considered in this paper to a certain
extent. It is worth noting that although the problem of non-identical channel fading has been studied in [28,29],
the above literature only considers leaderless multi-agent systems. They ignore the fading effects from leader to
follower agents, and the edge Laplacian method introduced cannot be used to tackle the models considered in
this paper. Therefore, it is interesting and meaningful to investigate the non-identical channel fading problem
within the framework of the fading model proposed in this paper. No better method has been proposed to
solve the problem of non-identical channel fading under model (3). This also encourages us to continue to
study this issue in future work.

Remark 5 In Theorems 2 and 3, the fully known and incompletely available cases of the semi-Markov kernel
for switching topologies are handled respectively, and the corresponding consensus conditions are also de-
rived. Given parameters 𝑇 𝑝𝑚𝑎𝑥 and 𝜌, the minimumH∞ performance index �̂� of the system can be calculated
according to the solution of the following optimization problems:

min �̂�2 subject to (19) and (20), 𝑝, 𝑞 ∈ O, 𝜈 ∈ N[1,𝑇 𝑝
𝑚𝑎𝑥 ]
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and
min �̂�2 subject to (25) and (26), 𝑝 ∈ O𝑎𝑝 , 𝑝 ∈ O𝑒𝑝 , 𝜈 ∈ N[1,𝑇 𝑝

𝑚𝑎𝑥 ]

for fully known semi-Markov kernel and incompletely available semi-Markov kernel.

Similar to Corollary 2, the following corollary gives the mean square consensus controller design for system
(18) with incompletely accessible semi-Markov kernel.

Corollary 3 Given a scalar 𝑇 𝑝𝑚𝑎𝑥 ∈ N≥1, if there exist a sets of symmetric matrices �̃�(𝜈)
𝑝 ∈ R𝑛𝑥×𝑛𝑥 ≻ 0, �̃�(𝜈)

𝑞 ∈
R𝑛𝑥×𝑛𝑥 ≻ 0, and matrices �̃�𝑝 ∈ R𝑛𝑥×𝑛𝑥 , 𝑌𝑝 ∈ R𝑛𝑥×𝑛𝑥 , 𝑝, 𝑞 ∈ O, 𝜈 ∈ N[0,𝑇 𝑝

𝑚𝑎𝑥 ] such that the inequalities[
−(𝐼𝑁 ⊗ �̃�(𝜈−1)

𝑝 ) ∗
Ξ̌ −P−(𝜈)

𝑝 − Z̃𝑝 − Z̃𝑇
𝑝

]
≺ 0[

−(𝐼𝑁 ⊗ �̃�(𝜈−1)
𝑝 ) ∗

Ξ̃ Υ̃(0)
𝑞

]
≺ 0

for any 𝑝 ∈ O𝑎𝑝 , 𝑞 ∈ O𝑒𝑝 , 𝜈 ∈ N[1,𝑇 𝑝
𝑚𝑎𝑥 ] holds, then the system (18) with incompletely accessible semi-Markov

kernel is leader-followingmean square consensus under the controller gains𝐾𝑝 = (𝐵𝑇𝐵)−1𝐵𝑇 (�̃�𝑇𝑝 )−1𝑌𝑝 , where
P (𝜈)
𝑝 , Ξ̌, Z̃𝑝 , Ξ̃, and Υ̃(0)

𝑞 are defined in Theorem 1 and 3.

The proof of Corollary 3 can be obtained in a similar way to Theorem 3, which is omitted here.

Remark 6Theorem 2 andTheorem 3 respectively realize the distributed consensus control of multi-agent sys-
tems under the condition that the semi-Markov kernel of switched topology is fully available and incompletely
unavailable. In fact, event-triggered control and sampled data control are also excellent methods for dealing
with problems related to multi-agent systems [6,11,16]. The advantages and disadvantages of these methods can-
not be directly compared. Similarly, event-triggered control and sampled-data control methods can also be
applied to the problems considered in this paper. Naturally, event-triggered control and sampled-data control
can also be studied in a distributed framework.

4.SIMULATION RESULTS
In this section, a numerical example is provided to demonstrate the validity of the proposed results. Consider
a multi-agent system consisting of four followers and one leader with the following parameter matrices

𝐴 =


1.0607 0.1881 −0.4654
−0.7425 1.1053 0.4284
0.1857 0.6231 −1.0774

 , 𝐵 =


−0.15 0.1
0.61 −1.5
−0.11 −0.2

 , 𝐸 =


0.2 0 0
0 0.1 0.2

0.1 0 0.1

 .
In this paper, the information exchange between agents is represented by an undirected switching topology
network. The topology graphs are shown in Figure 2. Correspondingly, the Laplacian matrices and the leader’s
adjacency matrices of each topology graph are given as

L1 =


2 −1 0 −1
−1 2 0 −1
0 0 1 −1
−1 −1 −1 3


, M1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


, L2 =


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1


, M2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


,

L3 =


2 0 −1 −1
0 1 0 −1
−1 0 2 −1
−1 −1 −1 3


, M3 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


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Figure 2. The communication topology graph.

