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Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that play gene expression regulatory roles in eukaryotes. 
MiRNAs are also released in body fluids, and in the intestine, they are found in the lumen and feces. Here, together 
with exogenous dietary-derived miRNAs, they constitute the fecal miRNome. Several miRNAs were identified in 
the feces of healthy adults, including, as shown here, core miRNAs hsa-miR-21-5p and hsa-miR-1246. These 
miRNAs are important for intestinal homeostasis. Recent evidence suggests that miRNAs may interact with gut 
bacteria. This represents a new avenue to understand host-bacteria crosstalk in the gut and its role in health and 
disease. This review provides a comprehensive overview of current knowledge on fecal miRNAs, their 
representation across individuals, and their effects on the gut microbiota. It also discusses existing evidence on 
potential mechanisms of uptake and interaction with bacterial genomes, drawing from knowledge of prokaryotic 
small RNAs (sRNAs) regulation of gene expression. Finally, we review in silico and experimental approaches for 
profiling miRNA-mRNA interactions in bacterial species, highlighting challenges in target validation. This work 
emphasizes the need for further research into host miRNA-bacterial interactions to better understand their 
regulatory roles in the gut ecosystem and support their exploitation for disease prevention and treatment.
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INTRODUCTION
The intestinal ecosystem relies on continuous communication between members of the resident microbial 
community and host cells. The diversity and complexity of the interactions allow for immediate and long-
term responses to environmental (luminal) stimuli, as well as for their fine-tuning and specificity. These 
processes are essential for maintaining host health and recovering from disease states. The bidirectional 
aspect of these interactions is critical, and interestingly, host and microbial cells share strategies to affect 
each other. These include the release of metabolites[1,2], peptides[3,4], hormone-like substances[5,6], and 
receptor-mediated or independent responses that result in gene expression regulation.

Eukaryotic microRNAs (miRNAs) have emerged as a novel host-dependent mechanism that affects the gut 
microbiota[7]. MiRNAs are single-stranded, non-coding RNAs of about 22 nucleotides in length. They 
regulate gene expression post-transcriptionally by either binding to their target mRNAs to inhibit 
translation or promoting their degradation[8]. A total of 2,656 mature miRNAs have been identified in 
humans[9]. MiRNA-mediated gene expression regulation appears to be an evolutionarily conserved 
mechanism since it has been found in both multicellular and unicellular organisms[10]. In addition, select 
miRNAs (for example, miR-21) have high sequence similarity across multiple species. Therefore, these 
miRNAs could potentially play roles in interspecies crosstalk regulation. In humans, miRNAs regulate over 
60% of the protein-coding genes[11]. Intestinal miRNAs are involved in several processes, including cell 
growth, differentiation, development, apoptosis, immune response, and metabolism[12]. Knockout of Dicer, 
the enzyme responsible for the generation of mature miRNA transcripts, results in disrupted mucosal 
architecture[13] and propensity to inflammation[14]. MiRNA expression is regulated either by transcriptional 
mechanisms, such as DNA methylation and transcription factors or by post-transcriptional mechanisms, 
such as primary (pri-) and precursor (pre-) miRNA processing and miRNA degradation[15]. In the intestine, 
the expression of mature miRNAs also depends on the gut microbiota. Studies in germ-free animals showed 
that the presence of the microbial community affects the expression of miRNAs involved in several 
processes in both the small and large intestine[16,17], including permeability, angiogenesis, and immune 
response. In addition, microbiota modulation by pathogenic or beneficial bacteria in the gut affects host 
miRNA expression profiles[18-21], showing that the composition of the microbiota is also important. 
Microbial strategies mediating these microbiota-dependent effects encompass direct interaction between 
bacteria and host cells[22] and bacterial products such as lipopolysaccharide[23], metabolites (butyrate[24]), and 
genotoxins (colibactin[25]). For example, butyrate administration reduces c-myc expression in human colon 
cancer cells and, in turn, the abundance of miR-92a in these cells[24].

MiRNAs are known to be released by eukaryotic cells and function as messengers between adjacent or distal 
cells[26,27]. In line with this, miRNAs can be recovered in body fluids, such as blood[28], urine[29], saliva[30], and 
feces[31]. MiRNAs in feces (generally referred to as fecal miRNAs) resist degradation[32] and their 
concentration is stable over several months in healthy conditions[33]. Several miRNA species have been 
identified in human fecal matter, though it is unknown whether a core set of fecal miRNAs exists that is 
shared among individuals. This is important because fecal miRNAs have been proposed as non-invasive 
biomarkers of various diseases, such as inflammatory bowel diseases[34,35] and pancreatic[36] and colorectal 
cancers[37,38]. In addition, aligned with their intestinal cell origin, fecal miRNAs have been proposed as 
markers of microbiota eubiosis. For instance, Viennois et al. identified a group of 12 miRNAs that are 
correlated with microbial taxa and function as a marker of gut microbiota healthiness and colitogenic 
potential[39]. The fecal miRNome also comprises diet-derived miRNAs that escape proximal degradation and 
reach distal intestinal regions. Both host- and diet-derived miRNAs were shown to affect the growth of 
bacterial members of the microbiota. Bacteria are not known to express bona fide miRNAs; thus, these 
findings open new intriguing research avenues on inter-kingdom gene expression regulatory mechanisms. 



Page 3 of Cuinat et al. Microbiome Res Rep. 2025;4:15 https://dx.doi.org/10.20517/mrr.2024.46 24

While findings to date suggest that eukaryotic miRNAs may regulate prokaryotic genes, mechanisms of 
miRNA entry into bacteria and their mode of action remain elusive. In eukaryotes, the identification of 
miRNA gene targets has evolved from transcriptomics studies focused on the relative expression of miRNA-
mRNA pairs[40] to incorporate computational and machine learning approaches, which was accompanied by 
the development of tools allowing researchers to query across multiple databases[41,42]. However, there are 
limited bioinformatics tools and pipelines to support the understanding of miRNA function in bacteria. 
Here, we review current knowledge on fecal miRNAs, including their origin, diversity, and stability, and 
provide an assessment of their variability among individuals. We discuss evidence of their effects on 
microbiota gene regulation and growth, including that of both resident and allochthonous members of the 
microbiota. We then explore potential mechanisms underlying miRNA regulation of bacterial gene 
expression, building on current knowledge of prokaryotic small RNA (sRNA) systems. Finally, we discuss in 
silico approaches used to predict bacterial miRNA gene targets and discuss experimental approaches for 
validating these predictions.

