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Abstract
Even if their impact is often underestimated, yeasts and yeast-like fungi represent the most prevalent eukaryotic 
members of microbial communities on Earth. They play numerous roles in natural ecosystems and in association 
with their hosts. They are involved in the food industry and pharmaceutical production, but they can also cause 
diseases in other organisms, making the understanding of their biology mandatory. The ongoing loss of biodiversity 
due to overexploitation of environmental resources is a growing concern in many countries. Therefore, it becomes 
crucial to understand the ecology and evolutionary history of these organisms to systematically classify them. To 
achieve this, it is essential that our knowledge of the mycobiota reaches a level similar to that of the bacterial 
communities. To overcome the existing challenges in the study of fungal communities, the first step should be the 
establishment of standardized techniques for the correct identification of species, even from complex matrices, 
both in wet lab practices and in bioinformatic tools.
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INTRODUCTION
In natural microbial systems, including host-associated microbiomes, microbial eukaryotes coexist with 
bacteria, archaea, and viruses, acting as decomposers, predators, parasites, and producers[1]. Theoretically, 
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any ecosystem on Earth hosts eukaryotic microorganisms, from extremophiles in geothermal vents to 
endophytic fungi in plants to parasites or commensals with the gastrointestinal tracts of animals. In host- 
associated microbiomes, microbial eukaryotes implement complex interactions with their hosts: in plants, 
they defend the host against herbivorous organisms and enhance nutrients assimilation[2]; in animals, they 
can metabolize plant compounds in the host’s gastrointestinal systems[3]. However, both plants and animals 
can also be afflicted by microbial eukaryotes[4,5]. In humans, microbial eukaryotes interact with the host 
immune system in intricate ways. The low diversity in microbiomes from industrialized countries reflects 
the “extinction” reported for bacterial communities, which is a result of globalization[6-8]. Beyond host 
interactions, microbial eukaryotes are essential to the ecology of aquatic and soil ecosystems, where they 
serve as primary producers, symbiotic partners, decomposers, and predators[9,10].

Fungi constitute the group of eukaryotes with the highest diversity and global distribution. Thanks to a wide 
range of morphological, physiological, and ecological features, these organisms have evolved to colonize the 
most diverse ecosystems[11]. Within the fungal kingdom, yeasts are not strictly identified, as the term refers 
to a unicellular lifestyle that has evolved several times rather than a taxonomic unit[12]. Yeasts and yeast-like 
fungi are the most prevalent eukaryotic components of the microbiota due to their ubiquity, yet their 
abundance and influence are frequently underestimated.

Despite their relevance, eukaryotic microorganisms are generally largely neglected in microbiome 
investigations[13]. Traditionally, culture-based techniques have been employed to explore and study 
microbial diversity and to obtain a representative set of isolates based on physicochemical variation. 
However, due to intrinsic methodological limitations, this approach has been progressively replaced by 
culture-independent ones, although it has been rediscovered and subjected to various refinements in recent 
years to enable the capture of a broader spectrum of microorganisms[14,15]. Following the advent of Sanger 
sequencing, the use of DNA for the identification of microorganisms has become standard practice, 
revolutionizing microbial genotyping and taxonomy[16,17]. The most recent rise of second- and third-
generation sequencing approaches has facilitated the advancement of eukaryotic-specific amplicon 
sequencing, which is revolutionizing our understanding of the eukaryotic diversity in host-associated and 
environmental microbiomes[18-22]. Like all amplicon-based techniques, this approach can suffer from poor 
taxonomic precision and difficulty discriminating between closely related species[23,24]. In contrast, whole 
metagenome sequencing captures DNA from the entire pool of species present in a microbiome, including 
eukaryotes, without the need for experimental selection. Whole metagenome sequencing data are becoming 
predominant in microbiome research because they can be used to assemble unknown genomes, classify 
strains, and assess the presence or absence of genes and pathways[25]. These methods are useful for 
identifying bacteria and archaea, but microbiome-associated eukaryotes, such as yeasts, are still difficult to 
detect, especially in large metagenome sequencing datasets. One of the main reasons for this issue is that 
despite being part of one of the largest branches of the “Tree of Life”, the number of high-quality fungal 
target sequences or genomes in curated databases is still significantly lower than that of available bacterial 
ones, severely limiting the possibility of properly investigating these organisms.

