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Abstract

Initially, most ovarian tumors respond to the treatment with platinum components, but frequently recurrence occurs 
within the following two years in advanced ovarian cancer patients. In this regard, previous studies have shown 
changes in the epigenetic patterns in ovarian cancer that are linked with resistance to cis- and carboplatin therapy. 
Thus, epigenetic changes mediated by a treatment with cis- or carboplatin could identify such patients who do or do 
not respond to this therapy. Therefore, an understanding of the impact of platinum on epigenetics in ovarian cancer 
is important in overcoming platinum resistance. In this review, we delineate epigenetic abnormalities in cis- and 
carboplatin-resistant ovarian tumors, such as changes in DNA methylation, histone modifications and deregulation 
of microRNAs, and discuss the potential of epigenetic therapies in combination with platinum.
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INTRODUCTION
Although ovarian cancer is a leading cause of gynaecological cancer deaths, the primary cause of the 
disease remains unclear. The lack of early markers of ovarian cancer and the development of drug resistance 
following chemotherapy with, e.g., platinum-based compounds retards attempts to better identify and treat 
this cancer. 



In 1896, Baldwin postulated that individuals within a population with the “correct” allele could choose a new 
environment so resulting in a permanently changed evolutionary development within that environment[1]. 
It is now more than 60 years since Waddington[2,3], following up this approach, introduced the term 
“epigenetics” to describe the concept that a characteristic acquired within a total population as a response 
to an environmental stimulus could be inherited in the absence of DNA mutations. For example phenotypic 
modifications can occur through the alteration of gene expression without any modification to the DNA 
sequence of the gene itself. Although the concept was not readily accepted at the time, epigenetics has 
subsequently become an important aspect of genetics and evolutionary theory, and is of particular interest 
in the study of cancer initiation, development and possible resolutions.

Specifically, epigenetic modifications involve DNA methylation, nucleosome repositioning, histone post-
translational modifications and post-transcriptional gene regulation by miRNAs[4]. Histone modifications 
can affect chromatin structure resulting in the passage of heritable changes to the next generation. The role 
of histone epigenetic modifications in ovarian cancer has been comprehensively considered in a review by 
Yang et al.[5]. Although they have compiled an impressive listing of histone modifications, they considered 
that such studies are only at an early stage. Nevertheless, there are a number of epigenetic inhibitors being 
considered with protein modifying drugs already under clinical trials for ovarian cancers. Currently, there 
appears to be a low specificity for such compounds.

The major form of treatment for ovarian cancers, evolved from earlier studies on the use of platinum 
compounds inhibiting Escherichia coli cell division and solid tumors involves the use of platinum containing 
molecules[6,7]. A range of such compounds has been developed namely, cisplatin, carboplatin, oxaliplatin, 
nedaplatin and lobaplatin, the most commonly used for ovarian cancer treatment being cisplatin and 
carboplatin.  

In the present review, we will examine DNA methylation and their involvement in the different forms of 
ovarian cancer together with the epigenetics of both histones and miRNAs and their possible roles concerning 
the reversal of resistance to cis- and carboplatin in ovarian cancer treatment.

CHARACTERISTICS OF DNA METHYLATION
Similarities between the early stages of normal embryological development and cancer development have 
been noted since before the mid 20th century. Epigenetic alterations involving DNA methylation can 
be considered as such an example, DNA methylation being a basic step essential to the early stages of 
embryogenesis. However, cancer initiation also involves alterations of DNA methylation in the silencing of 
tumor suppressor genes, the activation of oncogenes and the initiation of metastases. In particular, aberrant 
DNA methylation in cancer can be directly linked to drug resistance[8]. 

DNA methylation normally occurs on the cytosine residues adjacent to a guanine residue (CG dinucleotides), 
the methyl group from S-adenosylmethionine being attached to cytosine by DNA methyltransferase. 
Thus, DNA modification involves 5-methylcytosine, 5-formylcytosine, 5-hydroxymethylcytosine and 
5-carboxylcytosine[9]. The CG residues may be present singly along the DNA strands and tend to be 
constantly methylated. Alternatively, they may be present in clusters of 1000-2000 residues along the DNA 
in the form of CpG islands that are associated with gene promoters. Hence, if hypomethylated, the genes 
are active and if hypermethylated, the genes are silenced[10]. In many cancers, including ovarian cancer, a 
decrease in the global methylation of the heterochromatic chromosome regions results in the activation of a 
number of oncogenes, whilst the locus-specific hypermethylation of specific CpG island regions associated 
with promoters of tumor suppressor genes results in their inactivation[4,11-13]. Nevertheless, when methylation 
occurs, there are cases when only one allele maybe methylated and the other not. Hence, it depends on which 
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allele is expressed as to the expression outcome, e.g., this can occur in ovarian cancer[14,15]. Gene expression 
by the non-methylated allele is likely for some genes so leading to continued expression despite the other 
allele being methylated. In their study, Losi et al.[16] investigated 41 ovarian cancer associated promotor 
genes, and observed an intermediate level of hypermethylation (~50%) for most hypermethylated genes. 
Since there were > 70% of tumor cells present in each tumor sample employed, they would have expected 
either a high or a low methylation level. Combining their data with those described in the literature, where 
most studies dealt with very few genes, they proposed that this might be a general event of intra-tumoral 
heterogeneity existing for epigenetic changes.

Hypermethylation also has its effects with that of promoter CpG islands causing the silencing of tumor 
suppressor genes whilst methylation of CpG islands results in the inhibition of transcription factor 
suppressors.

Gene selection is also important for the study of ovarian cancer. Whilst Losi et al.[16] and Choi et al.[17] listed 
genes involved in cancer in general those epigenetically modifiable promoter genes relevant to ovarian cancer 
are given in Table 1. Genes involved in cisplatin/carboplatin resistance/sensitization of ovarian cancer are 
presented in Table 2.

Finally, it appears to be necessary to consider the effect of the degree of methylation of each gene with 
respect to the histological type of ovarian cancer being investigated, e.g., epithelial, serous, endometrioid 
and mucinous since each may offer a different response depending upon the degree of methylation of a 
particular gene[16]. 

Methods for determining DNA methylation 
When determining methylation levels, there are a number of approaches. The first consideration concerns 
tissue preparation before selection of that which is to be analysed. Thus, the tissue may be either histologically 
processed, often wax embedded or, alternatively, the tissue may be either as fixed or unfixed, frozen sections. 
The selected material to be analysed is isolated from the sections after microscopical analysis. Hence, there 
are three different factors involved relating to the tissue sample examined, namely, chemical fixation of the 
tissue, dewaxing of embedded material and the use of unfixed, frozen tissue.

Once the selected material has been removed from the sections, a relevant method for analysis of methylation 
levels needs to be selected. Some methods utilized for the detection of DNA methylation levels[42-45]: 
Digestion-based assay (PCR, qPCR, RT-PCR, cold PCR); High resolution melting luminometric methylation 
assay; HPLC-UV; Mass spectrometry; ELISA-based methods; Amplified fragment length polymorphism; 
Restriction fragment length polymorphism; Luminometric methylation assay; Pyrosequencing; Bisulfite 
sequencing; ELISA; Methylation ligation-dependent macro-array; High-throughput measurement 
technologies.

An in-depth analysis of the majority of the available methods was given by Olkhov- Olkhov-Mitsel & 
Bapat[42] to detect methylated and hydroxyl-methylated DNA biomarkers. The methods are grouped under 
bisulphite-based strategies, restriction enzyme based methods and affinity-based strategies. Subsequently, 
Kurdyukov and Bullock[43] developed a simple algorithm for selecting the most appropriate method for the 
material to be analyzed and for the identification of the form of methylation to be determined through either 
whole genome methylation profiling or identification of differentially-methylated regions or the methylation 
status of specific genes or digestion based assays or differentially-methylated loci or hydroxymethyl cytosine 
determination.

Clearly, given the range of methods available for the determination of different aspects of DNA methylation 
used by different authors, it becomes somewhat difficult to routinely compare results in the case of applied 
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topics, such as ovarian cancer.

Using the various methods available, a number of abnormal DNA methylation patterns have been 
demonstrated in cancer cells with specific consequences being identified[46]. Hence, global hypomethylation 
can lead to chromosomal and genetic instability as well as reactivation of endoparasitic and repetitive 
genomic sequences. In addition, hypomethylation of gene bodies can activate incorrect sites of transcription 
initiation while the loss of promoter methylation can cause activation of metastasis and tumor promoting 
genes.

EPITHELIAL-MESENCHYMAL TRANSITION
Epithelial-mesenchymal transition (EMT) is a hallmark of cancer progression and metastasis. During this 
process, epithelial cells go through phenotypic changes and acquire mesenchymal characteristics. They lose 
their cell polarity and cell-cell adhesion and acquire migratory and invasive properties, facilitating their 
migration through the extracellular matrix and settlement in other organs. This molecular reprogramming 
and cell switch lead to the loss of cytokeratins and epithelial-specific junction proteins, e.g., E-cadherin, 
mediated by upregulation of the transcriptional repressors Snail and Slug, ZEB1 and ZEB2, and Twist, 
and turning on the expression of mesenchymal markers e.g. Vimentin and N-cadherin. EMT is induced 
by a variety of signals, including the Wnt/β-catenin signaling pathway, Notch transcription factors, 
phosphoinositide-3 kinase (PI 3K)/Akt signaling[47].

SIGNALLING PATHWAYS
The following paragraphs contain a short overview on the signaling pathways most frequently involved in 
platinum resistance.