FECAL MIRNAS: ORIGIN AND DIVERSITY
The biogenesis of miRNAs starts in the nucleus, where miRNA genes are transcribed into pri-miRNA 
transcripts of several hundred nucleotides. These pri-miRNAs are then cleaved by the enzyme Drosha into 
shorter (~60-70 nucleotides) pre-miRNAs with a characteristic hairpin structure. Pre-miRNAs are 
subsequently exported to the cytoplasm, where they undergo further processing by a second endonuclease, 
Dicer, that cleaves the loop of the hairpin, forming short double-strand miRNA-miRNA duplexes[43]. The 
miRNA strands originating from the 5’ or the 3’ arms of the hairpin loop are named -5p and -3p, 
respectively[9]. In animals, one strand, known as the guide strand, is typically retained to regulate gene 
expression, as opposed to the other strand, referred to as the passenger strand, which is usually degraded 
within a few hours[44]. This is likely due to the guide strand being associated with the protein argonaute 2 
(Ago2)[44]. Ago2 is found in the RNA-induced silencing complex (RISC), which is responsible for miRNA-
mediated mRNA target binding[45]. The selectivity of the strand is accomplished by Ago2 preferentially 
binding to a strand with relative thermodynamic instability and uracil on the 5’ end[45]. In addition, the 
phosphate moiety of the 5’ nucleotide must be accessible for Ago2[45]. This miRNA strand selection process 
can be dysregulated in certain physiological or pathological conditions, such as cancer[45], where the 
abundance of multiple miRNA passenger strands is altered. For example, in glioblastoma, the passenger 
strand of miR-324 is upregulated, while its guide strand is downregulated[46]. In addition, in squamous cell 
carcinoma, both the guide and passenger strands of miR-21 are upregulated[47], and in lung cancer, both the 
guide and passenger strands of miR-144 are downregulated[48]. The seed sequence of a miRNA corresponds 
to the first 2-8 nucleotides[49]. In eukaryotes, this region is used to recognize the mRNA target, making it an 
important feature in speculating miRNA function. Mature miRNA strands incorporated into RISC partially 
bind complementary sequences in the 3’ untranslated region (UTR) of the target mRNA to regulate gene 
expression. Depending on the degree of complementarity between miRNA and mRNA sequences, a mature 
miRNA will either cleave its target or inhibit its translation[50]. MiRNAs can also target protein-coding 
sequences (CDS) through unusual mechanisms requiring extensive base pairings in the miRNA 3’ end[51]. 
Additionally, under specific conditions, miRNAs can upregulate gene expression by binding to the 3’ or the 
5’ UTR of their target mRNA[52,53].

Besides intracellular gene regulation, upon their extracellular release, miRNAs also act as messenger 
molecules in eukaryotic cell-to-cell communication to affect gene regulation distally. Given that a single 
miRNA can target multiple mRNAs, and different miRNAs can target the same mRNA, secreted miRNAs 
likely participate in intricate gene regulatory networks within their target cells. Both pre-miRNAs and 
mature miRNAs can be released from cells in small extracellular vesicles (EVs) like exosomes[54,55] or 
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transported by high-density lipoproteins (HDL)[56], although naked forms have also been detected. 
Regardless of their mode of release, most extracellular mature miRNAs are associated with proteins such as 
Ago2 or nucleophosmin 1 (NPM1)[57,58]. The mechanisms governing which miRNAs are selected for cellular 
release, the ratio of mature to pre-miRNA secreted, and how they are delivered into target cells remain 
poorly understood. In contrast, more knowledge is available about how miRNAs enter cells. Entrance in 
target cells differs between vesicle-associated and vesicle-free miRNAs. It is thought that the first enter via 
endocytosis[59], phagocytosis, or direct fusion with the cell plasma membrane. For example, bone marrow-
derived dendritic cells transfer endogenous exosomes carrying multiple miRNAs, including miR-21, miR-
221, and miR-222, to target dendritic cells through fusion[60]. On the other hand, vesicle-free miRNAs are 
taken up either via specific receptors[56,61] or directly through gap junctions[62]. For example, miR-142 and 
miR-223 have been shown to transfer from macrophages to hepato-carcinoma cells through a mechanism 
dependent on cell-to-cell contact and gap junctions[62]. Cell-free miRNAs are very stable due to their 
structural characteristics, which protect them from RNA-degrading enzymes and RNase activity. This 
stability allows them to persist and function in extracellular environments. MiRNAs enclosed within EVs 
are particularly resilient, exhibiting greater stability than vesicle-free miRNAs[63,64]. In addition, the stability 
of extracellular miRNAs is correlated with their GC content, suggesting unequal stability among different 
miRNAs[64].

In the intestine, where the apical surface of the epithelial cells faces the lumen, miRNAs can be directly 
released into the luminal content and referred to as luminal or fecal miRNAs. A limited number of studies 
have investigated the cellular origin of fecal miRNAs. A seminal study found them to derive from exfoliated 
colonocytes[65]. This is in line with our previous work, where we found correlations between mouse cecal 
content and tissue miRNA signatures, although partial[21]. Later, enterocytes were determined to be the 
major source of luminal miRNAs, together with homeodomain only protein (Hopx)-expressing cells such as 
Paneth and goblet cells[7]. Specifically, the abundance of 53% of 344 fecal miRNAs and 12% of 360 fecal 
miRNAs was reduced in mice lacking Dicer in intestinal epithelial cells or Hopx-expressing cells, 
respectively[7]. The packaging of fecal miRNAs remains under-investigated. While they have been detected 
in exosomes, which are abundant in human feces, it remains uncertain if they also exist in an EV-free form, 
such as protein-bound[7,66]. Similarly to other body fluids, exosomes protect miRNAs from RNase activity in 
feces, where naked miRNAs are more rapidly degraded[67].

Exogenous sources additionally contribute to the fecal miRNome, including dietary components such as 
animal and plant products[68]. These dietary miRNAs are very stable during food harvesting and processing, 
including cooking[69,70]. Following ingestion, these miRNAs withstand digestion[70,71] and the unfavorable 
environment of the stomach and proximal small intestine. This resistance is largely conferred by their 
packaging in EVs[72] for animal-derived miRNAs, or exosome-like nanoparticles[73] and 3’ end 
modification[74] for plant-derived miRNAs. The availability of miRNAs in foods has been recently 
reviewed[75] and their recovery in the intestine, and then in plasma, demonstrated. For instance, when piglets 
were fed bovine milk containing a reporter miRNA, this miRNA was detected in the bloodstream, which 
suggests that it can survive digestion and cross the intestinal barrier[76]. Plant-derived miRNAs, such as ath-
MIR162a, were found in watermelon juice one hour after preparation and could be recovered in plasma 
following ingestion[77]. Similarly, plant MIR168a was detectable in the serum of mice six hours after fresh 
rice or fresh rice total RNA ingestion[78]. Meat miRNAs, such as miR-10b-5p and miR-206, can be found in 
cooked muscle tissues[75]. Additionally, miRNAs, such as miR-21 and miR-16, are present in various foods, 
including poultry, meat, egg, and cheese, although their expression levels vary between food types[79]. We, 
therefore, speculate that dietary miRNA could contribute to a transient fecal miRNome. Besides serving as a 
direct source of fecal miRNAs, diet can also indirectly affect their abundance through the host. Both specific 
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nutrients and dietary components, as well as dietary patterns, may influence fecal miRNA profiles. For 
example, oligosaccharides[80] and polyphenols[81] were found to affect miRNA expression in intestinal cells, 
potentially altering their concentration in the lumen if released. Interestingly, a vegetarian diet has been 
shown to increase the presence of plant MIR168a in feces, illustrating that dietary intake can influence the 
abundance of specific miRNAs in fecal matter[79]. In addition, it was found that individuals on a vegetarian 
or vegan diet have a lower abundance of miR-636 and miR-4739 in their feces compared to those on an 
omnivorous diet[82]. Notably, the expression levels of these miRNAs inversely correlate with the number of 
years spent on the diet. In celiac disease patients, a gluten-free diet alters the levels of fecal miR-4533-3p and 
miR-2681-3p, which, interestingly, return to control (healthy) levels in those with longer adherence[83]. Thus, 
these findings suggest that fecal miRNAs may represent the effects of dietary changes on intestinal cell 
physiology[83].

Eukaryotic members of the gut microbiota may represent a third source of fecal miRNAs. The fungus 
Candida albicans and the parasite Giardia lamblia were found to carry miRNA-size (ms)RNAs and miRNA 
precursors, respectively[84,85], and Giardia duodenalis EVs were found to contain various RNA species, 
including miRNA[86]. Therefore, it is possible that eukaryotic members of the microbiota could also release 
miRNA in fecal matter, although this remains largely under-investigated.