The aim of this review is to outline the current state of research regarding the techniques and experimental 
pipelines for the study of yeast metagenomics, focusing on the currently unresolved methodological 
challenges as well as the pros and cons of each different approach.

MYCOBIOME: FOCUS ON YEASTS
The term “mycobiome”, coined in 2009[26] for a study of fungal communities on salt marsh plants using 
molecular fingerprinting, was then used in 2010 to refer to the human oral mycobiome[27], Now, it is used to 
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indicate the fungal component of every microbial ecosystem. Within the fungal kingdom, the term “yeast” is 
used to describe any fungus that reproduces asexually by budding or fission, produces single-cell stages, and 
has sexual structures that are not enclosed in a fruiting body[28]. This broad description is frequently used to 
encompass dimorphic lineages that produce mycelial growth in their sexual phases, as well as biotrophic 
diseases and black yeasts. As a result, they do not constitute a taxonomic unit but rather a lifestyle shared by 
multiple distinct lineages, even though there are several exceptions and comments to the labile border 
between yeasts and dimorphic filamentous fungi that produce yeast-like stages, along with yeast lineages 
that grow solely as filamentous, are outlined[29].

Yeasts occur in the division Ascomycota, mainly in the subdivisions Saccharomycotina (so-called budding 
yeasts) and Taphrinomycotina (that also includes so-called fission yeasts), as well as in three subdivisions of 
Basidiomycota, namely Ustilaginomycotina, Pucciniomycotina, and Agaricomycotina[30].

These unicellular organisms have become popular in a various applications, including baking, brewing, 
winemaking, distilling, and an assortment of other conventional and non-conventional fermentations. They 
also serve as a versatile tool in biotechnology[31], encompassing some of the most widely used model species 
(e.g., Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans). The rapid expansion of 
scientific understanding of yeast diversity is attributed to the uncovering of new species in nature and the 
use of specific identification tools like nutritional tests, biochemical and molecular characterizations, and 
DNA barcode technology. As a result of this technological advancement, previously identified fungal species 
are continuously reevaluated, and the concept of yeast species itself is evolving[32].

According to existing estimates, only a small fraction (about 5%-10%, depending on the environment) of the 
entire variety of fungi has been identified[33,34]. It is estimated that Earth hosts between 2.2 and 3.8 million 
fungal species[35], yet only about 4% of these are cataloged[36]. This situation likely holds true for yeast as well. 
Out of the approximately 150,000 fungal species described so far[37], only around 2,000 are yeasts. The 
mycobiome is often neglected, both due to its lower abundance compared to bacteria and the 
methodological challenges associated with its detection[38].

The high incidence of cryptic and hybrid species hampers efforts to accurately quantify species diversity. 
These issues have long been acknowledged, but the advent of whole-genome sequencing has brought them 
to the forefront[39]. In fact, when speaking about genomes, fungi exhibit more complex genetic features 
compared to bacteria, including multiple chromosomes, expanded repeated regions, and larger genome 
sizes, all of which introduce inaccuracies during sequence classification. Therefore, there is a need for 
comprehensive benchmarking of both classification algorithms and databases to optimize identification 
pipelines for the fungal kingdom.

CHARACTERISING THE MYCOBIOME: IDENTIFICATION AND TECHNOLOGICAL ISSUES
As mentioned above, many questions regarding mycobiota remain to be addressed. Several methodologies 
commonly applied for the investigation of the bacteriome are not consistent when used for studying the 
fungal community. Consequently, non-standardized techniques, technical challenges, restricted availability 
of reference data, and other issues have emerged[40]. Therefore, it is crucial to enhance our knowledge and 
expand the spectrum of available technologies in order to address the challenges posed by the fungal 
communities inhabiting the environmental ecosystem and our bodies.
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Culture-dependent approaches
Traditionally, culture-dependent approaches been employed to investigate microorganisms’ diversity, 
including fungi. However, these techniques have well-known limitations. For instance, many species remain 
undetected because appropriate culture conditions are either unknown or challenging to reproduce[41]. 
Moreover, culture methods are time-consuming and hardly suitable for high-throughput analysis. 
Culturomic approaches offer undeniable benefit as they provide access to the fungus itself, allowing for the 
assessment of its viability, metabolites, phenotypical and functional characterization, and other host-
adaptation features[42]. In recent years, the integration between culture- dependent and culture-independent 
approaches has increased, thanks to molecular techniques. Sequencing of large portions or entire microbial 
genomes has provided the necessary information for fine-tuning the growth conditions of even those 
microorganisms considered “unculturable” until a few years ago[43,44]. As a result, culture-dependent 
approaches remain useful and of great interest[45,46]. This is especially important given that some fungal 
strains cannot be accurately identified by a culture-independent method. This underrepresentation of some 
species might result from factors such as cell wall structure or the inadequacy of the chosen PCR primers 
and/or barcode sequence[47]. However, the identification process for isolated fungal strains is not yet 
complete and requires further steps, often involving culture-independent approaches.