Wnt signaling
The Wnt signaling pathway is a complex developmental cell signaling pathway which plays an essential 
role in embryogenesis. The network is generally divided into the β-catenin dependent (canonical) and the 

Table 1. Epigenetically modifiable promoter genes relevant to ovarian cancer 

Promoter genes
DNA methylation  APC , ESR, MGMT, RASSF1A, MLH1, TERT, WT1
Testis/ovarian cells BORIS/CTCFL , DAX1, FOXL2, RSPO1, TMEFF2
Wnt pathway APC , DKK1, DKK2, DKK3, SFRP1, SFRP4, SFRP5, WIF1, WNT4
DNA repair pathways BRCA1 , MGMT, MLH1

APC: adenomatous polyposis coli; BORIS/CTCFL: brother of the regulator of imprinted sites/CCCTC-binding factor like; BRCA1: 
breast cancer 1; DAX1: dosage-sensitive sex reversal-adrenal hypoplasia congenital critical region on the X chromosome gene 1; DKK: 
dickkopf; ESR: estrogen receptor; FOXL2: forkhead box L2; MGMT: O-6-methylguanine-DNA methyltransferase; MLH1: mutL homolog 1; 
RASSF1A: ras association domain family member 1; RSPO1: R-spondin 1; SFRP: secreted frizzled-related protein; TERT: telomerase reverse 
transcriptase; TMEFF2: transmembrane protein with EGF like and two follistatin like domains 2; WIF1: WNT inhibitory factor 1; WNT4: 
Wnt family member 4; WT1: Wilms tumor 1

Table 2. Epigenetically modifiable genes relevant to ovarian cancer resistance and sensitization to cisplatin/carboplatin

Resistance/sensitization Genes
Cisplatin resistance OXCT1 [18], GPCR[19], TET1 [20], MLH1 [21-23], HOXA10, HOXA11 [21,24], NAGA [25], UCHL1 [26], 

BCL2L1 [27], FANCF[28-30]

Cisplatin sensitization FANCF [31], NAGA [25], CCDC69 [32], UCHL1[26]

Carboplatin Resistance TMEM88 [33], DOK2[34,35], p57(Kip2) [36], Plk2[37], HERV-K [38], SFRP5[39], SLFN11[40], ASS1 [41]

ASS1: argininosuccinate synthase 1; BCL2L1: BCL2 like 1; CCDC69: coiled-coil domain containing 69; DOK2: docking protein 2; FANCF: 
fanconi anemia complementation group F; GPCR: protein coupled receptor; HOXA: homeobox A cluster; HERV-K: for HERV-K: human 
endogenous retrovirus type K; MLH1: mutL homolog 1; NAGA: N-acetylgalactosaminidase; OXCT1: 3-oxoacid CoA-transferase 1; Plk2: 
polo like kinase 2; SFRP5: secreted frizzled-related protein 5; SLFN11: schlafen family member 11; TET1: tet methylcytosine dioxygenase 1; 
TMEM88: transmembrane protein 88; UCHL1: ubiquitin C-terminal hydrolase L1
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β-catenin independent (non-canonical) pathways. Wnt proteins bind to receptors of the Frizzled and the 
low-density lipoprotein receptor-related protein families on the cell surface. Through several cytoplasmic 
components, the signal is transmitted to β-catenin which then enters the nucleus and forms a complex with 
the transcription factor TCF to activate transcription of Wnt target genes. The activation of the pathway 
leads to a variety of biological processes, including cell proliferation, differentiation and migration. Aberrant 
oncogenic activation of the Wnt signaling pathway is a common event in different cancer types. Main 
mechanisms by which Wnt signaling is dysregulated in cancer are mutations in β-catenin or other key 
pathway members, as well as hypermethylation and silencing of gatekeeper antagonists, such as the secreted 
frizzled-related protein (SFRP) and dickkopf (DKK), or overexpression of Wnt ligands or receptors, resulting 
in increased cancer cell proliferation and migration[48].

PI3K/Akt signaling
The activation of PI3K/Akt pathway regulates many different physiological processes, such as transcription, 
protein synthesis, metabolic responses and membrane trafficking, and specifically promotes growth and 
proliferation of adult stem cells. There are many factors that boost the PI3K/AKT pathway, including 
EGF, IGF-1 and insulin. Activation of PI3K phosphorylates and activates AKT, localizing it in the plasma 
membrane. AKT has diverse downstream effects, among others activating CREB, inhibiting p27 and 
activating mTOR (mammalian target of rapamycin). The pathway is antagonized by PTEN (phosphatase 
and tensin homologue). In many cancer types, this pathway is abnormally activated, resulting in reducing 
apoptosis and allowing proliferation[49].

Notch signaling 
Depending on the cellular context, the Notch pathway regulates proliferation, differentiation and apoptosis. 
In adult tissues, Notch signaling is involved in tissue homeostasis and stem cell maintenance. The Notch 
signaling pathway also plays an established role in embryologic development and its deregulation is associated 
with diverse cancer types. It is activated by a receptor-ligand binding between two neighboring cells, leading 
to a conformational change of the Notch receptor. Following two cleavages, the Notch intracellular domain 
(NICD) is released into the cytoplasm. After translocation into the nucleus, NICD binds to ubiquitous 
transcription factor CSL and converts a large co-repressor complex into a transcription activating complex. 
The complex activates the transcription of Notch target genes, among others p21, cyclin D1 and 3, c-myc and 
members of NF-κB family[50].

PLATINUM COMPOUNDS
The origin of platinum-cancer therapy dates back to the year 1965, when it was reported that cisplatin is 
an inhibitor of cell division in Escherichia coli[6]. In 1970, it was shown that cisplatin inhibits the growth 
of large tumors, possibly by inhibition of DNA synthesis[7]. Currently, cisplatin is one of the most effective 
chemotherapeutic agents and used for several tumor types. However, its clinical use is limited due to the 
severe side effects, including nephrotoxicity and acute kidney injury[51]. Carboplatin has been established as 
the successor to cisplatin with improved tolerability in many therapeutic regimens. This second generation 
analogue is closely related to cisplatin. Both cisplatin and carboplatin are the primary first-line therapies 
for the treatment of ovarian cancer. They are hydrolyzed in the cell, reacting with the sulfhydryl groups 
of proteins and nitrogen atoms of nucleic acids. Their covalent binding with purine bases introduces 
DNA damage, such as monoadducts or inter- and intra-strand crosslinks resulting in interference of the 
replication machinery, G2/M cell arrest and cell death by apoptosis or necrosis [Figure 1]. They can also 
induce oxidative stress by increasing mitochondrial reactive oxygen species and decreasing intracellular 
antioxidants, like reduced glutathione (GSH)[52]. 

Characteristics of platinum resistance
Acquired platinum resistance is considered as a multi-factorial process. Numerous mechanisms leading to 
the development of drug resistance have been reported and comprehensively considered[53]. They include 
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e.g., changes in drug efflux through the modulation of diverse transporter systems, deregulated levels of 
intracellular glutathione and metallothioneine able to bind and sequester platinum, altered DNA repair 
pathways and reduced expression of pro-apoptotic proteins. These modulations are associated with epigenetic 
changes in DNA methylation, histone modifications and microRNA levels, but also with genetic alterations, 
such as mutations or deletion[52,54]. In this section, we present a short overview of the main mechanisms of 
cis- and carboplatin resistance to better illustrate the impact of these drugs on epigenetics in the following 
sections.

Cis- and carboplatin enter the cells and are exported from cells via transporters that e.g., manage copper 
homeostasis. The major copper influx transporter, copper transporter 1 (CTR1), controls the tumor cell 
accumulation and cytotoxic effect of cisplatin and carboplatin. Both copper and cisplatin may trigger the 
down-regulation of CTR1 via a process that involves ubiquitination and proteosomal degradation. In this 
regard, the majority of cells with acquired resistance to platinum drugs exhibit reduced drug accumulation. 
Thus, the cytotoxicity of these drugs correlates with the amounts of drugs entering the cell[55,56]. 

Furthermore, oxidative stress is the one of most important mechanisms involved in cisplatin toxicity. Under 
normal physiological conditions, cells control reactive oxygen species levels by balancing the generation of 
reactive oxygen species with their elimination by e.g., GSH. Hence, glutathione acts as an antioxidant in 
the cell and supports the redox environment while conserving reduced sulfhydryl groups. Elevated levels 
of glutathione and glutathione-S-transferase, an enzyme mediating cisplatin coupling to GSH, induce 
resistance to cisplatin[57]. In this regard, cisplatin is detoxified by glutathione through adduct formation, 
and these platinum/glutathione conjugates are readily secreted out of the cells by e.g., multidrug resistance 
proteins of the ABC family[58].