Toward the understanding of the healthy human miRNome, we identified 17 studies profiling the fecal 
miRNAs of healthy adult humans. These studies were conducted across various countries, with samples 
collected from individuals of different age groups and ethnicities. Many studies explored the effects of 
different diets, while others focused on specific diseases. We hypothesized that a shared set of miRNAs may 
exist across individuals, forming a health-compatible human fecal miRNome. We used 11 miRNA datasets 
that were deposited by these studies in publicly available databases [Table 1], 7 of which were unique.

The number of fecal miRNAs identified varies largely, with a minimum of 21[87] and a maximum of 449[33]. 
This discrepancy could be explained by technical differences, including the sequencing depth and the 
miRNA annotation reference library employed for RNA sequencing. MiRNA counts were calculated as the 
average counts across all healthy samples within a given dataset. MiRNAs with an average count below the 
detection threshold specified in the corresponding study were excluded from the intersection analysis. The 
intersection was defined as miRNAs found to be exclusively shared by the datasets of interest (Figure 1, 
connected black dots).

We found that the intersection of the 7 datasets consists of two shared miRNAs: hsa-miR-21-5p and hsa-
miR-1246 [Figure 1]. We noted that the method used for high-throughput miRNA profiling affects the 
number of miRNAs detected. Studies using NanoString Technologies, which employs unique 
oligonucleotide tags and a defined set of housekeeping and control miRNAs for threshold calculation, 
identified a higher number of shared miRNAs (i.e., 42). On the other hand, RNA sequencing offers a more 
comprehensive assessment, enabling the discovery of new miRNAs, but its results can be affected by the 
sequencing depth and the threshold chosen. Profiling studies provide information on the relative 
abundance of different miRNAs, and the shared miRNA hsa-miR-1246 appears to be among the most 
highly abundant miRNAs across studies. However, NanoString Technologies data indicate that most fecal 
miRNAs (174 out of 181[7], and 53 out of 66[94]) are present at less than 500 average reads. This is particularly 
important, as quantifying miRNA abundances in feces could have significant clinical applications. Hsa-
miR-21-5p plays crucial roles in intestinal homeostasis by regulating gut permeability and immune 
function[96], while hsa-miR-1246 promotes inflammation through the activation of specific transcription 
factors[97]. Interestingly, elevated fecal levels of hsa-miR-1246 and hsa-miR-21-5p have been observed in 
colorectal cancer studies[37,98], with hsa-miR-21-5p extensively studied as a potential  biomarker[98]. In human 
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Table 1. Overview of healthy adult human fecal miRNA studies

Participants demographics 
[country, age (years), female %] Sample size Method of miRNA assessment Number of fecal 

miRNAs detected Ref.

United States, mean age = 23 ± 1.63, 
50% female

N = 4 RNA sequencing and alignment using miRBase V20, 1,765,452 ± 488,850 
average raw sequencing read detected, 0.2% ± 0.04% aligned to database

21 Seashols-Williams et al. 2016[87]

Italy, mean age = 44.7 ± 14.7, 63.6% 
female

N = 335 
(Samples in this study include 
samples from[82] and[88])

RNA sequencing and alignment using in-house reference based on miRbase 
v22, 10.3 million average raw sequencing reads, 0.92% aligned to database

449 Francavilla et al. 2021[33]

Italy, omnivores, mean age = 40.5 ± 13.2, 
60% female 
Vegetarians, mean age = 40.6 ± 11.7, 
60% female 
Vegans, mean age = 39.1 ± 11.6, 60% 
female

N = 120 
(40 omnivores, 40 vegetarians, 
40 vegans)

RNA sequencing and alignment using in-house reference based on miRbase 
v22, 7.8 million average raw sequencing reads, 0.83% aligned to database

145 Tarallo et al. 2022[82]

Italy, adults N = 39 RNA sequencing and alignment using miRbase v21, 14.66 million average 
raw sequencing reads, 0.7% aligned to database

102 Ferrero et al. 2017[88]

United States, age 24-59, 70% female N = 10 nCounter® Human miRNA Expression Assay (NanoString Technologies) 181 Liu et al. 2016[7]

United States, mean age = 49, 75% 
female

Healthy control for multiple 
sclerosis N = 12

RNA sequencing and alignment using miRBase through exceRpt sRNA-seq 
pipeline v4.6.2[89], 23.77 million average raw sequencing reads

25 Liu et al. 2019[90]

Italy, adults Healthy control for colorectal 
cancer N = 24

RNA sequencing and alignment using in-house reference based on miRbase 
v21, 9.3 million average raw sequencing reads

64 Tarallo et al. 2019[91]

Italy, control, mean age = 40.8 ± 14.3, 
77.3% female 
Validation cohort mean age 40.5 ± 13.2, 
60% female

Healthy control for celiac 
disease N = 106 
(66 control, 40 samples 
from[82])

RNA sequencing and alignment using in-house reference based on miRbase 
v21, 11.1 million average raw sequencing reads, 1.03% aligned to database

757 Francavilla et al. 2023[83]

Italy, mean age = 59.6 ± 10.7, 50.5% 
female 
Czech Republic, mean age = 57.8 ± 10.5, 
61.1% female

Healthy control for colorectal 
cancer N = 221 
(Italian cohort: 105 samples, 
including samples from[92]; 
Czech cohort: 36 samples; 
Validation cohort: 80 samples, 
including samples from 
Italy[82,83])

RNA sequencing and alignment using in-house reference based on miRbase 
v22, 9.8 million average raw sequencing reads, 0.73% aligned to database

220 Pardini et al. 2023[37]

Italy, age 10-20, 50% female Healthy control for Autism 
spectrum disorders N = 6

RNA sequencing and alignment using Arena-Idb, 26.2 million average raw 
sequencing reads, 0.5% aligned to database

28 Chiappori et al. 2022[93]

Poland, mean age = 36 (range 26-41), 
66.7% female

Healthy control for Crohn’s 
disease N = 9

nCounter® Human v2 miRNA Expression Assay (NanoString Technologies) 66 Ambrozkiewicz et al. 2020[94] 
(GEO series GSE144535)

Studies used fecal samples for extraction of total RNA[33,37,82,83,87,88,91,93] or miRNA-enriched RNA[7,90,94]. miRNA: MicroRNA; sRNA: small RNA.
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Figure 1. UpSet plot of shared miRNA in healthy human feces from 7 different datasets. Datasets are indicated by the first author’s name 
and publication year of the corresponding paper. Only miRNAs with abundance above the study-specific threshold were used. The set 
size represents the total number of miRNAs contained in each dataset. The intersection size represents the number of miRNAs shared 
exclusively among the dotted datasets listed below (connected black dots); grey dots indicate datasets without these shared miRNAs. 
Two miRNAs were identified in all 7 datasets. A varying number of miRNAs (1-131) were shared among 2-6 datasets. The plot was 
created with the ComplexHeatmap R package[95]. miRNA: MicroRNA.

CURRENT EVIDENCE ON THE EFFECTS OF MIRNAS ON MEMBERS OF THE 
MICROBIOTA
In 2016, Liu et al. showed that human miRNAs could be uptaken by bacteria[7]. Their study visualized 
synthetic hsa-miR-1226-5p and hsa-miR-515-5p within Escherichia coli and Fusobacterium nucleatum cells 
following co-incubation experiments. These revealed the varying capacities of different miRNAs to enter 
and accumulate within bacterial cells. Liu et al. also showed that these two miRNAs supported the growth of 
these bacteria. Because scrambled negative controls providing similar quantities of the same nucleotides 
were used, it is possible that these effects on growth are specific and mediated via gene expression 
regulation. Subsequent studies have investigated the effects of various host and food-derived miRNAs on 
the growth and gene expression of different bacterial strains [Table 2].