Culture-independent approaches
The use of DNA as an identifying marker in culture-independent approaches avoids some of the 
aforementioned issues. However, this method strongly relies on the choice and efficiency of DNA recovery 
methods, and it also introduces new limits and hurdles [Figure 1]. Fungi, unlike bacteria, have a strong and 
complex cell wall rich in glucans and chitin[48-51]. Consequently, the efficient destruction of the fungal cell 
wall is crucial for genomic DNA extraction. Several bead-beating stages followed by enzymatic cell lysis are 
required for successful mycobiota analysis of any sample matrix[47]. Following DNA extraction, different 
approaches can be used to detect and identify fungi. This methods may include PCR[52], metabarcoding 
sequencing analysis, or whole genome sequencing (WGS) metagenomics.

Amplicon-based sequencing: a matter of target
While amplicon sequencing techniques have successfully revealed the microbiome of a plethora of 
organisms[53-56], the choice of the marker to use is crucial as it drastically affects the type of organisms that 
can be detected. In the micro-eukaryotic world, mainly composed of fungi, protists, algae, and other 
microorganisms known to inhabit almost all ecological niches explored on Earth, the selection of 
“universal” targets is limited [Table 1]. Only a few available pipelines are available to cope with markers 
different from the well-known bacterial 16S rRNA gene[57-60].

Similarly to bacterial metabarcoding, the usual fungal barcode is the rRNA gene locus, which includes the 
genes for 18S rRNA, 5.8S rRNA, and 28S rRNA, separated by the internal transcribed spacers (ITS1 and 
ITS2). This approach seems to discriminate better at higher taxonomic ranks than the 16S rRNA gene[61]. 
After exploring fungal rRNA genes, Schoch et al. in 2012 identified the ITS as the possible universal DNA 
barcode identifier for fungi[24,62], although currently, it is still not clear which of the two ITS components has 
the better resolution in strain prediction. Recent findings has shown that both regions suffer from 
amplification biases, resulting in an uneven representation of synthetic fungal communities[63-65]: ITS1-based 
PCR appears to favor Basidiomycota, whereas Ascomycota seems to be favored by ITS2-based PCR[66-68], 
although this consideration should not be generalized. In fact, there are known ascomycetes species (such as 
the ones belonging to the genera Saccharomyces and Komagataella) that are discriminated with greater 
resolution by employing the ITS1 marker[69]. Hoggard et al. recommend the selection of the ITS2 region in 
human mycobiota investigation after comparing four sets of primers targeting the small subunit (SSU) 
rRNA (18S), ITS1, ITS2, and large subunit (LSU) rRNA (26S) genomic regions[70]. In yeast, the D1/D2 
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Table 1. List of barcode loci for fungal taxonomic identification

Genomic locus Proposed by Ref.

ITS1-4 (whole region) Schoch et al. [24]

ITS1 as preferred for Basidiomycota identification Bellemain et al. [68]

ITS2 as preferred for Ascomycota identification Bellemain et al. [68]

ITS2 as preferred for human mycobiota identification Hoggard et al. [70]

ITS2 subregion Nilsson et al. [62]

TEF1α James et al. [77]

TOP1 Stielow et al. [76]

PGK Stielow et al. [76]

RPB1 Matheny et al. [78]

RPB2 for environmental fungal communities V�trovský et al. [80]

IGS Morrison et al. [81]

β-tubulin Geiser et al. [82]

[72]

IGS: Intergenic spacer; LSU: large subunit; PGK: phosphoglycerate kinase; TOP1: topoisomerase I.