Finally, platinum damage is repaired primarily by the nucleotide excision repair system and the homologous 
recombination pathway. The nucleotide excision repair system recognizes platinum-induced inter- and intra-strand 
crosslinks and induces a process of DNA unwinding, incision, excision and synthesis. Induced DNA double-strand 
breaks are recognized by homologous recombination repair which initiates a process of single strand DNA 
formation, coating, filament formation, strand invasion and DNA synthesis. In particular, excision repair 
cross complementation group-1 and the related genes XPA and BRCA1 are involved in DNA repair. For 
example, 50% of high-grade serous ovarian cancers (HGSOC) exhibit defective DNA repair by inactivation 
of the homologous recombination due to germline and somatic mutations in BRCA1 (11%), BRCA2 (9%) and 

Figure 1. Chemical structures of cis- and carboplatin (A). Action of platinium. Cisplatin [Cis-diamminedichloroplatinum (II)] forms 
intracellular electrophilic water complexes based on the commonly predominant lower chloride concentrations. Due to its high affinity 
to the bases guanine and adenine, it forms chelates and inhibits DNA expression. Crosslinks of the DNA single and double strands are 
formed by platination with a disorder of template function and cell division. Carboplatin [Cis-Diamin (1,1cyclobutandicarboxylo)-
platinium] has an equivalent mechanism of action. Chelation and cross-linking of the single and double-stranded DNA inhibit DNA synthesis 
and transcription triggering apoptosis (B)
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promoter hypermethylation of BRCA1 (10%). Homologous recombination deficiency may also result from 
PTEN homozygous loss, detected in about 7% of HGSOC[59].

DNA METHYLATION
Epigenetic gene silencing is increasingly being recognized to contribute to the development of cis- and 
carboplatin resistance. Auspiciously, the treatment with demethylating agents has been shown to re-sensitize 
patients to platinum therapy demonstrating that DNA methylation is a critical factor in drug resistance. 
The most important DNA methyltransferase (DNMT) inhibitors are azacitidine and decitabine (5-aza-2′-
deoxycytidine, dacogen). They are hypomethylating analogues of cytidine [Figure 2], and commonly used to 
treat myelodysplastic, hematological malignancies. Azacitidine was the first drug to demonstrate a survival 
benefit in a randomized trial for patients with myelodysplastic syndromes[60,61]. The following paragraphs 
give an overview on methylated genes that affect chemo-resistance.

Cisplatin resistance
In ovarian cancer, selective epigenetic alterations of distinct biological pathways have been observed during 
development of platinum resistance. Hypermethylation-mediated repression of cell adhesion and tight 
junction pathways as well as hypomethylation-mediated activation of the cell growth-promoting pathways 
PI3K/Akt and TGF-β may contribute to platinum resistance[62]. As the following in vitro and in vivo studies 
demonstrate, chemo-resistance may be reversible by alteration of DNA methylation which may be an effective 
strategy to enhance the effectiveness of chemotherapeutic treatment in ovarian cancer.

High expression of DNMT1 is detected in S-phase of the cell cycle and makes DNMT1 a specific target for DNA 
methylation inhibition in rapidly dividing cancer cells. Covalent binding of DNMT1 by the nucleoside analogue 
SGI-110 results in DNMT1 proteolysis[63]. To assess the effects of SGI-110 on chemo-responsive genes silenced 
by DNA methylation in ovarian cancer, Fang et al.[21] applied pyrosequencing. In vitro, they demonstrated that 
SGI-110 re-sensitized a range of cisplatin-resistant ovarian cancer cells, and induced significant demethylation 
and re-expression of tumor suppressor genes, differentiation-associated genes and even, putative drivers of 
ovarian cancer cisplatin resistance. In vivo, pyrosequencing of ovarian cancer xenografts confirmed that 
SGI-110 caused both global (LINE1 repetitive sequences) and gene-specific hypomethylation, including the 
tumor suppressor gene Ras Association Domain Family 1 (RASSF1A), the assumed drivers of ovarian cancer 
cisplatin resistance and the zinc finger protein ZIC1, the differentiation-associated genes HOXA10 and HOXA11 
and the transcription factor STAT5B, as well as the DNA mismatch repair gene MLH1. The methylation of 
MLH1 in resistant cells has been investigated by several laboratories. Using genome-wide DNA methylation 
profiling, Zeller et al.[22] identified genes becoming hypermethylated in chemo-resistant ovarian cancer cells. 
In particular, they found that MLH1 had a direct role in conferring cisplatin sensitivity when reintroduced 

Figure 2. Chemical structures of azacitidine and decitabine. Azacitidine is metabolized intracellularly into decitabine
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into cells in vitro. These findings supported previous observations from Strathdee et al.[23], 20 years ago. 
DNMT activity and thus, DNA methylation are regulated by the epidermal growth factor receptor (EGFR)[64]. 
Granados et al.[65] examined whether cisplatin induces EGFR mediated changes in DNA methylation that 
are associated with the development of cisplatin resistance. Acute cisplatin treatment activated EGFR and 
downstream signaling pathways, as well as induced an EGFR-mediated increase in DNMT activity. This led 
to an increase in global DNA methylation in cisplatin resistant cells. During repeated cisplatin treatments, 
EGFR inhibition re-sensitized the cells to cisplatin and inhibited increases in DNA methylation and DNMT 
activity.

The ten-eleven translocation (TET) family of dioxygenases comprising TET1/2/3 is involved in DNA 
demethylation. Using cisplatin-sensitive and cisplatin-resistant ovarian cancer cell models, Han et al.[20] 

detected that TET1 was significantly upregulated in cisplatin-resistant ovarian cancer cells compared with 
cisplatin-sensitive cells. Its ectopic cell expression promoted cisplatin resistance and decreased cytotoxicity 
induced by cisplatin via active DNA demethylation of vimentin, resulting in partial EMT. 

Applying Illumina human methylation arrays and Affymetrix arrays, Bonito et al.[31] showed that CpG 
sites within the homeobox transcription factor MSX1 gene had significantly lower levels of methylation in 
high-grade serous epithelial ovarian cancer patients who recurred by 6 months than patients who recurred 
after 12 months. In cisplatin-resistant ovarian cancer cell lines, MSX1 overexpression led to cisplatin 
sensitization, increased apoptosis and increased cisplatin-induced expression of the cyclin-dependent 
kinase (CDK) inhibitor p21. A further CDK inhibitor of cell cycle progression is p27, also known as KIP1. 
Zhao et al.[66] detected that the expression level of p27 was dramatically downregulated in chemo-resistant 
cells, but treatment with the demethylating agent 5-aza-2'-deoxycytidine restored p27 expression in cisplatin 
resistant cells and increased sensitivity to cisplatin. Overexpression of p27 arrested the cell in the S phase 
and promoted an apoptotic response to cisplatin.

To analyze genome-wide DNA methylation profiles of cisplatin sensitive and resistant ovarian cancer cell 
lines, Yu et al.[27] applied methyl-Capture sequencing (MethylCap-seq), which combines precipitation of 
methylated DNA by the recombinant methyl-CpG binding domain of MBD2 protein with next generation 
sequencing (NGS). They found a lower global CpG methylation in resistant cells. Methylation-specific PCR 
and bisulfite sequencing confirmed hypermethylation of protein tyrosine kinase 6, protein kinase Cε and the 
antiapoptotic gene BCL2L1 in sensitive cells compared with resistant cells. Performing genome-wide analyses 
of hypermethylated CpG islands in combination with real-time PCR, Kritsch et al.[67] identified Tribbles 2 
(TRIB2) as the most pronounced downregulated gene on mRNA level among 37 commonly epigenetically 
silenced genes in cisplatin-resistant ovarian cancer cells. Its re-expression increased the sensitivity to cisplatin 
and other DNA-damaging agents in these cells, whereas its knockdown increased the resistance to cisplatin 
in sensitive cells. TRIB2, that belongs to the family of pseudokinase proteins and degrades the myeloid 
transcription factor CCAAT enhancer binding protein α[68], induced a cisplatin-dependent cell cycle arrest 
and apoptosis by acting on p21 and survivin expression. It seems to be involved in the signal transduction 
from nucleotide excision repair of intrastrand cross links. In line with its downregulation in ovarian cancer 
cells, tumors from cisplatin-resistant patients also expressed the lowest levels of TRIB2[67].

Using an integrated approach of analyzing simultaneously gene expression levels and DNA methylation 
profiles, Yang et al.[18] analyzed mRNA expression on gene chip arrays and DNA methylation profiles 
on methylation bead chips. Among 26 genes that were differentially expressed and methylated between 
cisplatin-resistant and -sensitive ovarian cancer cells, 3-oxoacid CoA transferase 1 (OXCT1) was selected 
for further investigations. OXCT1, that catalyzes the first and rate-determining step of ketolysis[69], was 
hypermethylated at CpG sites of its promoter and downregulated in cisplatin-resistant cells. Treatment with 
a DNMT inhibitor restored hypermethylation-mediated gene silencing of OXCT1 in cisplatin-resistant cells, 
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but not in cisplatin-sensitive cells. Notably, overexpression of OXCT1 conferred sensitivity to cisplatin in the 
ovarian cancer cells[18]. 

The gene encoding for myelin and lymphocyte protein (MAL) has been reported to be among the most 
highly expressed genes in serous ovarian cancers from short-term survivors (< 3 years) compared with those 
of long-term survivors (> 7 years)[70]. Lee et al.[71] showed that this difference in MAL expression is due to 
differences in DNA methylation at specific sites within the MAL promoter. MAL was largely unmethylated 
at the transcriptional start site in serous ovarian cancers. Methylation of the region 200-400 bp upstream of 
the promoter could be reduced by the treatment of an ovarian cancer cell line with 5-azacytidine, resulting 
in a 10-fold increase in MAL expression. MAL transcript levels were also higher in cisplatin resistant ovarian 
cell lines suggesting that MAL methylation status serves as a marker of platinum sensitivity. 