A discrete semi-Markov jump process with semi-Markov kernel is employed to describe the switching of
topologies. The transition probability matrix of EMC and the probability density function of sojourn time
are provided by

[𝜃𝑝𝑞] =


0 0.8 0.2
0.26 0 0.74
0.5 0.5 0

 , [𝜔𝑝𝑞 (𝜏)] =


0 0.6𝜏 ·0.4(10−𝜏) ·10!
(10−𝜏)!𝜏!

0.7𝜏 ·0.3(10−𝜏) ·10!
(10−𝜏)!𝜏!

0.4(𝜏−1)1.8 − 0.4𝜏1.8 0 0.51010!
(10−𝜏)!𝜏!

0.5(𝜏−1)1.3 − 0.5𝜏1.3 0.4(𝜏−1)1.5 − 0.4𝜏1.5 0

 .
Let the upper bound of the sojourn-time for each topology mode be 𝑇1

𝑚𝑎𝑥 = 𝑇
2
𝑚𝑎𝑥 = 𝑇

3
𝑚𝑎𝑥 = 5. The statistical

characteristic parameters of channel fading are selected as 𝜇1 = 0.8, 𝜇2 = 0.7, 𝜇3 = 0.75, 𝜇01 = 0.75, 𝜇02 = 0.85,
𝜇03 = 0.6, 𝜎1 = 0.05, 𝜎2 = 0.15, 𝜎3 = 0.2, 𝜎01 = 0.1, 𝜎02 = 0.25, 𝜎03 = 0.15.

First, we assume that there is no channel fading phenomenon between the leader and the follower, that is,
𝜉𝑜𝑝 (𝑘) = 1 and𝜛0𝑝 (𝑘) = 0 in system (6). In this case, mean square consensus conditions inTheorem 2 will be
somewhat simplified. At this time, the channel interference between the follower and the follower is selected as
𝜛𝑝 (𝑘) = [0.02 sin(𝑘)𝑒(−0.1𝑘) 0.01 cos(𝑘)𝑒(−0.1𝑘) − 0.01 sin(𝑘)𝑒(−0.1𝑘)]𝑇 . The initial states of all agents and the
initial mode of the communication topology are chosen as 𝑥0(0) = [0.2 − 0.1 0.2]𝑇 , 𝑥1(0) = [0.1 − 0.3 0.4]𝑇 ,
𝑥2(0) = [−0.4 0.8 − 0.2]𝑇 , 𝑥3(0) = [0.5 − 0.2 0.4]𝑇 , 𝑥4(0) = [0.3 − 0.6 − 0.1]𝑇 , and 𝛾(𝑘) = 1.

By solving simplified consensus conditions and simulating, we can obtain the state response curves of the
system consensus error in this case as the solid line in Figure 3 shown. It shows that the controller designed
in this paper is still effective when there is no fading phenomenon between the leader and follower agents.
Then, the channel fading between the leader and the follower is added to the system under the condition that
the controller remains unchanged, and the simulation experiment is performed again. The state trajectory
of the consensus error is shown as the dotted line in Figure 3. The simulation results indicate that the fading
phenomenon between the leader and the followerwill affect the consensus and performance of the system. This
further shows that it is necessary and meaningful to study the coexistence of the channel fading phenomenon
between the leader and the follower, and the follower and the follower agent.

Next, consider the simultaneous existence of channel fading between leader and follower and between follower
and follower. Choosing 𝜛0𝑝 (𝑘) = [−0.01 sin(𝑘)𝑒(−0.1𝑘) 0.01 cos(𝑘)𝑒(−0.1𝑘) 0.02 sin(𝑘)𝑒(−0.1𝑘)]𝑇 . The rest of
the parameters are the same as stated above. By solving the linear matrix inequality condition in Theorem 2,
the controller gains 𝐾𝑝 can be calculated as

𝐾1 =

[
2.3702 1.1042 −2.6922
0.8871 0.8304 −0.9780

]
, 𝐾2 =

[
3.7920 1.9250 −4.7775
1.4275 1.3860 −1.7717

]
, 𝐾3 =

[
2.2009 1.2900 −3.1491
0.8326 0.9225 −1.1972

]
In addition, the H∞ performance index can be obtained as �̂� = 2.3705. According to Theorem 2, the state
trajectories of all agents in the system (6) are shown in Figure 4. Figure 5 shows the state-response curves of
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Figure 3. The consensus error responses under reduction conditions of Theorem 2 and additional leader-to-follower fading.
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Figure 4. The state responses of 𝑥0 (𝑘) and 𝑥𝑖 (𝑘) under switching topologies G𝑝 .
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Figure 5. The state responses of 𝑥0 (𝑘) and 𝑥𝑖 (𝑘) for the open-loop system.

each agent in the open-loop system. It can be seen that the designed control protocol (4) enables the system
(6) to achieve leader-following mean square consensus under the premise of the simultaneous existence of
channel fading and semi-Markov switching topologies.