Overall, host miRNAs increase or decrease the growth of Gram-positive and Gram-negative bacteria found 
in the mouse and human fecal microbiota. This has been demonstrated both in vitro[7,66,90] and in vivo using 
rodent models of autoimmune encephalomyelitis[90] and colitis[7,66]. However, some miRNAs appeared to 
have no discernible effect on the growth of gut microbiota members. This could be due to their incapacity 
to enter bacteria, as further discussed below. For instance, Shen et al. found that mmu-miR-200b-3p could 
enter various fecal bacteria, affecting fecal microbiota composition (increased Lactobacillus and Dubosiella 

cancer models, the overexpression of hsa-miR-21-5p regulates key cellular processes involved in cancer
development and progression[99]. This highlights the potential of fecal miRNAs not only as a diagnostic tool
but also as targets for therapeutic interventions.
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Table 2. Current evidence on the effects of host and dietary miRNAs on the growth and gene expression of gut microbiota bacterial representatives and of probiotic strains

Effect in vitro Effect in vivo
miRNA

Bacteria Internalization and 
growth Targeted gene Condition, model Microbiota outcomes Other outcomes

Ref.

Host miRNA - microbiota species

hsa-miR-876-5p 
hsa-miR-515-5p 
hsa-miR-1226-5p 
hsa-miR-4747-3p 
hsa-miR-1224-5p 
hsa-miR-32

F. nucleatum ATCC 
10953 
E. coli ATCC 47016

miR-515-5p: enter 
F. nucleatum, colocalize with 
nucleic acids, ↑ its growth 
miR-1226-5p: enter E. coli, 
colocalize with nucleic acids, 
↑ its growth

miR-515-5p: ↑ F. nucleatum 
16S/23S rRNA transcripts 
ratio 
E. coli: miR-1226-5p ↑ yegH. 
MiR-4747-3p ↑ RNaseP. 
MiR-1224-5p ↓ rutA. MiR-
623 ↓ FucO transcript levels

Mice defective in IEC- or 
Hopx-expressing cells-
specific miRNA (Dicer1Δ
IEC, Dicer1ΔHopx) 
DSS-induced colitis 
C57BL/6J + miRNA 
mimics

Dicer1ΔIEC: ↑ microbiota 
dissimilarity between mice 
WT + miR-1226-5p: ↑ E. coli 
abundance

Dicer1ΔIEC/Hopx, DSS: ↓ fecal 
miR abundance, exacerbate 
colitis symptoms

[7]

hsa-miR-30d-5p A. muciniphila ATCC 
BAA835

miR-30d enters A. 
muciniphila 
↑ ratio A. muciniphila/E. coli

↑ AMUC_RS06985 and 
AMUC_RS07700 
expression, and ↑ β-
galactosidase activity

EAE model, C57BL6J 
mice 
EAE + miR-30d mimics 
Fecal transplant from 
miR-30d treated EAE 
mice

No effect on microbiota diversity. 
Ameliorates EAE in a microbiome-
dependent manner. ↑ A. muciniphila

Ameliorates EAE (clinical score, 
demyelination, and axonal loss)

[90]

hsa-miR-4493-5p 
hsa-miR-3622b-5p

S. variabile DSM15176, 
O. splanchnicus 
DSM20712, E. coli K12 
DSM498

No effect compared to 
vehicle or scramble

- - - - [100]

mmu-miR-200-3p 
mmu-miR-200b-5p 
mmu-miR-181b-5p 
mmu-miR-28b-3p

Mouse fecal microbiota 
(control and colitis) 
E. coli ATCC 29522

miR-200b-3p: enter various 
fecal bacteria, colocalize with 
nucleic acids, ↑ Lactobacillus, 
Dubosiella, ↓ E. coli 
miR-200n-3p: enter E. coli, 
colocalize with nucleic acids, 
↓ E. coli growth 
miR-181b-5p: no effect on 
growth, cannot enter fecal 
bacteria

- Acute/Chronic DSS-
induced colitis, 
C57BL/6J mice/Wistar 
rats 
DSS + miRNA mimics 
DSS + control/colitis 
fecal BMVs

miR-200-3p: restore DSS-induced 
microbiota changes. 
miR-181b-5p: no protective effects 
Control-BMV or colitis-BMV + miR-
200b-3p: restore microbiota 
composition to pre-DSS-treated 
states

DSS + miR-200b-3p/miR-181b-
5p: alleviate DSS disease 
severity 
DSS + miR-181b-5p: ↑ CD206 
and M2 macrophage level 
Control-BMV or colitis-BMV + 
miR-200b-3p: restore intestinal 
barrier

[66]

Host miRNA - probiotic and other strains

hsa-miR-21-5p L. reuteri DSM17938 
L. reuteri ATCC 
PTA6475

↓ both L. reuteri strains 
growth

- Bile duct ligation (BDL), 
C57BL/6NCrl, and miR-
21KO mice 
WT/miR-21KO co-
housing

miR-21KO: prevent BDL-induced 
dysbiosis 
↑ Lactobacillus spp. abundance 
Co-housing: similar relative 
abundance of Lactobacillus; ↓ in KO 
after 1-month isolation

miR-21KO + BDL: ↓ liver 
damage and small intestine 
permeabilization

[101]

DSS-induced colitis, 
C57BL/6 mice 
DSS + miR-142a-3p 
mimics 
DSS + miR-142a-3p 

mmu-miR-142a-3p 
mmu-miR-223-5p 
mmu-miR-142b 
mmu-miR-146b-5p

L. reuteri ATCC23272 
L. johnsonii ATCC 33200

miR-142a-3p: ↑ L. reuteri, no 
effect on L. johnsonii

miR-142a-3p: ↑ L. reuteri 
primase and polymerase I 
expression

miR-142a-3p: Affect β-diversity, ↑ L. 
reuteri relative abundance, ↑ fecal 
reuterin

miR-142a-3p: Alleviate DSS 
disease severity (weight loss, 
DAI, colon bleeding and 
swelling)

[102]
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treated mice FMT

mmu-miR-155 
mmu-let-7g

L. gasseri ATCC 33323 
E. coli

miR-155, let-7g: enter E. coli 
miR-155: ↓ L. gasseri 
let-7g: no effects

- Ovariectomy (OVX), 
C57BL/6J mice 
miR-155, cel-miR-54, or 
miR-155 antagonist 
microspheres

miR-155 microspheres: ↓ 
Lactobacillus, miR-155 detectable in 
cecal bacteria 
miR-155 antagonist microspheres: 
restore Lactobacillus level

OVX: ↑ miR-155 and let-7g in 
feces and intestine 
miR-155 antagonist 
microsphere: no effect on fecal 
miR-155 level. Protect OVX-
induced cardiac effects

[103]

hsa-miR-7704 
hsa-miR-6127 
hsa-miR-4788 
hsa-miR-4443 
hsa-miR-4740-3p 
hsa-miR-320e

B. longum JCM1217, E. 
coli K-12 MG1655

miR-7704 enters B. longum 
but not E. coli 
miR-7704: change patient 
microbiota structure and 
diversity in vitro, ↓ B. longum 
relative abundance

miR-7704 pre-treated B. 
longum: ↓ adherence to HT-
29 cells 
↓ proB, ↑ BLLJ_RS08400 
relative expression, ↓ proline 
levels

HE model, C57BL/6J 
mice 
HE + miRNA mimics 
FMT miR-7704- treated 
mice

HE patient/mice: ↓ Bifidobacterium (
B. longum and B. pseudocatenulatum)

HE + miR-7704: ↑ mortality and 
neuroinflammation

[104]

Diet miRNA - microbiota and other species

mmu-miR-375 
(Packaged in 
ginger-derived 
nanoparticle)

- - - Obesity (HFD), C57BL/6 
mice 
HFD + GDNP 
WT + GDNP packaged 
with miR-375 (nano-
miR375) 
WT + fecal exosome of 
HFD mice + nano-
miR375