α-N-acetylgalactosaminidase (NAGA) is responsible for deglycosylating the group-specific component 
(Gc), a precursor of Gc protein-derived macrophage activating factor (GcMAF). The deglycosylated form 
of Gc protein cannot be converted into GcMAF and subsequently, decreased GcMAF levels can promote 
immunosuppression[72]. Ha et al.[25] identified NAGA as one of the key candidate genes for cisplatin drug 
response. In cisplatin-resistant cell lines, NAGA was significantly downregulated and hypermethylated at 
its promoter. Restoration and overexpression of NAGA in cisplatin-resistant lines induced cytotoxicity in 
response to cisplatin, whereas depletion of NAGA increased cisplatin resistance[25]. 

In their study, Cui et al.[32] investigated coiled coil domain containing protein 69 (CCDC69), and found that its 
inhibition may interfere with the effectiveness of a combination therapy with platinum drugs. The expression 
levels of CCDC69 were 3-4 fold higher in cisplatin-resistant cells than its parental cisplatin-sensitive cells. 
Treatment of CCDC69 knockout, cisplatin-resistant cells with cisplatin was accompanied with increasing 
sensitivity to cisplatin, abrogation of G1 and G2/M arrest, increasing caspase activity, p53 acetylation and 
higher levels, as well as mitochondrial redistribution of the apoptosis modulator Bax.

Ubiquitin carboxyl terminal hydrolase 1 (UCHL1) catalyzes the hydrolysis of COOH-terminal ubiquityl 
esters and amides[73]. Jin et al.[26] detected UCHL1 promoter methylation in ovarian cancer cell lines and a 
negative correlation of UCHL1 with their cisplatin resistance. Microarray data revealed that after UCHL1 
knockdown several apoptosis related genes, including apoptosis regulators BCL2, BCL11A, AEN and XIAP, 
and the phosphorylated serine/threonine protein kinase AKT were up-regulated, whereas the pro-apoptotic 
Bax was down-regulated.

FANCF (Fanconi anemia, complementation group M) is a gene associated with Fanconi anemia, the protein 
products of which were reported to interact with proteins involved in DNA repair pathways, e.g., with 
BRCA1[74]. More than 15 years ago, Olopade and Wei[28] described a model of ovarian cancer tumor progression 
that implicated aberrant FANCF promoter methylation and correlated with gene silencing and disruption of 
the Fanconi-anemia-BRCA pathway. Disruption of this pathway occurred de novo in ovarian cancer and 
might contribute to selective sensitivity to platinum components. The laboratory of D’Andrea[29] investigated 
the relationship of chromosome instability with cisplatin hypersensitivity, and showed that the phenotype 
of ovarian cancer cells was caused by methylation and silencing of the signaling Fanconi-anemia-BRCA 
pathway. Restoration of this pathway was associated with demethylation of FANCF, leading to acquired 
cisplatin resistance. The laboratory proposed a model for ovarian tumor progression in which the initial 
methylation of FANCF was followed by FANCF demethylation, ultimately resulting in cisplatin resistance[30].

AT-101 is a natural compound from cotton seeds and inhibits the anti-apoptotic Bcl-2 family of proteins[75]. 
Karaca et al.[76] investigated the effects of AT-101 in combination with cisplatin on the expression of pro-apoptotic 
proteins and epigenetic events in ovarian cancer cells. Combined administration of both agents led to a strong 
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synergistic cytotoxicity and apoptosis in human ovarian cancer cells and reduced among others Bcl-2 and 
inhibited both DNMT and histone deacetylase (HDAC) activities.

Applying reduced representation bisulfite sequencing, Lund et al.[19] examined malignant ascites cells 
from patients with high-grade serous ovarian cancer, the most common ovarian cancer type, to clarify 
the molecular mechanisms of drug resistance in this cancer type. Cisplatin resistance was associated with 
hypomethylation at several CpG sites, primarily localized in the intergenic regions of the genome. The 
genes close to the differentially methylated sites were associated with canonical pathways, such as cAMP-
mediated signaling, G-protein coupled receptor (GPCR) signaling, WNT/beta-catenin signaling and human 
embryonic stem cell pluripotency.

Carboplatin resistance
Several mechanisms associated with the development of acquired drug resistance in ovarian cancer have also been 
reported for carboplatin. Fang et al.[35] compared the response of patients with recurrent platinum-resistant ovarian 
cancer who received carboplatin plus the DNMT inhibitor guadecitabine with a standard-of-care chemotherapy 
regimen. Epigenomic and transcriptomic profiling were performed using the Infinium methylation bead 
chips. They defined 94 gene promoters that were significantly hypomethylated by guadecitabine, with 1,659 
genes differentially expressed in pretreatment versus post-treatment tumors resulting in altered immune 
reactivation and DNA repair pathways. In functional analyses, upregulation of the tumor suppressors docking 
protein 2 (DOK2), an adapter protein downstream of tyrosine kinase, and miR-193a silenced by promoter 
methylation restored platinum drug sensitivity of ovarian cancer cells. Lum et al.[34] also characterized and 
functionally validated DOK2 among the genes identified in the epigenome screening using a tissue culture 
carboplatin resistance assay. In the set of methylated candidate genes associated with platinum resistance, 
the loss of DOK2 induced chemotherapy resistance by decreasing the level of apoptosis in response to the 
treatment. de Leon et al.[33] used an Illumina DNA methylation array and profiled carboplatin sensitive 
and resistant ovarian cancer xenografts. In particular, they confirmed that the mRNA expression levels 
of transmembrane protein 88 (TMEM88) were increased in resistant compared to control xenografts and 
correlated with promoter hypomethylation. Its transcriptional regulation by promoter methylation was 
supported by the administration of ovarian cancer cells with the DNMT inhibitor guadecitabine which 
increased TMEM88 mRNA expression levels. TMEM88 knock-down re-sensitized cells to platinum and 
induced upregulation of cyclin D1 and c-Myc, suggesting that TMEM88 inhibited the Wnt signaling pathway.

In approximately 11% of high-grade serous ovarian cancer, BRCA1 promoter methylation is an important 
somatic driver[77]. Using whole-genome sequencing of tumor and germline DNA samples from these patients, 
Patch et al.[78] observed several molecular events associated with acquired resistance to carboplatin-combination 
treatment. They identified a patient who displayed extensive promoter methylation and low expression of BRCA1. 
During the relapse, the patient lost BRCA1 methylation and the gene was expressed at comparable levels to 
homologous-recombination-intact tumors. Comparison of the global methylation patterns of primary and 
recurrence samples suggested a specific rather than a generalized altered methylation status at relapse in this 
patient. 

A phase 1 trial of low-dose decitabine combined with carboplatin in ten patients with recurrent, platinum-resistant 
ovarian cancer was performed by Fang et al.[79] The most common toxicities were nausea, allergic reactions, 
neutropenia, fatigue, anorexia, vomiting and abdominal pain. LINE-1 hypomethylation in peripheral blood 
mononuclear cells (PBMCs) and hypermethylation of HOXA11 and BRCA1 in plasma were detected. One 
complete response was observed, and three additional patients had stable disease for about six months. 
Furthermore, a phase 1b-2a clinical trial of a sequential combination of azacitidine and carboplatin was initiated 
in patients with platinum-resistant or platinum-refractory epithelial ovarian cancer by Fu et al.[80] Among 29 
evaluable patients, this treatment produced one complete response, three partial responses and ten cases of 
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stable disease. The predominant toxicities were fatigue and myelosuppression. Correlative studies indicated 
that DNA methylation of the human leukocyte antigen death receptor 4 (DR4) in peripheral blood leukocytes 
was decreased during treatment in three of four objective responders, but in only five of 13 non-responders. In 
a phase 2 clinical trial, Matei et al.[24] tested the clinical and biological activity of decitabine administered before 
carboplatin in platinum-resistant ovarian cancer patients. Low-dose decitabine altered DNA methylation along 
with the Wnt signaling and apoptosis pathways, restored the sensitivity to carboplatin in patients with heavily 
pretreated ovarian cancer and resulted in a high response rate and prolonged progression-free survival (PFS). 
Demethylation of the DNA mismatch repair gene MLH1, the tumor suppressor genes RASSF1A, HOXA10 and 
HOXA11 in tumors positively correlated with PFS.

Using an ovarian cancer cell line with acquired resistance to carboplatin and genome-wide microarray 
profiling, Coley et al.[36] identified the CDK inhibitor p57 (Kip2) to be downregulated in carboplatin 
resistance. Methylation sites in the p57 promoter and even, a preferential sensitivity to seliciclib, a CDK 
inhibitor, were detected in the cell line. Silencing of p57 decreased the apoptotic response to the effects of 
platinum, but unexpectedly produced sensitization to seliciclib. High levels of p57 mRNA in tumor biopsies 
correlated with complete responses to chemotherapy and improved outcome.

The serine proteases urokinase plasminogen activator and tissue-type plasminogen activator together with 
their major physiological inhibitor, plasminogen activator inhibitor-1 [PAI-1; serine protease inhibitor clade 
E member 1 (SERPINE1)] have been identified as prognostic factors for disease progression and relapse in 
different cancer types since they play important roles in cell adhesion, migration and invasion[81]. Recently, 
Pan et al.[82] revealed that that SERPINE1 may be a promising therapeutic target for chemo-resistance of 
ovarian cancer cells. Microarray screening showed that carboplatin treatment caused hypomethylation of 
the promoter of SERPINE1, and consequently, significantly increased the expression of SERPINE1, resulting 
in induction of the EMT process with decreased expression of E-cadherin and increased expression of 
Vimentin, Snail and Twist. 