Figure 1. Schematic representation of current limitations in culture-independent methods.

region of the LSU gene cluster within the ribosomal DNA (rDNA) has been a longstanding and effective 
tool for species identification and strain differentiation, pre-dating the conceptualization of DNA 
barcoding[71,72]. In addition, Nilsson et al. propose a set of fungus-specific primers with superior coverage of 
the fungal kingdom, targeting the ITS2 sub-region with degenerate forward primers gITS7ngs and a reverse 
primer ITS4ng[61]. Besides primers’ choice, length variation among ITS sequences from fungal species, 
spanning from 200 to 800 bp, has a strong impact on PCR efficiency as well as sequencing technologies[73,74]. 
Moreover, not only is this region present in multiple copies within one species[75], but intragenomic 
variation within a single species, such as numerous paralogous or non-orthologous copies, may lead to an 
overestimation of global fungal diversity[24]. Since the ITS copy number has highly interspecific variation, an 
accurate determination of fungal abundance is hard to reach, and quantitative comparisons between diverse 
species in mixed populations must be made with caution. The lack of universal taxonomic resolution and 
the potential presence of non-homologous ITS copies in the genome made the identification of 
supplementary molecular markers necessary. Using in silico pipelines, Stielow et al.[76] confirmed the already 
known TEF1α[77] as a secondary barcoding marker for fungi and proposed the genes topoisomerase I 
(TOP1) and phosphoglycerate kinase (PGK) as promising ascomycetes identifiers based on the analysis of 
complete sequenced genomes[76]. Other suggested secondary markers for fungal DNA amplification are the 

LSU (D1/D2 region) Kurtzman and Robnett
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intergenic spacer (IGS), RNA polymerase II (RPB1 and RPB2), β-tubulin II (TUB2), and the 
minichromosome maintenance complex component 7 (MCM7) protein[78-82]. The selection of one or more 
reference genes is crucial for standardization and promotion of large-scale investigations, but in some cases, 
primer bias in targeted sequencing can be overcome by opting for the shotgun metagenomic approach.

Metagenomic whole genome sequencing
Shotgun metagenomic sequencing allows for a higher taxonomic resolution as it sequences most of the 
genomes of every organism present within a sample[83]. This capability not only to identifies the organism 
but also characterizes extended profiles, including antimicrobial resistance, genetic subtypes, metabolism, 
and virulence[84]. Despite being a highly effective method for describing pathways and discovering novel 
functions, shotgun metagenomics is significantly more expensive and computationally more intensive than 
amplicon sequencing, depending on sequencing depth[85].

Moreover, due to its non-specificity, WGS is the most unbiased technique but also the most sensitive to host 
DNA contamination, especially in soft tissues and biological fluid samples where host DNA can dominate 
the sequenced reads[86]. This sensitivity is a significant concern for the study of mycobiota since fungi 
represent only a small fraction of the total microbial biomass. Achieving adequate sequencing depth is 
required to perform the analysis. Currently, it appears that low fungal abundance in human samples is 
impeding the broad use of metagenomic WGS in human samples, a finding that is unrelated to DNA 
extraction techniques and reflects really low total in vivo fungal abundance[87].

The development of high-throughput sequencing techniques has greatly benefited our understanding of 
microbial ecology. Nevertheless, the most common methods currently in use, which produce short reads, 
often suffer from limited species-level resolution and identification uncertainty. Fortunately, recent 
developments in long-read sequencing technologies by PacBio and Oxford Nanopore are enabling the 
reconstruction of more complete fungal genomes. These long reads, often exceeding 10 kb in length, can 
cover critical genomic regions, including highly repetitive ones[84,88-91].

Using long-read sequencers, researchers have successfully generated whole genomes of major pathogenic 
fungi, often in combination with short-read sequencing, a technique known as hybrid assemblies[92-99].

Bioinformatics
In metagenomics and metabarcoding analyses, data interpretation is a significant challenge. While these 
approaches enhance the objectivity of fungal phylogeny and subsequent accurate identification, they 
simultaneously generate ever-growing amounts of sequencing data. Addressing the prompt delivery of the 
enormous amount of sequence data available to end user introduces a new challenge.