In Figure 6, the norm-squared response curves of consensus error in two different cases are given. One is
the consensus error of the system in Theorem 2, and the other is the influence of channel fading on system
performance when leader-to-follower fading is not considered. From the observation of Figure 6, we can find
that the fluctuation of the norm-squared response curves for the consensus error in Theorem 2 represented
by the solid line is weaker than that represented by the dotted line. The latter refers to the error norm squared
response of the system suffering from leader-to-follower fading in Theorem 2 without considering leader-to-
follower fading. This indicates that the consensus error of the former must stabilize faster than the latter. This
further means that the control protocol proposed in this paper is more efficient and general. Figure 7 shows a
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Figure 6. The norm-squared responses of 𝛿𝑖 (𝑘) under two different scenarios.
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Figure 7. A possible mode jumping diagram of communication topologies.

possible topology jumping rule.

Then, the relationship between the statistical properties of channel fading and the H∞ performance of the
system (6) is discussed. We consider three different values for the variance of the channel fading coefficient
variables 𝜉𝑝 (𝑘) and 𝜉0𝑝 (𝑘). By solving the conditions in Theorem 2, the value of the minimum �̂� can be cal-
culated and shown in Table 1. Table 1 lists three groups of simulation experiments. Simultaneously change
the variance of one or two or three groups of fading coefficient variables and calculate the minimum perfor-
mance index �̂� of the system. It can be found from Table 1 that the greater the variance of the channel fading
coefficient variables, the greater theH∞ performance index �̂� of the system. At the same time, comparing the
second experiment in the first group with the first experiment in the third group, as the number of variances
increases, theH∞ performance index �̂� of the system also increases. This means that theH∞ performance of
the systemwill deteriorate as the effect of the fading channel on the transmitted signal or information becomes
greater.
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Table 1. H∞ performance with different values of variance for 𝜉𝑝 (𝑘) and 𝜉0𝑝 (𝑘)

Number of variances 𝜎𝑝 and
𝜎0𝑝 that vary simultaneously

Values of the variance Minimum �̂�

1

𝜎1 = 0.05, 𝜎01 = 0.1 2.3705

𝜎1 = 0.15, 𝜎01 = 0.2 2.4327

𝜎1 = 0.25, 𝜎02 = 0.3 2.7232

2

𝜎2 = 0.15, 𝜎02 = 0.25, 𝜎3 = 0.2, 𝜎03 = 0.15 2.3705

𝜎2 = 0.1, 𝜎02 = 0.2, 𝜎3 = 0.15, 𝜎03 = 0.1 2.2259

𝜎2 = 0.05, 𝜎02 = 0.1, 𝜎3 = 0.1, 𝜎03 = 0.05 2.1583

3

𝜎1 = 0.15, 𝜎2 = 0.25, 𝜎3 = 0.3, 𝜎1 = 0.2, 𝜎2 = 0.35, 𝜎3 = 0.25 2.7265

𝜎1 = 0.2, 𝜎2 = 0.3, 𝜎3 = 0.35, 𝜎1 = 0.25, 𝜎2 = 0.4, 𝜎3 = 0.3 3.1614

𝜎1 = 0.25, 𝜎2 = 0.35, 𝜎3 = 0.4, 𝜎1 = 0.3, 𝜎2 = 0.45, 𝜎3 = 0.35 3.9035

Table 2. Comparative simulations with literature [27,41] for consensus performance

Method Consensus performance under
follower-to-follower fading

Consensus performance under leader-to-follower
and follower-to-follower fading

Theorem 3.2 in [27] Consensus Inconsistent

Theorem 3.2 in [41] Consensus Inconsistent

Simplified Theorem 2 without
leader-to-follower fading

Consensus Consensus performance deterioration

Theorem 2 Consensus Consensus

According to Table 2, it can be concluded that the consensus performance of the system will deteriorate or be
destroyed, whenTheorem 3.2 of [27], Theorem 3.2 of [41], and SimplifiedTheorem 2 in the absence of leader-to-
follower fading additionally consider the channel fading of leader-to-follower. The control method proposed
in Theorem 2 in this paper can still ensure the consensus performance of the system considering the channel
fading between the leader-to-follower and follower-to-follower agents at the same time. This further proves
that the model proposed in this paper is more general and the results are more effective than existing ones.

5. CONCLUSION AND FUTURE WORK
In this paper, the H∞ leader-following consensus problem of discrete multi-agent systems subject to chan-
nel fading is solved under switching topologies with semi-Markov kernel. First, a fading model that takes
into account all inter-agent channels (including leader-to-follower channels) is established based on a discrete
semi-Markov switching topology. Then, new sufficient criteria have been developed to ensure themean-square
stability and H∞ performance of the consensus error system (6) by means of stochastic analysis method and
Lyapunov stability theory. Further, for the case where the semi-Markov kernel of switching topologies is
not completely accessible, distributed consensus control protocols with fading states have been designed and
the desired controller gains have been calculated based on linear matrix inequalities. Finally, a simulation
example is presented to verify the effectiveness of the proposed approach. In future work, the problem of non-
identical channel fading, adaptive fault-tolerant consensus and game optimization problems for heterogeneous
or higher-order nonlinear multi-agent systems are interesting topics. In addition, how to reduce the number
of decision variables in matrix inequality conditions and reduce the computational burden is also a problem
worth studying.
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