Labeled-IEC exosomes are taken up 
by 26.5% of gut bacteria 
GDNP-mediated induction of miR-
375 in HFD mice: ↓ E. coli tnaA gene 
expression

GDNP: ↑ miR-375 expression 
and release in exosome 
nano-miR375: ↓ AhR expression 
in small intestine tissue, can be 
transported to the liver and be 
taken up by hepatocytes

[105]

bol-miR-159 
(Broccoli)

Bacillus. sp. ATCC21591 
R. eutropha 
CGMCC1.3907 
W. paramesenteroides 
ATCC33313

miR159 enter the 3 bacteria 
and accumulate in it 
Limited entry of the scramble 
↓ Bacillus. sp. No effect on W. 
confusa 
↑ W. paramesenteroides and 
R. eutropha

celC gene in Bacillus, rnY gene 
in Weissella, and phaZ2 gene 
in Ralstonia

Healthy, BALB/c mice 
miRNA mimic gavage

↑ the diversity of gut microbiota and 
affect the β-diversity 
↑ Proteobacteria, ↓ 
Firmicutes/Bacteroidetes ratio 
↑ Weissella, Bacteroides, 
Bifidobacterium, Ralstonia, Blautia. ↓ 
Bacillus

No pathological lesions or 
inflammatory responses

[106]

peu-MIR2916-p5 
peu-MIR2916-p3 
(Garlic)

Mouse fecal microbiota 
B. thetaiotaomicron VPI-
5482 ATCC 29148

GELNs are taken up by gut 
microbes, and colocalize 
with B. thetaiotaomicron 
peu-MIR2916-p3: ↑ B. 
thetaiotaomicron 
peu-MIR2916-p5: no effect

- Acute/Chronic DSS-
induced colitis, 
C57BL/6J mice 
DSS + Labelled GELNs 
(low, medium, high 
dose)

GELNs: ameliorate DSS-induced loss 
of richness, restore the 
Firmicutes/Bacteroidetes ratio. Dose-
dependent ↑ of Bacteroides

GELNs: medium and high doses 
ameliorate acute and chronic 
colitis symptoms and 
alterations of the intestinal 
barrier

[107]

Diet miRNA - probiotic and other strains

gma-miR396e
(Glycine max)
ath-miR167a-5p
(Arabidopsis thaliana)
mdo-miR-7267-3p

L. rhamnosus LGG ATCC 
53103

Ginger ELN, ELN RNA: taken 
up by LGG 
Ginger ELN-RNA, gma-
miR396e: ↑ LGG

gma-miR396e: ↓ LexA RNA 
level 
mdo-miR7267-3p: ↓ ycnE 
RNA level 
ath-miR-167a-5p: ↓ SpaC 
RNA and protein expression

DSS-induced colitis,  
SPF C57BL/6 mice 
Healthy mice + ELNs, 
ELN RNA, or PKH26-
labeled ELN 
C57BL/6 + ath-miR167a 
treated-LGG + DSS

Ginger ELN, ELN RNA: ↑ 
Lactobacillaceae, ↓ mucosa-
associated LGG 
Ginger ELNs are mainly taken up by 
Lactobacillaceae in the gut

Ginger ELN-RNA: alleviates DSS 
disease severity in a 
microbiome-dependent manner; 
↑ fecal I3A, ↓ I3AM 
Ath-miR167a: prevent L. 
rhamnosus from entering the cell

[73]
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(Monodelphis
domestica)
in ginger exosome-
like nanoparticles

miR6300
miR482b
miR482c-5p
(Tartary
Buckwheat)

Lactobacillus rhamnosus 
LGG ATCC 53103 
E. coli ATCC 25922

miR6300: ↑ E. coli 
miR482c and miR482b: no 
effect on E. coli 
miR3630, miR482b: no 
effect on LGG

miR3630, miR482b: ↑ overall 
SCFA production

Healthy, C57BL/6 mice 
Gavage labeled- TBDNs

TBDNs: ↑ diversity of fecal 
microorganisms and ↑ the SCFA 
levels

TBDNs detected in the liver and 
colon

[108]

cal-miR2911 
(cauliflower)

B. adolescentis ATCC 
15703  
Bacillus sp. ATCC 21591 
L. casei ATCC 393

miR2911 enter B. adolescentis 
↑ B. adolescentis. No effect on 
Bacillus sp. or L. casei

ATP synthase gene Healthy, BALB/c SPF 
mice 
miR2911 gavage

No effect on α-diversity. ↑ 
Bifidobacterium relative abundance, ↑ 
Eggerthellaceae

miR2911 concentration in the 
intestine ↓ to 1 pM after two 
hours, remained constant until 
8 h

[109]

-: Not assessed. miRNAs: microRNAs; yegH: inner membrane protein, RNaseP: ribonuclease P, rutA: pyrimidine monooxygenase, FucO: lactaldehyde reductase, IEC: intestinal epithelial cells, Hopx: homeodomain 
only protein, DSS: dextran sulfate sodium, WT: wild type, KO: knockout, EAE: experimental autoimmune encephalitis, proB: glutamate 5-kinase, BLLJ_RS08400: NAD+/NADH kinase, tnaA: tryptophanase, AhR: aryl 
hydrocarbon receptor, BMV: bacterial membrane vesicles, DAI: disease activity index, FMT: fecal microbiota transplant, HE: hepatic encephalopathy, HFD: high-fat diet, GDNP: ginger-derived nanoparticles, celC: 
endoglucanase, rnY: ribonuclease, phaZ2: intracellular PHB depolymerase, GELNs: garlic exosome-like nanoparticles, ELN: exosome-like nanoparticles, LexA: transcriptional repressor, ycnE: monooxygenase, SpaC: 
pilus subunit, I3A: indole-3-carboxaldehyde; I3AM: indole-3 acetamide, TBDNs: tartary buckwheat-derived nanovesicles, SCFA: short-chain fatty acids.

abundance, decreased Escherichia coli abundance), while mmu-miR-181b-5p could not enter fecal bacteria and had no effects on Escherichia coli growth or 
overall microbiota composition[66]. Studies have also investigated the effects of host miRNAs on known probiotic species such as Limosilactobacillus reuteri, 
Lactobacillus johnsonii, Lactobacillus gasseri, and Bifidobacterium longum. These studies have shown both enhancement and diminishment of growth in vitro 
and in vivo rodent models of colitis[102], hepatic encephalopathy[104], ovariectomy[103], or specific miRNA knockout[101]. Again, some host miRNAs exhibited no 
effects, while others had effects only on certain bacterial species or genera. For example, hsa-miR-142a-3p promoted the growth of Limosilactobacillus reuteri 
but not Lactobacillus johnsonii in vitro and in a DSS-induced colitis model[102]. There is currently limited knowledge of the effects of miRNA on different strains 
within the same species. Host miRNAs appeared to be able to increase or decrease bacterial transcripts of genes involved in energy production (NAD+/NADH 
kinase), nutrient degradation (pyrimidine, fucose, lactose degradation), and DNA or RNA synthesis [ribonuclease (RNase), primase, polymerase]. This has 
been suggested to explain miRNAs’ overall effects on bacterial growth. These studies investigated the effects of free host miRNA using either purified fecal 
miRNA or synthesized double-strand or single-strand miRNA mimics. Bacteria were mostly co-cultured with miRNAs in different concentrations ranging 
from 0.5 to 20 μM, and growth was assessed using growth curves[7,102,108] or culturing[101].