Databases: need for unification
Thanks to advancements in computational technology and bioinformatics tools, large volumes of data can 
now be easily stored, annotated, and accessed remotely with relative ease. As a result, a surplus of nucleotide 
sequence databases for fungal studies was created[23]. The strategic value of a database is based on its 
accessibility, through which end users may deposit, save, annotate, and retrieve data. It must be considered 
that every database has an intrinsic proclivity to become outdated over time. To maintain useful and 
relevant databases for diagnostics and research, a dedicated group of trained professionals is required to 
carry out an ongoing and systematic curation. Over the last decade, many online fungal databases have been 
established for the mycology research community. However, not all of them have a dedicated team of 
curators or an updated maintenance system. Some of the most widely used repositories [Table 2], such as 
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Table 2. Principal genomic databases described according to their ability to discriminate fungal sequences

Database Ref. Description
Taxonomic 
discriminative 
potential

AspGD [100] AspGD focuses on the genomes of Aspergillus species. It provides detailed 
genomic data, including gene annotations, functional information, and 
comparative genomics. Enables the identification of both the species and strain 
levels.

High within the 
genus Aspergillus

BOLD [101] BOLD is a comprehensive online platform primarily dedicated to DNA barcoding 
and biodiversity research. While it is a valuable resource, its primary focus is on 
animal barcoding. As a result, its fungal taxonomic discriminative potential is 
limited compared to databases specifically tailored for fungi.

Limited

Broad Insitute 
Database

http://www.
broadinstitute.org/
scientific-community/
data/

The Broad Institute has contributed extensively to fungal genomics. It offers 
genomic data for a variety of fungal species, with an emphasis on pathogenic 
fungi.

High

CGD [102] CGD is dedicated to Candida species, and it offers genomic sequences, gene 
annotations, and pathogenicity-related information, supporting research on the 
genus Candida.

High within the 
genus Candida

CYGD [103] CYGD offers comprehensive genome annotation and functional data primarily 
for Saccharomyces cerevisiae. While it provides essential information for yeast 
research, its taxonomic scope is restricted to this species.

Limited to species S. 
cerevisiae

Ensembl 
Fungi

https://fungi.ensembl.
org

Ensembl Fungi is a component of the Ensembl project, offering genomic data and 
tools for various fungal species. While it covers a range of fungi, it may be more 
comprehensive for some taxa than others.

Moderate

FungiDB [104] FungiDB is a genomic database focused on fungal pathogens. It includes a 
diverse set of fungal genomes, with an emphasis on medically important species.

Moderate

FUNGIpath [105] FUNGIpath is a resource for fungal pathogen genomics. It provides genomic 
sequences and annotations for pathogenic fungi, with relevance to disease 
research.

Moderate

Fusarium-ID [106] Fusarium-ID is a specialized database for Fusarium species identification and 
classification. It provides detailed molecular and phenotypic data for various 
Fusarium species, including pathogenic strains.

High within the 
genus Fusarium

Fusarium 
MLST

[107] Fusarium MLST is a database that focuses on sequence-based typing for 
Fusarium species. It allows researchers to differentiate between closely related 
Fusarium isolates by analyzing multiple gene loci. This database is particularly 
useful for studying genetic diversity within the genus.

High within the 
genus Fusarium

ISHAM-ITS [108] ISHAM-ITS database is designed to aid in the identification and classification of 
medically important fungi using the fungal Internal Transcribed Spacer (ITS) 
region of ribosomal DNA. Its taxonomic discriminative potential is high within 
the context of identifying and characterizing fungi relevant to human and animal 
health.

High within the 
medical mycology

ISHAM-
MLST

http://mlst.
mycologylab.org/

ISHAM-MLST is dedicated to the Multilocus Sequence Typing of medically 
important fungi, particularly those associated with human and animal mycoses. 
It has a higher taxonomic discriminative potential for distinguishing between 
closely related strains within a species.

Very high within the 
medical mycology

JGI 
MycoCosm

[109] MycoCosm, hosted by the JGI, provides access to a diverse collection of fungal 
genomes, including those from various taxonomic groups, making it suitable for 
discriminative research.