As reported by Syed et al.[37], DNA methylation of the Polo-like kinase Plk2 in tumor tissues and serum 
samples was associated with a higher risk of relapse in patients treated postoperatively with carboplatin and 
paclitaxel. They found that platinum resistance can be conferred by the downregulation of Plk2 transcripts 
via promotor methylation in ovarian cancer cells selected for paclitaxel and carboplatin resistance, primary 
tumors and patient sera. In the drug-resistant cells, Plk2 promoter methylation varied with the degree of 
drug resistance and transcriptional silencing of the promoter. Knockdown of Plk2 abrogated G2-M cell-cycle 
blockade by paclitaxel, conferring resistance to both paclitaxel and platinum. Contrary, ectopic expression of 
Plk2 restored sensitivity to G2-M cell cycle blockade and cytotoxicity triggered by paclitaxel. 

Furthermore, Iramaneerat et al.[38] demonstrated that the expression levels of human endogenous retrovirus 
(HERV) K and E were increased in tissues from patients with ovarian clear cell carcinoma (OCCC). 
Methylation levels of HERV were associated with treatment response and prognosis of OCCC. DNA 
methylation levels of HERV-K, HERV-E and LINE-1 were decreased in tissues from patients with advanced 
stage cancer. In particular, HERV-K was significantly less methylated in the platinum-resistant cohort. 
Hypomethylation of HERV-K correlated with a shorter overall and progression-free survival.

Apart from genetic events, epigenetic modification of the SFRP family has been shown to be important 
in regulating the Wnt signaling pathway[48]. Su et al.[39] demonstrated that restoration of SFRP5 expression 
attenuated Wnt signaling in ovarian cancer cells. Cancer cell growth, invasion of cells and tumorigenicity 
were inhibited in mice independently of the canonical pathway. Epigenetic silencing of SFRP5 led to 
oncogenic activation of the Wnt pathway and contributed to ovarian cancer progression and carboplatin 
resistance through the transcription factor Twist-mediated EMT and AKT2 signaling.
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Finally, Glasspool et al.[83] also tested the hypothesis whether a DNA hypomethylating agent can reverse 
resistance to carboplatin in women with relapsed ovarian cancer. Surprisingly, and in contrast to SGI-110, 
the administration of decitabine appeared to reduce rather than increase the efficacy of carboplatin in 
partially platinum-sensitive ovarian cancer patients. These findings provoked the authors to suggest that 
other demethylating agents should be considered in future combination studies.

Cis- and carboplatin resistance
To date, there are some studies that have compared the resistance to both, cis- and carboplatin. Using 
a comprehensive DNA methylation microarray platform, Nogales et al.[40] investigated the relationship of 
resistance to both platinum compounds with the DNA methylation of the putative DNA/RNA helicase 
Schlafen-11 (SLFN11). They identified hypermethylation of promoter CpG sites associated with the silencing 
of this gene that correlated with increased resistance to cis- and carboplatin. Notably, their clinical findings 
showed that those ovarian cancer patients harboring epigenetic inactivation of SLFN11 had a poor response 
to both drugs.

In the biosynthesis of arginine, argininosuccinate synthetase (ASS1) is the rate-limiting enzyme[84]. Down-
regulation of its expression was associated with the development of platinum resistance in ovarian cancer[85]. 
Nicholson et al.[41] showed that ASS1 expression correlated with the ability of ovarian cancer cells to grow 
in media supplemented with cisplatin, carboplatin or taxol or in arginine-depleted media. Aberrant 
methylation of the ASS1 promoter correlated with transcriptional silencing in ovarian cancer cell lines 
leading to selective resistance to platinum-based drugs and conferred arginine auxotrophy and sensitivity 
to arginine deprivation. In ovarian cancer patients at diagnosis, ASS1 methylation was associated with 
significantly reduced overall survival and relapse-free survival. In patients who relapsed, ASS1 methylation 
was significantly more frequent compared to patients who did not relapse, suggesting that hypermethylated 
ASS1 contributes to treatment failure in ovarian cancer.

Metalloestrogens are metals that activate the estrogen receptor in the absence of estradiol. They encompass 
two subclasses: metal/metalloid anions and bivalent cationic metals. Arsenite and selenite belong to the 
subclass of metal/metalloid anions[86]. Aebi et al.[87] demonstrated that selection of cells for resistance to 
platinum resulted in resistance to arsenite and selenite. Since mammalian cells detoxify arsenite and 
selenite by S-adenosylmethionine dependent methylation, they examined whether the latter is involved in 
the cellular metabolism of cisplatin. Treatment of ovarian cancer cells and their cisplatin-resistant subline 
with the S-adenosylhomocysteine hydrolase inhibitor adenosine-dialdehyde, an indirect inhibitor of 
transmethylation, led to a significant increase in the cellular content of S-adenosylhomocysteine without 
changing S-adenosylmethionine. Adenosine dialdehyde synergistically enhanced the cytotoxicity of both, 
cisplatin and carboplatin. These findings indicate that inhibition of S-adenosylmethionine dependent 
transmethylation enhanced the toxicity of cisplatin and carboplatin in ovarian cancer cells in vitro without 
directly affecting the metabolism of either platinum drug.

HISTONE MODIFICATIONS
Epigenetic modifications of histones include methylation, acetylation, phosphorylation, sumoylation, 
glycosylation, ubiquitination, carbonylation and ADP-ribosylation of individual histone components[88]. Such 
histone modifications have a direct effect upon DNA through nucleohistone repositioning. Histone changes 
are heritable and can result in modification of gene expression. Furthermore, the epigenetic modifications 
of histones lead to the deregulation of miRNAs in tumor cells[89]. The effect of epigenetic changes in ovarian 
cancer is well-reviewed by Yang et al.[5]

The combination of DNA methylation inhibitors and HDAC inhibitors synergistically activates gene 
expression[90,91]. Thus, not only DNA methylation but also histone deacetylation has a central role in the 
transcriptional repression of tumor suppressor genes and genes involved in sensitivity to chemotherapy[91]. 
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Cisplatin resistance
There are a few articles on the relationship of histone modifications to platinum resistance. In this regard, 
Cacan et al.[92] identified HDAC and DNMT1 to exhibit an aberrant association with the regulator of G 
protein signaling 10 (RGS10) in chemoresistant ovarian cancer cells. Knockdown of HDAC1 or DNMT1 
expression and pharmacological inhibition of DNMT or HDAC enzymatic activity significantly increased 
RGS10 expression and cisplatin-mediated cell death. Moreover, DNMT1 knockdown decreased HDAC1 
binding to the RGS10 promoter in chemo-resistant cells, suggesting HDAC1 recruitment to RGS10 promoters 
requires DNMT1 activity. 

In both in vitro (cisplatin-resistant ovarian cancer cells) and in vivo (xenografts), Steele et al.[93] observed that 
the combination of decitabine and a clinically relevant inhibitor of HDAC activity (belinostat) increased the 
expression of epigenetically silenced MLH1 gene and MAGE-A1 antigen when compared with decitabine 
alone. The treatment that influenced the histone structure improved the efficacy of chemotherapy in tumors 
that had acquired drug resistance due to DNA methylation and gene silencing. Liu et al.[94] also performed 
in vitro and in vivo studies. In cisplatin-resistant ovarian cancer cells, they showed that HDAC1 knockdown 
suppressed cell proliferation and increased apoptosis. The increase in chemo-sensitivity was caused by 
downregulating the oncogene c-Myc and upregulating miR-34a. Cisplatin treatment activated HDAC1 
and c-Myc and inactivated miR-34a. Inhibition of HDAC1 reduced c-Myc expression, increased miR-34a 
expression and sensitized ovarian cancer cells to cisplatin-induced apoptosis. In vivo studies confirmed these 
findings. They showed that targeting HDAC1 sensitized murine xenograft models to cisplatin treatment. 
Cacan[95] demonstrated that expression of the death receptor FAS is suppressed in cisplatin resistant 
ovarian cells compared to parental cells. Surprisingly, no difference in DNA methylation was observed 
at FAS promoters between both cell lines. However, there were a decrease in acetylated histone H3 and a 
corresponding increase in HDAC1 associated with FAS promoter in resistant cells. Knockdown of HDAC1 
and pharmacological inhibition of HDAC enzymatic activity significantly increased FAS expression in 
resistant cells, suggesting that particularly histone modifications may contribute to the loss of FAS expression 
in cisplatin resistant ovarian cancer cells, and that enhancement of FAS expression may increase tumor cell 
sensitivity to immune cells.

Histone modifications in chemo-resistant cells were evaluated in relationship to oncolytic adenovirus 
efficacy by Hulin-Curtis et al.[96]. In contrast to cisplatin-sensitive ovarian cells displaying an efficient 
shortening of cell viability by adenovirus in the presence of cisplatin, cisplatin-resistant cells diminished this 
reduction of cell viability mediated by adenovirus with increasing doses of cisplatin. HDAC2, and to a lesser 
extent HDAC1, were up-regulated in cisplatin-resistant but not in cisplatin-sensitive cells. Administration 
of cisplatin-resistant cells with trichostatin A (TSA), a HDAC inhibitor significantly enhanced adenovirus 
mediated reduction of cell viability in the presence of cisplatin. Cells treated with TSA alone did not display 
this effect, indicating an adenovirus dependent mechanism. 

Carboplatin resistance
In a phase I trial, Falchook et al.[97] demonstrated that sequential treatment with a combination of the 
nucleoside analogue azacytidine, the HDAC valproic acid and carboplatin decreased DR4 methylation, but 
there was no relationship with either tumor response or number of therapy cycles received. A modest evidence 
of antitumor activity could only be observed in patients with heavily treated advanced malignancies.