To our knowledge, no studies have explored the impact of host exosomal fecal miRNAs, despite suggestions that IEC-derived exosomes might be taken up by 
more than one-quarter of gut bacteria[105]. The effect of diet-originating miRNA on bacterial members of the gut microbiota or probiotics further expands our 
understanding of this process. Studies have predominantly explored the uptake of plant miRNAs through exosomes or small vesicles, either directly purified 
from plant products or synthesized and packaged with plant miRNA mimics. Plant miRNAs have been shown to both increase and decrease the growth of 
Gram-positive or Gram-negative bacteria members of the gut microbiota in vitro or in vivo, using a healthy rodent model of miRNA administration[106], 
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obesity[105], or colitis[107]. The effects of dietary miRNAs appeared to be sequence-specific and consequential 
to their entry into bacteria cells. For example, Xu et al. found that bol-miR-159 could enter and accumulate 
in Bacillus spp, Ralstonia eutropha, and Weissella paramesenteroides to affect their growth, while its 
scrambled counterpart had limited entry and no growth-modulating effect[106]. Studies also reported the 
effects of plant miRNAs on probiotics such as Lacticaseibacillus rhamnosus GG and Bifidobacterium 
adolescentis, reporting an increase in their growth in vitro and in healthy[109] or colitis mouse models[73]. 
Similarly to host miRNAs, plant miRNAs have been suggested to target bacterial genes involved in nutrient 
degradation (tryptophanase, endoglucanase, intracellular PHB depolymerase), energy production (ATP 
synthase), DNA or RNA synthesis (RNase, transcription repressor), as well as genes involved in bacterial 
adhesion (pilus protein) or metabolite production (short-chain fatty acids).

It is well known that members of the gut microbiota interact with each other to maintain homeostasis and a 
health-compatible microbiota profile[110,111]. Therefore, it is likely that miRNA alteration of the growth of 
selected microbiota members may indirectly affect other members of the ecosystem, resulting in a change in 
the gut microbiota composition. This change in composition is indeed observed in multiple studies, where 
the fecal microbiota β-diversity is affected in vivo by miRNA administration[7,102,106-108]. Causal relationships 
need to be confirmed. Finally, in vitro fermentation models also reported the effects of host hsa-miR-200b-
3p and hsa-miR-7704 on the structure and composition of the mouse fecal microbiota during colitis[66] and 
chronic hepatitis B[104]. The syntrophic interactions among members of the gut microbiota add another layer 
of complexity to the host-microbiota crosstalk, making it challenging to distinguish the direct and indirect 
effects of miRNAs on bacteria abundances when studying complex communities.

POTENTIAL MECHANISMS BY WHICH PROKARYOTES MAY UPTAKE FOREIGN MIRNA
Most publications investigating the effect of host- or plant-derived miRNAs on microbiota or probiotic 
bacteria have shown the ability of bacteria to uptake miRNA. These findings were obtained using either 
labeled exosome-like nanoparticles[73,107] or “naked” labeled miRNAs[7,66,90,103,104,106,109] in co-incubation 
experiments with bacteria or complex fecal ecosystems. Such evidence suggests that multiple miRNA-
uptake mechanisms may exist in bacteria, allowing the entry of both encapsulated and free miRNAs.

Since the discovery of bacterial production of membrane-bound secretory vehicles in 1966 in 
Escherichia coli[112], extensive evidence has shown that both Gram-negative and Gram-positive bacteria 
release bacterial membrane vesicles (MVs). MVs, ranging in size from 10-400 nm, are spherical vesicles with 
a bilayer lipid membrane structure formed through complex biogenesis mechanisms or following cell 
lysis[113]. These vesicles contain a variety of functional molecules, including proteins[114], lipids[115], DNA[116], 
and various RNA types, such as mRNA, tRNA, rRNA, sRNA, and miRNA-size small RNA (msRNA)[117-119]. 
MVs play important roles in bacterial survival and colonization, such as nutrient binding, waste removal, 
biofilm formation, adsorption of detrimental agents (antibiotics, phages), gene transfer, bacterial killing, and 
quorum sensing, thereby facilitating bacteria-bacteria communication in their environment[120]. The recent 
focus on MVs lies in their role in host-bacteria trans-kingdom communication and their impact on host 
health and diseases. Notably, bacterial sRNA and msRNA carried by MVs have been shown to enter host 
cells and use miRNA-like regulatory mechanisms to modulate the host immune system[121,122]. Since 
communication through EVs is an evolutionarily conserved process, it is conceivable that an opposite 
mechanism may exist, where bacteria uptake eukaryotic miRNA-containing EVs using a similar 
mechanism.

The internalization of bacterial MVs into eukaryotic cells occurs through five different mechanisms: 
macropinocytosis, clathrin-mediated endocytosis, caveolin-mediated endocytosis, lipid raft-mediated 
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endocytosis, or direct membrane fusion[123]. In prokaryotes, the fusion of MVs with bacterial cells remains 
less described. MVs originating from Bacillus subtilis have been observed to attach and fuse to the outer 
membrane of their parent bacteria[124]. Moreover, bacterial MVs have demonstrated the capacity to transport 
antibacterial compounds to other bacterial species. For example, MVs derived from the probiotic 
Lactobacillus acidophilus ATCC 53544 can fuse with Lactobacillus delbrueckii subsp. lactis ATCC 15808 to 
deliver bacteriocin[125]. Similarly, Streptomyces MVs can fuse with both Gram-positive (Streptococcus aureus) 
and -negative (Klebsiella pneumoniae) bacteria, as well as eukaryotic microbial cells (Candida albicans, 
Cryptococcus neoformans) to deliver antimicrobial compounds[126]. The recognition of MVs by bacteria is 
thought to be mediated by LPS and tethers, maintaining MVs at a small distance from the cell (10-
20 nm)[127,128]. This MV cargo delivery mechanism is suggested to be specific, potentially involving ligand-
receptor interactions[129] and influenced by the physicochemical characteristics of both bacterial and EV 
membranes[120]. Therefore, MVs could be secreted by bacteria to target specific cells or could be specifically 
recruited by bacteria to favor their own growth. This leads us to speculate that host EVs containing miRNAs 
might also target specific bacterial cells and fuse through similar mechanisms. However, to our knowledge, 
the processes of host EV internalization by prokaryotes have not yet been described.

Although multiple studies have demonstrated the entry of mature, naked miRNAs into 
bacteria[7,66,90,103,104,106,109], the mechanisms underlying this phenomenon remain largely unexplored. In 
addition, specific miRNAs seem to only enter specific bacteria[7,102,106-109], suggesting that this mechanism may 
be selective or sequence-dependent. It has been first thought that naked miRNAs might be translocated into 
host-derived microvesicles in the gastrointestinal tract, to further be uptaken by bacteria through fusion[90]. 
However, a rationale exists for naked miRNA uptake since miRNAs have been shown to enter human 
mitochondria from the cytoplasm and promote the translation of mitochondrial transcripts[130]. Although 
the exact mechanism of miRNA entry into mitochondria remains unclear as well, it may involve the AGO2, 
the polynucleotide phosphorylase (PNPase), and the voltage-dependent anion channel (VDAC)[131]. 
Mitochondrial porins, like VDAC, share functional and structural similarities with bacterial porins, 
suggesting that similar membrane structures in bacteria could facilitate miRNA uptake[132,133]. PNPase, an 
evolutionarily conserved enzyme known for its role in RNA turnover in bacteria, has also been shown to 
participate in sRNA-mediated gene regulation by promoting sRNA stability[134]. These observations suggest 
that these proteins, due to their structural and functional similarities with their eukaryotic counterparts, 
may play a crucial role in the uptake and regulation of miRNA in bacteria. However, further research is 
needed to elucidate these mechanisms and determine if bacterial porins or PNPase contribute to selective 
miRNA uptake. Finally, it was also suggested that a mechanism similar to the horizontal gene transfer 
involving a DNA receptor[135,136] may exist for RNA, although no such receptor has yet been identified.