High

NCBI 
GenBank

https://www.ncbi.nlm.
nih.gov/genbank/

NCBI GenBank is a comprehensive and widely used repository for genomic data. 
It covers a wide taxonomic range, including fungi, but the level of detail and 
annotation quality can vary.

Moderate to high

NCBI RefSeq http://www.ncbi.nlm.
nih.gov/refseq/

NCBI RefSeq offers high-quality genomic annotations and reference sequences, 
making it a preferred choice for researchers seeking accurate taxonomic and 
functional information for well-studied fungal species.

High

PomBase [110] PomBase is primarily focused on Schizosaccharomyces pombe. It provides detailed 
genomic and functional information for this species, making it an excellent 
resource for S. pombe research. However, its taxonomic scope is limited to this 
species.

Limited to species S. 
pombe

SGD [111] SGD is dedicated to Saccharomyces cerevisiae and is a comprehensive resource. 
While its primary focus is S. cerevisiae, it contains extensive genomic and 
functional data that can support the study of other Saccharomyces species as 
well.

High within the 
genus Saccharomyces

UNITE provides a comprehensive collection of fungal ITS sequences, covering a 
broad range of fungal taxa, from common and well-studied species to rare and 

UNITE [112] High

less-known fungi.

http://www.broadinstitute.org/scientific-community/data/
http://www.broadinstitute.org/scientific-community/data/
http://www.broadinstitute.org/scientific-community/data/
http://www.broadinstitute.org/scientific-community/data/
https://fungi.ensembl.org
https://fungi.ensembl.org
http://mlst.mycologylab.org/
http://mlst.mycologylab.org/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/refseq/
http://www.ncbi.nlm.nih.gov/refseq/
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AspGD: Aspergillus genome database; BOLD: barcode of life data systems; CGD: candida genome database; CYGD: comprehensive yeast 
genome database; ISHAM-ITS: international society for human and animal mycology-internal transcribed spacer; ISHAM-MLST: international 
society for human and animal mycology - multilocus sequence typing; JGI: joint genome institute; MLST: multilocus sequence typing; SGD: 
saccharomyces genome database.

NCBI RefSeq (

Aspergillus Genome Database (AspGD)[100], Barcode of Life Data Systems (BOLD)[101], Broad Institute
databases (http://www.broadinstitute.org/scientific-community/data/), Candida Genome Database (CGD)[102],
Comprehensive Yeast Genome Database (CYGD)[103], Ensembl Fungi (https:// fungi.ensembl.org),
FungiDB[104], FUNGIpath[105], Fusarium-ID[106], Fusarium Multilocus Sequence Typing (MLST)[107],
International Society for Human and Animal Mycology-Internal Transcribed Spacer (ISHAM-ITS)[108],
International Society for Human and Animal Mycology - MultiLocus Sequence Typing (ISHAM-MLST)
(http://mlst.mycologylab.org/), JGI MycoCosm[109], NCBI GenBank (https://www.ncbi.nlm.nih.gov/ genbank/),

http://www.ncbi.nlm.nih.gov/refseq/), PomBase[110], Saccharomyces Genome Database
(SGD)[111], and UNITE[112] have been resumed and extensively classified by Prakash et al.[113]. To avoid the
hampering issues of comprehensive data management, they suggest a cloud-based, dynamic network
platform based on the integration of particular focused-group databases with maximum access and functional
characteristics for the user community.

One of the most concerning analytic challenges in mycobiota investigations is the inadequate curation of
fungal databases. This deficiency in high-quality fungal sequences within curated databases results in a
substantial number of unclassified reads. Addressing this issue may involve producing additional high-
quality metagenomic and whole-fungal genome assemblies[87]. Furthermore, sequencing data are frequently
devoid of any biologically relevant information, such as the substrate of origin or details on the technology
used. Thus, well-curated fungal databases with accurate sequence data play a pivotal role in further research
and diagnostics in the field of mycology. The current fungal databases only poorly represent the diversity of
the fungal kingdom, limiting their analytical power.