MICRORNAS
Besides DNA methylation, the dysregulation of microRNAs (miRNAs) may also be responsible for the 
induction of acquired platinum resistance in ovarian cancer. MiRNAs are, together with long non-coding 
RNAs (lncRNAs) and small RNAs, members of the non-coding RNAs (ncRNAs)[98]. Whilst lncRNAs have 
been confirmed to be epigenetically modified, it is only recently that miRNA epigenetic modifications have 
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been identified and related to cancer[99]. MiRNAs are small ncRNAs that bind to 3’-untranslated regions 
of target mRNA in a sequence-specific fashion and either inhibit the translation of their target mRNA or 
degrade it. MiRNAs are involved in both normal and cancer cellular processes linked to cell division, growth, 
differentiation and ageing[100]. Their behavior is complex in that they are present in both, the nucleus and 
cytoplasm, and their nuclear presence permits them to control gene expression[101,102]. However, subgroups of 
miRNAs, e.g., deregulated epi-miRNAs present in different cancer types target specific epigenetic regulators, 
such as DNMT and histone deacetylase[103,104].

A number of clinically regulated miRNAs have been identified in ovarian cancer. These include upregulated 
miRNAs, miR-15a/16 miR-20a, miR-23a/b, miR-30a/b/c, miR-92, miR-93, miR-106a, miR-146b, miR-182, miR-200, 
miR-203, miR-205, miR-223 and downregulated Let-7a/b/d/f, miR-22, miR-31, miR-34a/b/c, miR-125b, miR-127-3p, 
miR-152, miR-155, miR-181a-3p, miR-382[105].

Cisplatin resistance
A wealth of publications deals with the role of miRNAs in platinum resistance [Table 3]. For example, 
Vera et al.[106] identified four miRNAs (miR-7, miR-132, miR-335 and miR-148a) the deregulation of which 
appears to be a common event in the development of resistance to cisplatin in ovarian cancer. In particular, 
the specific DNA methylation of miR-7 in cisplatin-resistant cell lines was associated with a poor prognosis 
in ovarian cancer patients. The direct regulation of MAFG by miR-7 seems to cause this resistance. 

The human let-7 family comprises 13 members located on nine different chromosomes. The majority of the 
members is involved in the modulation of drug sensitivity in different cancer types[107]. In epithelial ovarian 
cancer, the laboratory of Wang demonstrated that deregulation of let-7e promoted the development of resistance 
to cisplatin[108]. In situ hybridization revealed significantly lower expression levels of let-7e in chemo-resistant 
than chemo-sensitive ovarian cancer tissues. Transfection with let-7e sensitized ovarian cancer cells to cisplatin, 
down-regulated BRCA1 and Rad51 expression and repressed the repair of cisplatin-induced DNA double strand 
break. Low let-7e and high Rad51 levels were significantly associated with poor overall and progression-free 
survival. Multivariate regression and receiver operating characteristic analyses showed that let-7e was an 
independent predictor for chemotherapy response and highly predictive of resistance to cisplatin, suggesting 
that re-expression of let-7e may be an effective strategy for overcoming chemo-resistance[109]. Zhao et al.[110] 
revealed that primary cancer cells from drug sensitive patients are more tumorigenic than those from drug 
resistant women. In 26 drug-sensitive patients, the expression levels of miR-9, miR-145 and miR-429 were 
higher than in 20 drug-resistant cases. Conversely, higher miR-26a expression was observed in resistant 
patients. Inhibition of miR-9 resulted in decreased clonal cell formation and sensitivity to cisplatin, while 
knockdown of the other three miRNAs did not influence drug sensitivity. Sun et al.[111] analyzed the effects of 
miR-9 on cisplatin and PARP [Poly(ADP ribose) polymerase] inhibitor sensitivity in ovarian cancer cells and 
xenograft mice. The impact of miR-9 on prognosis was assessed in a cohort of 113 ovarian cancer patients. 
In ovarian cancer cells, miR-9 bound directly to the 3’-UTR of BRCA1, downregulated BRCA1 expression 
and impeded DNA damage repair. Treatment with miR-9 sensitized BRCA1-proficient xenograft tumors to 
cisplatin. Patients with higher levels of miR-9 had better chemotherapy responses, platinum sensitivity and 
longer progression-free survival.

Using microarrays, Pink et al.[112] identified miR-21-3p, the passenger strand of the known oncogenic miR-21, 
to direct increased resistance to cisplatin in a range of ovarian cell lines, whereas miR-21-5p had an opposite 
effect and increased cisplatin sensitivity. The induction of resistance to cisplatin by miR-21-3p may be caused 
by the binding to its mRNA target of the neuron navigator NAV3. NAV3 is involved in axon guidance during 
development and its knockdown increased resistance to cisplatin.

Jin et al.[113] showed that inhibition of miR-23a expression could significantly increase the sensitivity to 
cisplatin in ovarian cancer cells. The cells were arrested in G0/G1 phase along with an increased apoptosis 
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miRNAs -regulation Targets Ref.
Cisplatin resistance
   miR-7 Down- MAFG [106]
   let7e Down- BRCA1, Rad51 [108,109]
   miR-9 De- BRCA1 [110,111]
   miR-21 Up- NAV3, PTEN, c-IAP2, PDCD4 [112,147-149]
   miR-23a Up- n.d. [113]
   miR-24-3p, 

   miR-192-5p, 

   miR-139-5p,

   miR-155-5p

Up-

Up

Down-

Down-

MAPK signaling pathway

BRCA1, RB1, CDK1, ABL1, CCNA1

MET, SHC1, EGFR, INPPL1

MET, SHC1, EGFR, INPPL1

[150]

   miR-29 Down- n.d. [151]
   miR-30a/c Down- DNMT1, Snail [152]
   miR-30a-5p, 

   miR-34c-5p

Up- n.d. [153]

   miR-31 Up- KCNMA1 [114]
   miR-34a Down- HDAC1 [115]
   miR-93 Down- DNA polymerase η [154]
   miR-101 Down- EZH2 [155]
   miR-106a Up-/down- PDCD4/MCL1 [156,157]
   miR-125b Up- BAK1 [158]
   miR-128 Down- Bmi-1, ABCC5 [116]
   miR-130a Down-/up- MDR1, PTEN, XIAP [159-162]
   miR-130b Down- CSF-1, MDR1, GST-π [117,163]
   miR-133b Down- MDR1, GST-π [164]
   miR-136 Down- n.d. [118]
   miR-139-5p Down- c-Jun [122]
   miR-141 Up- KEAP1 [124]
   miR-142-5p Down- XIAP, BIRC3, BCL2, BCL2L2, MCL1 [165]
   miR-149-5p Up- MST1, SAV1 [166]
   miR-152 Down- ERCC1 [167]
   miR-152

   miR-185

Down- DNMT1 [168]

   miR-186 Down- MDR1 (ABCB1), GST-π, Twist1 [169,170]
   miR-199a Down- DDR1, ITGB8, mTOR [125,171,172]
   miR-199b-5p Down- Jagged1 [173]
   miR-204 Down- IL-6 receptor [174]
   miR-224-5p Up- protein kinase C [126]
   miR-330-5p Down- S100A7 [175]
   miR-335-5p Down- BCL2L2 [176]
   miR-363 Down- Snail [177]
   miR-376c Up- ALK7 [178]
   miR-429 Down- ZEB1 [179]
   miR-449a Down- NOTCH1 [127]
   miR-483-3p Up- protein kinase Cd [128]
   miR-489 Down- Akt3 [180]
   miR-490-3p Down- ABCC2 [181]
   miR-497 Down- mTOR, p70S6K1 [182]
   MiR-509-3p Down- GOLPH3, WLS [131]
   miR-520g Up- DAPK2 [132]
   miR-551b Up- FOXO3, TRIM31 [134]
   miR-634 Down- CCND1, GRB2, ERK2, RSK2 [183]
   miR-708 Down- IGF2BP1 [184]
   miR-770-5p Down- ERCC2 [136]
   miR-873 Down- MDR1 (ABCB1) [185]
   miR-1294 Down- IGF-1 receptor [138]
Carboplatin resistance
   miR-146a Down- n.d. [140]

Table 3. MiRNAs in cis- and carboplatin resistance
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rate. In addition, the expression levels of P-glycoprotein involved in multi-drug resistance (MDR) decreased 
with increasing cisplatin concentrations.

Using microarrays and RNA-sequencing, Samuel et al.[114] assessed the role of miR-31 in the development of 
chemo-resistance to cisplatin. They found increased levels of miR-31 and reduced levels of potassium channel 
calcium activated large conductance subfamily M alpha, member 1 (KCNMA1), a subunit of calcium-regulated 
big potassium (BK) channels in resistant ovarian cells. Overexpression of miR-31, knockdown of KCNMA1 
or inhibition of BK channels increased resistance to cisplatin, suggesting that this resistance was mediated 
by the repression of KCNMA1 through miR-31. 

Recently, Lv et al.[115] showed that the overexpression of HDAC1 decreased cisplatin sensitivity, promoted 
proliferation and blocked the suppressive effects of miR-34a on cell proliferation in ovarian cancer cells. 
Accordingly, miR-34a directly bound to HDAC1, and downregulated its expression, which subsequently 
decreased the resistance to cisplatin and suppressed proliferation in ovarian cancer cells. 