In summary, studies have demonstrated that bacteria can internalize miRNAs using both labeled exosome-
like nanoparticles and naked miRNAs, suggesting diverse uptake pathways may exist. The internalization of 
MVs into eukaryotic cells occurs through various endocytic pathways, and similar mechanisms might be 
involved in the uptake of host-derived EVs by prokaryotes. Additionally, the selective and sequence-
dependent uptake of naked miRNAs by bacteria indicates the potential involvement of specific bacterial 
porins or other membrane proteins. While the exact mechanisms remain largely unexplored, these first 
findings highlight the specificity of miRNA uptake in bacteria.

SRNA REGULATION OF GENE EXPRESSION IN PROKARYOTES
Although no prokaryotic miRNAs have been identified so far, bacteria and archaea express various types of 
sRNA that regulate gene expression. These prokaryotic sRNAs range from 50 to 500 nucleotides in length. 
They originate from intergenic regions[137], 5’ or 3’ UTRs[138], or are processed from existing RNA elements 
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like tRNA[139] or rRNA[140] [Figure 2]. Although prokaryotic sRNAs are longer than eukaryotic miRNAs, the 
length of their base-pairing sites could be independent of their overall size. Most sRNAs contain a seed 
region of less than 20 nucleotides[141]. In 2012, Lee et al. were the first to report the existence of a msRNA of 
15-28 nucleotides[142] in E. coli. This msRNA, similarly to eukaryotic miRNAs, can be derived from hairpin 
structures[143]. Since then, other researchers have identified msRNA in bacteria with pathogenic 
potential[119,144,145]. For example, Furuse et al. used deep sequencing to identify a miRNA-like compound 
expressed by Mycobacterium marinum. This compound can bind to the RISC complex and act on an 
artificial reporter gene with a perfectly complementary target site[145]. However, this sRNA is not found in 
the absence of infectable cells, suggesting that it requires the host cellular machinery for its biosynthesis[145].

In contrast to eukaryotic miRNAs, prokaryotic sRNAs exhibit diverse mechanisms of action in gene 
regulation. They can bind to their target mRNAs in either a perfect or imperfect manner, affecting mRNA 
translation or stability. sRNAs typically bind to the 5’ UTR of mRNA. This includes the Shine-Dalgarno 
(SD) sequence, a ribosome binding site (RBS) in prokaryote mRNA located upstream of the start codon[146]. 
By binding to this region, sRNAs can hinder translation initiation by limiting ribosome assembly[147]. 
Prokaryotic sRNAs can also bind to the CDS of mRNA[148] through interactions often mediated by 
chaperone proteins. These chaperones protect sRNA from degradation and facilitate its paring to target 
mRNA[149,150]. Hfq (Host Factor required for the replication of bacteriophage Qβ, as identified in E. coli[151]) is 
a key chaperone protein and helps recruit RNase E to induce rapid degradation of mRNA[152]. Not all 
bacteria possess Hfq, and other helper proteins, such as ProQ[153], can act as alternative chaperones. The 
existence of additional proteins assisting sRNA function remains to be further investigated. Some sRNAs 
also function independently of chaperones. For example, they can interact directly with specific regions in 
mRNA, such as stem-loop structures or C-A-rich regions, which act as translational enhancers. These 
interactions can, therefore, modulate ribosome binding and translation[141]. Finally, prokaryotic sRNAs can 
also act at the transcription level. In this case, sRNAs influence whether transcription continues by 
modulating the binding of Rho, a termination factor, to mRNA[154,155]. This modulation either inhibits or 
promotes transcription termination.

This versatility allows prokaryotes to quickly adapt to environmental changes and stress conditions. For 
instance, studies in the archaeon Haloferax volcanii illustrate how exposure to oxidative stress alters the 
production of sRNAs; these include responsive antisense sRNA that can align to various regions of mRNA, 
such as the 5’ UTR, 3’ UTR, and CDS[156]. Under alkaline stress, however, the organism expresses a valine 
tRNA-derived fragment that potentially binds to ribosomes, competing with mRNA and reducing global 
translation; this contrasts with the specific gene regulation typically associated with miRNA[157]. 
Additionally, sRNAs are involved in bacterial sugar metabolism, including the uptake and degradation of 
galactose, glucose, and amino sugars[158], suggesting they could have a direct impact on bacterial growth. 
sRNAs are also involved in bacterial communication with their surrounding environment. For example, the 
sRNA MicA has been found to regulate the porin protein OmpA that forms channels in the outer 
membrane of E. coli[159], and to induce the production of outer MVs[160]. Recent findings also suggest that 
bacteria may secrete sRNAs along with their chaperone proteins through outer MVs. Indeed, the helper 
protein Hfq, potentially bound to sRNA, has been detected in EVs of E. coli[161].

Research on the effects of host or diet-derived miRNAs on gut microbiota members reveals parallels with 
bacterial sRNA mechanisms, where host and plant miRNAs can either increase (AMUC_RS06985: β-
galactosidase; RNaseP: ribonuclease P; LREU_RS03575: DNA primase; polA: DNA polymerase I) or 
decrease (BLLJ_RS08400: NAD+/NADH kinase; RutA: pyrimidine monooxygenase; FucO: Lactaldehyde 
reductase; tnaA: tryptophanase; LexA: transcriptional repressor; proB: glutamate 5-kinase; spaC: pilus 
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Figure 2. Structure and mechanisms of action of eukaryotic miRNA and prokaryotic sRNA. Left panel: miRNA genes are transcribed into 
pri-miRNA and undergo processes to liberate pre-miRNA that are exported to the cytoplasm. Pre-miRNAs are then further cleaved by 
the enzyme Dicer. The miRNA duplex is then loaded into an AGO, to form the RISC after expulsion of the passenger strand. A: A perfect 
base pairing between a miRNA and its target 3’ UTR sequence triggers an endonucleolytic mRNA cleavage induced by AGO. B: The 
formation of a partial duplex (imperfect base pairing) in the 3’ UTR destabilizes mRNA through the recruitment of TNRC6 proteins and 
the CCR4-NOT complexes, which induce mRNA deadenylation. CCR4-NOT further inhibits translation, notably through the recruitment 
of a helicase. C: An extensive 3’-end pairing on the CDS, without a strong seed pairing, induces ribosome stalling and, therefore, inhibits 
mRNA translation. D: Under specific conditions, such as amino-acid starvation or cell cycle arrest, miRNA binding to the 3’ or 5’ UTR can 
upregulate translation in an unknown process involving the miRNA binding proteins AGO2 and FXR1. Right panel: Prokaryotic sRNAs 
originate from intergenic regions, 5’ or 3’ UTRs, or are derived from existing RNA elements. The sRNA regulatory mechanisms described 
are limited to Hfq-mediated pairing, although other chaperone proteins and Hfq-independent mechanisms exist. A: sRNA pairing to the 
RBS, including the SD sequence or the AUG start codon, limits ribosome assembly and hinders translation initiation. B: sRNA pairing in 
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the 5’ UTR or CDS recruits RNase E and induces mRNA degradation. C: On the 5’ UTR or CDS, sRNA can stabilize mRNA secondary 
structure or bind to RNase cleavage sites and protect RNase-sensitive mRNA from degradation, thereby upregulating translation. D: 
sRNA binding at the 5’ UTR can help unfolding mRNA to reveal sequestered RBS and facilitate ribosome binding and translation. Created 
with BioRender.com. miRNA: MicroRNA; sRNA: small RNA; pri-miRNA: primary miRNA; pre-miRNA: precursor miRNA; AGO: 
Argonaute protein; RISC: RNA-induced silencing complex; UTR: untranslated region; CDS: coding sequence; RBS: ribosome binding site; 
SD: Shine-Dalgarno; RNase: ribonuclease.