Pipelines
The bioinformatics analysis workflow for amplicon data can be summarized into four main steps: (i) pre-
processing; (ii) “grouping” of amplicon sequences; (iii) taxonomic classification; and (iv) visualization and
statistical analysis[114]. While various tools can be used in each of these steps, producing slightly different
results, the second step, in particular, is crucial. Amplicon sequences can be clustered based on their
similarity[115-119], akin to classical clustering techniques such as k-mean clustering or agglomerative clustering
- or based on single nucleotide differences across them, an approach currently known as sequence variant
inference[60]. Methods falling into the first category profile bacterial communities by grouping similar
sequences into Operational Taxonomic Units (OTUs), but the definition of a similarity threshold has always
been empirical. As a consequence, these methods tend to produce a large number of OTUs that are not
always biologically relevant, an issue that goes by the name of “OTU inflation”[120]. This massive production
of OTUs may lead to wrong conclusions and/or to the generation of huge datasets, which can be difficult to
analyze. Tackling this issue is not trivial, and a series of novel approaches have been proposed. These
approaches rely on the definition of sequence variants from single nucleotide differences in the amplicon
reconstruction, trying to profile microbial communities based on “real” differences instead of sequence
similarity. Nowadays, the research communities are gradually moving to the new concept of Amplicons
Sequence Variants (ASVs) or Exact Sequences Variants (ESVs)[121] for profiling bacterial communities, and
it should also be recommended for yeasts and yeast-like organisms. These approaches generate an error
model for each sequencing run, which enables discriminating between a true sequence variant (i.e., one

http://www.broadinstitute.org/scientific-community/data/
https://fungi.ensembl.org
http://mlst.mycologylab.org/
https://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/refseq/
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sequence with a single SNP with respect to another) from sequencing errors[60]. Since these processes rely on 
the single nucleotide variation of amplicons for defining taxonomy, they usually lead to an increased 
estimation of alpha diversity, mainly due to their higher sensitivity with respect to identity-based 
approaches. One of the greatest assumptions of these methods is that the amplicon sequence should not 
vary in length, and ITS sequences from fungi do not share this assumption. This may lead to biases in the 
discriminatory potential of these methods, even if, at present, no extensive survey has been performed[122]. 
To reduce these biases, a number of ITS sequencing-based systems have been created to identify different 
fungal species. Some of them are able to examine both 16S rRNA (from bacteria) and ITS (from fungi), such 
as Kraken[123], Mothur[115], Qiime[119,124], Vsearch[117], and DADA2[60]; others are specialized on fungi only, such 
as Plutof[125], Clotu[126], PIPITS[116], CloVR-ITS[127], MICCA[128], and BioMaS[129]. Despite these well-known 
issues, standardized pipelines are still to come, leaving the choice of the analysis method in the hands of 
researchers. This situation opens a whole new scenario where researchers are responsible for the pipeline 
they used (which, in most cases, is published and freely available), and this choice may alter the research 
outcomes[130], paving the way for contrasting conclusions. Although pipelines based on the bacterial 16S 
gene (or part of it) have been extensively used in the last three decades, the “yeast world” remains largely 
unexplored, and the effect of one pipeline compared to another is unpredictable. A summary of the main 
pipelines available is reported in Table 3[60,115-117,119,123,124,126-129,131,132].