In both epithelial ovarian cancer cell lines and ovarian carcinomas, Li et al.[116] analyzed the expression 
of miR-128 and its targeted genes, the polycomb ring finger oncogene Bmi-1 and the ATP-binding cassette 
subfamily C member 5 (ABCC5). MiR-128 expression was significantly reduced in the cisplatin-resistant 
ovarian cancer cell line compared with its parental SKOV3 cells, and decreased upon treatment with cisplatin 
in a concentration-dependent manner. Overexpression of miR-128 re-sensitized the cells to cisplatin and 
reduced the expression of cisplatin-resistant-related proteins ABCC5 and Bmi-1. Administration of a 
combination of cisplatin and miR-128 inhibited the growth of cisplatin resistant xenograft tumors more 
effectively than cisplatin alone.

Investigating the role of miR-130b in the development of multidrug-resistance, Yang et al.[117] detected that 
down-regulation of miR-130b in ovarian cancer correlated with FIGO III-IV clinical stages, poor histological 
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   miR-148b-5p Down- n.d. [141]
   miR-141,

   miR-200,

   miR-429

Down-/up- n.d. [186]

   miR-484 DOwn- VEGF B, VEGF receptor 2 [187]
Cis- and carboplatin resistance
   miR-21, 

   miR-181a, 

   miR-223,

   miR-486, 

   miR-1908

Down-/up- n.d. [143]

   miR-622 Up- Ku complex [146]

ABCC2: adenosine triphosphate-binding cassette subfamily C member 2; ABCC5: ATP-binding cassette subfamily C member 5; ALK7: 
activin receptor-like kinase 7; BAK1: Bcl-2 antagonist killer 1; BCL2: B-cell lymphoma-2; BCL2L2: BCL2 like 2; BIRC3: baculoviral IAP 
repeat-containing 3; CDK1: cyclin-dependent kinase 1; CCNA1/CCND1: cyclin A1/D1 gene; CSF-1: colony-stimulating factor 1; DAPK2: 
death-associated protein kinase 2; DDR1: Discoidin Domain Receptor 1; DNMT: DNA methyltransferase; EGFR: epithelial growth factor 
receptor; ERCC1: excision repair cross-complementation group 1; ERK1: extracellular signal-regulated kinase 1; EZH2, enhancer of zeste 
homolog 2; FOXO3: forkhead box O3; GRB2: growth factor receptor-bound protein 2; GST-π: glutathione S-transferase π; GOLPH3: 
Golgi phosphoprotein-3; IAP2: inhibitor of apoptosis protein-2; IGF2BP1: insulin-like growth factor 2 mRNA-binding protein 1; INPPL1: 
inositol polyphosphate phosphatase-like 1; ITGB8: integrin subunit beta 8; KEAP1: Kelch-like erythroid-derived cap-n-collar homology- 
(ECH-) associated protein-1; KCNMA1: potassium channel calcium activated large conductance subfamily M alpha, member 1; MFAG: 
musculoaponeurotic fibrosarcoma oncogene family, protein G; MCL1: myeloid cell leukemia sequence 1; MDR1: multidrug resistance 1; 
MET: mesenchymal-epithelial transition factor; MST1: STE20-like kinase; PDCD4: programmed cell death 4; PTEN: phosphatase and 
tensin homolog; mTOR: mammalian target of rapamycin; NAV3: neuron navigator; RB1: retinoblastoma 1; RSK2: ribosomal protein S6 
kinase; S100A7: S100 calcium-binding protein A7; SAV1: salvador homolog 1; SHC1: Src Homology 2 Domain Containing 1; TRIM31: ring 
finger, B-box and coiled-coil domain protein, tripartite motif; VEGF: vascular epithelial growth factor; WLS: wntless (Wnt) ligand secretion 
mediator; XIAP: X-linked inhibitor of apoptosis; ZEB1: zinc finger E-box binding homeobox 1; n.d.: not determined



differentiation and its hypermethylation. Demethylation by the treatment with 5-aza-CdR re-activated miR-130b 
expression in drug resistant ovarian cancer cell lines along with an increase in sensitivity to cisplatin and taxol. 
Thus, downregulation of miR-130b promotes the development of multidrug resistant ovarian cancer partially by 
binding of miR-130b to its target mRNA of the colony-stimulating factor 1 (CSF-1).

As reported by Zhao et al.[118], miR-136 expression was significantly reduced in 34 primary platinum-resistant 
patients and an ovarian cancer cell line. Overexpression of miR-136 decreased the chemo-resistance to 
cisplatin in ovarian cancer cells through inhibition of cell survival and promoting an apoptotic response to 
cisplatin. The percentage of DNA in comet tails, tail length, tail moment and olive tail moment exposed the 
relevance of miR-136 in the repair of cisplatin-induced DNA damage. 

MiRNA-139 has been characterized as a tumor suppressor with anti-oncogenic and anti-metastatic activity 
and consequently, is downregulated in different cancer types[119-121]. Jiang et al.[122] revealed that the expression 
of miR-139-5p was decreased in cisplatin-resistant ovarian cancer cell lines. Re-expression of miR-139-5p 
increased the sensitivity of these cells to cisplatin treatment, inhibited the expression of the activator protein-1 
transcription factor component c-Jun through binding to the 3́ UTR of c-Jun mRNA, and decreased the 
expression of the BCL family member BCL-xL, promoting cisplatin-induced mitochondrial apoptosis. 

Oxidative and electrophilic changes in cells are mainly coordinated by the KEAP1/NRF2 [Kelch-like 
erythroid-derived cap-n-collar homology- (ECH-) associated protein-1/nuclear factor (erythroid-derived 2)-
like 2] axis. Electrophiles react with critical thiol groups of KEAP1 causing the loss of its ability to inhibit 
NRF2. The KEAP1/NRF2 signaling pathway also down-regulates NF-κB transcriptional activity and 
attenuates cytokine-mediated induction of pro-inflammatory genes[123]. van Jaarsveld et al.[124] demonstrated 
that miR-141 directly targets KEAP1, and that downregulation of KEAP1 induced cisplatin resistance. 
Conversely, overexpression of KEAP1 significantly enhanced cisplatin sensitivity. The NF-κB pathway, 
which is regulated by KEAP1, was activated upon miR-141 overexpression, while inhibition of this pathway 
partially reversed miR-141-mediated cisplatin resistance. Furthermore, van Jaarsveld et al.[124] quantified the 
expression levels of miR-141 in 108 serous and 24 non-serous primary ovarian tumors. They found that its 
levels were elevated in non-serous ovarian tumors that did not respond well to therapy. 

A negative correlation between the collagen receptor tyrosine kinase Discoidin Domain Receptor 1 (DDR1) 
and miR-199a-3p was detected by Deng et al.[125] in ovarian cancer tissues. Cell culture experiments confirmed 
that miR-199a-3p decreased the expression of DDR1 via binding to DDR1 mRNA. In ovarian cancer cells, 
the miR-199a promoter was hypermethylated, but not in normal cells. Knockdown of DNMT3A increased 
miR-199a-3p expression and attenuated the expression of DDR1 in ovarian cancer cells, while overexpression 
of miR-199a-3p impaired the migratory, invasive and tumorigenic capabilities of ovarian cancer cells as well 
as enhanced cisplatin resistance through inhibiting DDR1 expression.

Using miRNA microarray analyses, Zhao et al.[126] demonstrated that upregulation of miR-224-5p was 
associated with platinum-based chemo-resistance in ovarian cancer patients. They identified the protein 
kinase Cd gene as one of the targets of miR-224-5p in mediating resistance to cisplatin in ovarian cancer 
patients. These findings indicate that miR-224-5p and protein kinase Cd can serve as predictors and prognostic 
biomarkers for ovarian papillary serous cancer patient response to overall disease-specific survival. 

The Notch receptor family plays an important role in cell differentiation, organ development and 
tumorigenesis, tumor progression, invasion and metastasis. The activation of the Notch signaling pathway 
can both accelerate and restrain tumorigenesis, depending on the cell environment[50]. Zhou et al.[127] 

demonstrated that ectopically expressed miR-449a increased cisplatin sensitivity in cisplatin-resistant ovarian 
cell lines through targeting Notch1 transcripts, inhibited cell proliferation and promoted apoptosis. These 
findings were confirmed with in vitro experiments. When BALB/c nude mice were injected intraperitoneally 
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with cisplatin-resistant ovarian cancer cells transfected with miR-449a, they exhibited enhanced cisplatin 
sensitivity in vivo. 

Based on the interplay between miR-483-3p and protein kinase Cd, Arrighetti et al.[128] explained the 
mechanism of resistance to cisplatin. They observed that miR-483-3p usually involved in apoptosis and cell 
proliferation was up-regulated in cisplatin resistant ovarian cancer cells. This up-regulation of miR-483-3p 
and possibly its binding to protein kinase Cd mRNA interfered with the proliferation of resistant ovarian 
cancer cells, thus, protecting them from DNA damage induced by platinum compounds. 

MiR-509-3p has been reported to sensitize ovarian cancer cells to cisplatin treatment by targeting multiple 
anti-apoptosis genes including BCL2[129,130]. Niu et al.[131] compared the expression profiles of miRNAs between 
three pairs of platinum-resistant and platinum-sensitive ovarian tissues and found that miR-509-3p was 
significantly down-regulated in cisplatin-resistant ovarian cancer tissues. Functional studies demonstrated 
that miR-509-3p inhibitor decreased cell response to cisplatin and promoted cell survival in ovarian cancer 
cells. In this process, miR-509-3p regulated the expression of Golgi phosphoprotein-3 (GOLPH3) and wntless 
Wnt ligand secretion mediator (WLS). 