In the context of metagenomic WGS, two primary strategies are commonly employed to analyze raw data: 
the alignment-based approach and the assembly-based approach. The first one involves mapping individual 
sequencing reads to a reference database or a reference genome. On the other hand, the second approach 
assembles reads de novo to form contigs, which are then clustered into so-called genome bins during a 
binning process. Combining both approaches is frequently advocated for result accuracy[84]. By now, many 
bioinformatic tools are available. Alignment-based tools are strong in taxonomic profiling and identifying 
known microorganisms. They include a step of fragment recruitment in order to map all the reads to one or 
more selected references. Among taxonomic profilers, MetaPlhAn2[133], Kraken2[134], and DIAMOND[135] 
stand out for different skills. If you need high specificity and rapid analysis, MetaPhlAn2 might be a good 
choice. For comprehensive database coverage and strain-level resolution, Kraken 2 is valuable. DIAMOND 
allows customization and offers fast alignment capabilities, but it requires additional steps for taxonomic 
profiling. Assembly-based tools, instead, are essential for discovering novel organisms and in-depth 
functional analysis within metagenomic communities. Their workflow includes an assembler[136] that is well 
suited for the reconstruction of long contigs and a genome binner to cluster such sequences from the same 
organism[137]. When selecting an assembler for WGS data, the type of sequencing technology used, the 
genome size, the desired level of assembly completeness, and the availability of computational resources 
should be taken into consideration. MetaSPAdes[138], MegaHit[139], and IDBA-UD[140] are the most popular 
metagenome assemblers, also for fungal genomes. As well as for assemblers, there is no binning tool 
designed exclusively for fungal sequences, so general metagenomic binners are being used, like 
METABAT2[141], CONCOCT[142], MaxBin 2.0[143] and MetaWrap[144] to name a few of the most efficient. Many 
researchers also employ hybrid assembly strategies that combine short-read and long-read data to achieve 
more accurate and complete genome assemblies[95]. To delve deeper into the metagenomic data beyond 
taxonomic composition, functional annotation becomes necessary. Fragment recruitment, as previously 
described, involves leveraging a database of functionally annotated genes or proteins. This approach 
provides a straightforward means to achieve functional annotation. Subsequently, annotations showing a 
specific level of coverage can be linked to various aspects, such as metabolic pathways, with tools like 
KEGG[145]. Metagenomic WGS of fungi offers valuable insights into complex fungal communities, but it also 
comes with several drawbacks and challenges. Bioinformatic complexity, functional annotation, short-read 
sequencing, not standardized pipelines, data volume and processing are probably the main ones. Addressing 
these drawbacks often requires a combination of improved sequencing technologies, more comprehensive 
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Table 3. List of currently available pipelines for meta-barcoding

Name Clustering algorithm Yeast-specific Ref.

Clotu Identity-based clustering Yes [126]

PIPITS Identity-based clustering Yes [116]

CloVR-ITS Identity-based clustering Yes [127]

BioMaS Reference-based No [129]

Kraken Reference-based No [123]

Mothur Mixed No [115]

Qiime (1 & 2) Mixed No [119,124]

MICCA Mixed No [128]

Vsearch Identity-based No [117]

Uparse Identity-based No [131]

Unoise (1 & 2) Variant-based No [132]

DADA2 Variant-based No [60]

Clustering algorithms were divided into: (1) Identity-based, those relying on an empirical percentage of identity between two sequences for 
grouping them into a single cluster; (2) Reference-based, algorithms which group sequences into taxonomic bins according to their identities; (3) 
Variant-base, those defining sequence variants according to the presence of SNPs or mutations; (4) Mixed, pipelines which contain different 
algorithms for clustering.

reference databases, advances in bioinformatics methods, and careful experimental design to mitigate 
potential biases and methodological limitations.

CONCLUSION
In conclusion, fungi play a pivotal role in shaping diverse ecosystems, and while our understanding of their 
importance has grown considerably, there remain numerous avenues for exploration within the fungal 
kingdom. The advent of DNA-based classification methods has ushered in a transformative era in 
mycology, revolutionizing traditional taxonomic approaches while also providing robust validation of 
species identities. Despite significant progress, challenges persist in the field of fungal genomics. Sequencing 
techniques have revealed biases and limitations, particularly in fungal markers amplification. Recent 
innovations like long-range amplification and long-read sequencing hold promise for more accurate fungal 
classifications. The increasing availability of whole-genome shotgun sequencing and expanding genome 
databases offer opportunities to map newly generated fungal DNA sequences directly to comprehensive 
references.

Advancements in sequencing technologies are complemented by the development of taxonomic 
classification algorithms, but critical gaps remain. Benchmarking long-read sequencing strategies for fungal 
communities lags behind bacterial community studies. Similar disparities exist in the relative maturity of 
bioinformatic platforms and databases. Fungi’s unique complexities, such as multiple chromosomes, 
extended repeat regions, and larger genome sizes, add to the challenges.

The intricacies of fungal taxonomy further complicate identification efforts. The absence of standardized 
pipelines for sequencing data analysis remains a significant hurdle in mycobiota investigations. Given these 
challenges and opportunities, it’s evident that fungal research continues to rapidly evolve. Future progress 
will hinge on collaborative efforts to address existing gaps, harmonize methodologies, and advance our 
understanding of these essential and enigmatic organisms in the intricate network of global ecosystems.
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