Previously, Zhang et al.[132] detected that miR-520g contributes to tumor progression and cisplatin resistance 
by post-transcriptionally downregulating its target mRNA of death-associated protein kinase 2 (DAPK2). 
MiR-520g expression gradually increased across normal, benign, borderline and ovarian cancer tissues. 
High miR-520g levels promoted tumor progression and chemo-resistance to cisplatin, and reduced survival 
in ovarian cancer patients. DAPK2 overexpression or miR-520g knockdown reduced ovarian cancer cell 
proliferation, invasion, wound healing and chemo-resistance. 

Ovarian cancer stem cells are involved in tumor growth, metastasis and recurrence. The main characteristics 
of this subpopulation of cancer cells are their uncontrolled proliferation, high invasiveness and resistance 
to the current platinum-based therapies[133]. Using a quantitative PCR array, Wei et al.[134] demonstrated that 
miR-551b was upregulated in ovarian cancer stem cells and that its levels correlated with the pathological 
grades. In vitro experiments indicated that miR-551b inhibited the transcription factor forkhead box O3 
and RING finger, B-box and coiled-coil domain protein TRIM31 (tripartite motif), promoted proliferation, 
invasion and chemo-resistance of ovarian cancer cells and cancer stem cells. Accordingly, in mouse 
xenograft models, the inhibition of miR-551b significantly increased the susceptibility of ovarian cancer 
cells to cisplatin and prolonged the survival of the host mice. 

Excision repair crossing-complementing group 2 (ERCC2), also called xeroderma pigmentosum complementary 
group D (XPD), plays a crucial role in the nucleotide excision repair pathway. In concert with XPA, ERCCR2 
verifies the presence of a relevant base lesion by scanning a DNA strand in the 5'-3' direction, so ensuring the 
accurate removal of the lesion from the genome[135]. In this regard, Zhao et al.[136] examined the function of 
miR-770-5p which targets ERCCR2 in cisplatin chemotherapy resistance in ovarian cancer patients. MiR-770-5p 
expression was reduced in these patients. Overexpression of miR-770-5p reduced survival in chemo-resistant 
cell lines after cisplatin treatment by downregulating ERCC2. A comet assay confirmed that the restoration of 
cisplatin chemo-sensitivity was due to the inhibition of DNA repair. 

The insulin-like growth factor-1 receptor (IGF-1R) is expressed on most transformed cells, where it has 
anti-apoptotic, cell-survival and transforming activities. Its activation is a hallmark for tumor initiation 
and progression[137]. Zhang et al.[138] investigated the effect of miR-1294 on platinum-resistant ovarian cancer 
and documented that miR-1294 dysregulation manipulated ovarian cancer cisplatin resistance through 
regulating IGF1R. Knockdown of IGF1R decreased cell proliferation, migration, invasion and EMT of 
cisplatin-resistant cells. Overexpression of miR-1294 inhibited cisplatin resistance, suggesting that epigenetic 
regulation of IGF1R by miR-1294 was essential for cisplatin resistance. 

Page 288                                 Schwarzenbach et al . Cancer Drug Resist  2019;2:271-96  I  http://dx.doi.org/10.20517/cdr.2019.010



Carboplatin resistance
Our previous data indicated the relevance of dysregulated plasma miR-146a in different breast cancer subtypes, 
suggesting its potential role in breast cancer biology and tumor progression[139]. Wilczyński et al.[140] compared 
miR-146a expression levels in primary tumors and omental metastases of 48 patients who had undergone 
surgery of advanced ovarian serous cancer. The miR-146a levels in primary tumors were elevated compared 
with normal ovary tissues and metastases. There was a negative correlation between miR-146a expression 
in primary tumors and serum amounts of cancer antigen 125 (CA125). Decreased miR-146a expression was 
associated with a shorter overall and progression-free survival, most notably with carboplatin resistance of 
metastases. 

Using real-time qPCR miRNA OpenArrays, Benson et al.[141] measured miRNA concentrations in plasma 
samples from 14 patients with platinum-resistant, recurrent ovarian cancer enrolled in a phase II clinical trial 
that were treated with a low dose of the hypomethylating agent decitabine followed by carboplatin. Ten miRNAs 
(miR-193a-5p, miR-375, miR-339-3p, miR-340-5p, miR-532-3p, miR-133a-3p, miR-25-3p, miR-10a-5p, miR-616-5p 
and miR-148b-5p) displayed multi-fold changes in concentrations in recurrent platinum resistant ovarian 
cancer patients that were associated with a response to decitabine followed by carboplatin chemotherapy. 
In addition, circulating miR-148b-5p concentrations were associated with progression-free survival and 
may represent a novel biomarker for therapeutic response to this chemotherapy regimen in patients with 
recurrent, drug-resistant ovarian cancer.

Cis- and carboplatin resistance
MiRNA can be released by apoptotic and necrotic cells into the blood circulation, but they can also be 
actively secreted in extracellular vesicles (EVs). EVs are thought to play an important role in cell-to-cell 
communication[142]. In this regard, Kuhlmann et al.[143] designed an integrated NGS-based workflow for 
analyzing the signature of EV-associated miRNAs in the plasma of platinum-resistant ovarian cancer 
patients. They found a panel of EV-associated miRNAs, such as miR-181a, miR-1908, miR-21, miR-486 and 
miR-223, which were differentially abundant in the plasma of platinum-resistant patients. 

BRCA1 and BRCA2 play an important role in the homologous recombination DNA repair system. Cells 
harboring mutations of BRCA1/BRCA2 are especially sensitive to platinum[144]. Furthermore, the Ku heterodimer 
consisting of two subunits (Ku70 and Ku80) plays a central role as an initial DNA end binding factor in the 
classical non-homologous end joining pathway[145]. Choi et al.[146] detected a resistance mechanism by which 
miR-622 induced cis- and carboplatin resistance in BRCA1 mutant high-grade serous ovarian carcinomas by 
targeting the Ku complex and restoring homologous recombination mediated double strand break repair. MiR-
622 inversely correlated with Ku expression during the cell cycle, suppressed non-homologous end-joining, but 
facilitated homologous recombination mediated double strand break repair in the S phase. Notably, a high 
expression of miR-622 in BRCA1-deficient high-grade serous ovarian carcinomas correlated with worse 
outcome after platinum chemotherapy. 

CONCLUSION
Despite recent advances in treatment regimens, ovarian cancer remains one of the most deadly diseases 
because of its development of drug resistance. Due to the high number of relapsed ovarian cancer patients, 
new therapy options for platinum resistant disease are needed. The cytotoxicity of platinum is based on the 
formation of DNA adducts, including DNA-protein cross-links, DNA monoadducts and interstrand DNA 
cross-links, activating DNA damage and consequently, the cell death pathway. However, the events leading 
to platinum resistance are not well understood. Besides genetic alterations, changes in epigenetic regulation 
may contribute to this resistance. In particular, epigenetically silenced tumor suppressor genes involved in 
apoptosis, DNA repair and the cell cycle may be the main reasons for drug resistance. As shown by previous 
studies and described above, among other factors, BRCA1, BRCA2, MLH1, p53 and p21 contribute to platinum 
resistance via DNA damage and repair, while p21, RASSF1, Bax and p53 contribute via apoptosis. The most 
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relevant signaling pathways and processes participating in platinum resistance include Wnt, PI3K/Akt, 
Notch, NF-κB and EMT. As specified above, epigenetic therapies appear to be promising therapy strategies. 
Combined administration of DNMT and HDAC inhibitors may re-express silenced tumor suppressor genes. 
Moreover, changes in the methylation profiles of ovarian cancer have led to the testing of new combination 
treatment regimes. Therapeutics to inhibit DNMT, including azacitidine and decitabine, were successfully 
developed and approved for treatment. In 2010, Fang et al.[79] were the first to assess decitabine at repeated 
low doses to reduce DNA methylation and re-instate cisplatin sensitivity in a Phase 1 clinical trial of HGSOC 
patients. Other therapeutic agents that target methylation include SGI-110 as a nucleoside analogue and 
valproic acid, and seem to be beneficial in the treatment of diverse cancer types. 

Further epigenetic targets could be miRNAs that are also involved in tumor suppressor silencing. 
Accordingly, miRNAs are attractive candidates for developing a new class of drugs that specifically target 
miRNA pathways. For example, promising targets to date are miR-622[146] that targets the Ku pathway and 
miR-484 that targets both VEGFB and VEGFR2 pathways as well as tumor vasculature[187]. As reviewed 
above, many other miRNAs have also been associated with resistance to cis- and carboplatin in ovarian 
cancer. Therefore, determining which miRNAs are the best for miRNA targeted therapy development will be a 
challenge. In this regard, several mechanisms to target miRNAs are currently in development for cancer treatment. 
Down-regulation of target oncogenes by re-expression of tumor suppressor miRNAs, or re-expression of tumor 
suppressor genes by silencing of oncogenic miRNAs is anticipated to sensitize tumor to platinum treatment. 
Restoring and blocking miRNA function may be performed by replacement of tumor suppressor miRNAs 
with either synthetic or viral vectors encoded for miRNA mimics, or by antisense-mediated inhibition of 
oncogenic miRNAs, respectively. The above studies provide promising results to re-sensitize both ovarian 
cancer cell lines and animal models to platinum therapy, so laying the basis for effective epigenetic drugs in 
combination with platinum-based agents. In future, cis- or carboplatin therapies combined with epigenetic 
drugs may shed light on the potential of personalized treatment modalities to overcome resistance in women 
with recurrent ovarian cancer. 
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