adhesin; ycnE: putative monooxygenase) mRNA transcript abundance [Table 2]. This suggests that 
eukaryotic miRNAs may act on bacterial gene expression post-transcriptionally. They may bind perfectly or 
imperfectly to complementary sequences at the 5’UTR or within the CDS of bacterial mRNAs. Helper 
proteins might facilitate these interactions, which can either inhibit or increase mRNA translation, 
depending on the type of binding and its location. Additionally, miRNAs may influence bacterial mRNA 
stability, resulting in either its degradation or stabilization. In bacteria, the processes of transcription and 
translation are often concurrent, as ribosomes can bind and rapidly cover newly synthesized mRNA[162]. One 
hypothesis explaining how sRNA may bind to mRNA in this context relies on the strength of the SD 
sequence, proposing that sRNA could bind more easily to mRNAs with a “weak” SD sequence, as weaker 
sequences would not attract and bind ribosomes as strongly[148]. Following this idea, eukaryotic miRNAs 
may only base pair with mRNA with a “weak” SD sequence. Such a sequence would slow down the 
ribosome assembly rate, making it easier for miRNAs to bind and interact with mRNA. Additionally, it is 
known that the effectiveness of sRNAs in repressing target genes depends on the balance between the rates 
of sRNA synthesis (i.e., sRNA concentration) and mRNA synthesis[163]. When the transcription rate of 
sRNA is higher than that of the target mRNA, gene expression is silenced. Conversely, if the sRNA 
transcription rate is lower, the unbound mRNA can be translated into proteins. More specifically, sRNA-
mediated regulation is thought to exhibit a threshold-linear response determined by their target synthesis 
rate above which sRNAs have little to no effect[163]. This concept aligns with flow cytometry experiments that 
report a dynamic accumulation of miRNA in bacteria[7,73,104,106,107,109]. These experiments suggest that miRNA 
may accumulate inside the cell to reach the minimal concentration needed to affect bacterial gene 
expression. Therefore, the sRNA concentration relative to its target may explain why miRNA effects are 
observed in studies using miRNA concentrations ranging from 5 nM[103] to 20 mM[108]. This range observed 
in vitro may indicate that miRNAs must reach certain levels to exert their regulatory effects on their 
bacterial target gene, and these levels may differ for various miRNA-gene pairs. Finally, previous research 
reports a colocalization of miRNA with bacterial DNA near the nuclear regions of bacteria and suggests that 
miRNA may act directly at the DNA level[7,66,106]. Even though no such mechanism has been demonstrated, 
similarly to sRNA, miRNA may affect gene expression at the transcription level, for example, through 
transcription termination. Interestingly, the RNA-binding protein Hfq has been shown to interact with 
double- and single-stranded DNA[164,165], suggesting an interaction with DNA might be possible. Future 
studies will need to investigate with more precision the localization of miRNA and their targets in bacteria 
cells to better understand their mechanisms, especially since the localization of regulatory RNA and mRNA 
is now recognized as a critical factor for gene expression regulation in prokaryotes[166].

METHODS TO IDENTIFY POTENTIAL PROKARYOTIC GENE TARGETS OF HOST AND 
DIET-DERIVED MIRNAS
MiRNA sequences and annotations, including pre-miRNA stem-loop structure and experimental 
verification, are available through miRNA repositories such as the widely used miRBase (https://www.
mirbase.org/)[9]. Eukaryotic gene targets can be predicted through various algorithms that consider a 
combination of features, such as seed sequence pairing, duplex stability, evolutionary conservation, targeted 
site accessibility, and the number of target sites[167]. An example of a tool that combines all of these features 
is TargetScan (https://www.targetscan.org/)[168], the most recent release of which utilizes a biochemical 

https://www.mirbase.org/
https://www.mirbase.org/
https://www.targetscan.org/
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model and a convolutional neural network to predict the interaction between miRNA (mostly the seed 
region) and target mRNA[169]. Machine learning prediction tools, such as DeepMirTar[170] or DIANA-
microT[171], also exist and can identify potential miRNA targets after being trained on proven miRNA-
mRNA interaction datasets[167]. However, to date, no tool has yet been developed specifically for in-silico 
prediction of eukaryotic miRNA targets in prokaryotic organisms.

Current literature identifying potential prokaryotic gene targets of host and diet-derived miRNAs relies on 
sequence-based analysis and RNA thermodynamics. The pioneering study by Liu et al. in 2016 aligned 
bacterial nucleic acid sequences with existing miRNAs using the miRBase searching tool[7]. Specifically, Liu 
et al. input the sequences of individual genes, operons, or entire genomes into miRBase and found many 
miRNAs from various eukaryotic organisms that could potentially target these bacterial sequences based on 
similarity[7]. However, due to the short length of miRNAs, it is highly plausible that most potential matches 
arise by chance and do not represent a true biological regulatory process. Since then, the Basic Local 
Alignment Search Tool (BLAST)[73,90,102,104,105,107] appears to be the most commonly used algorithm. BLAST 
aligns nucleotide sequences of interest with genome sequences from the National Center for Biotechnology 
Information (NCBI) database, predicting possible base-pairing between miRNA and genes[172]. Most 
previous work has compared bacterial genome sequences to entire mature miRNA sequences[90,104,104,105], 
while some restricted the alignment to miRNA seed sequences[102] or their reverse complement[73]. However, 
bacterial sRNAs typically exhibit longer seed regions than miRNAs[173], suggesting that the entire miRNA 
sequence may have to be considered for analysis. Indeed, Liu et al. in 2019 confirmed the regulatory effect of 
miR-30d-5p on Akkermansia muciniphila β-galactosidase, showing that nucleotides 2 to 6 of miR-30d-5p 
were not involved in base pairing[90]. It is thus plausible that restricting sequence comparison to the seed 
sequence may miss potential bacterial gene targets.

Sequence alignment analysis does not account for RNA secondary structure, which is crucial for 
determining the stability and probability of a miRNA-mRNA duplex formation. To better predict miRNA 
base-pairing dynamics, studies have assessed the free energy of binding (ΔG) of miRNA-mRNA 
interactions[90,104]. For example, Liu et al. used RNAhybrid to confirm the structure of the binding between 
miR-30d-5p and its potential gene target in Akkermansia muciniphila, initially identified by BLAST[90]. 
Other studies[106,108,109] have used miRanda, a miRNA gene target detection tool developed for animals that 
takes into account sequence, secondary structure, and duplex stability[174]. In these methods, the free energy 
of binding is a crucial criterion: a lower ΔG signifies that more energy is required to break the binding, 
therefore suggesting stable pairing[175]. Studies have selected miRNA targets with the lowest ΔG possible[90,104] 
or used an arbitrary threshold of ΔG < -10 kcal/mol[109]. However, no binding free energy threshold has been 
established for miRNA-mRNA interactions in prokaryotes or eukaryotes. In addition, while ΔG considers 
intermolecular pairing, it neglects intramolecular folding and the energy required to open binding sites. 
Eukaryotic studies have also emphasized the importance of target structural accessibility for miRNA 
binding[176,177]. This suggests that gene target prediction methods may need to account for target accessibility, 
which can be assessed by determining the total free energy of binding (ΔΔG or ΔGTOTAL) using tools like 
RNAup[175]. Horne et al. followed this method, using NanoString Technology to profile mouse fecal 
miRNAs, BLASTn to predict potential bacterial gene targets, and RNAup to calculate the total free energy of 
binding[178]. However, it should be noted that these tools were not initially developed for the prediction of 
miRNA targets in prokaryotes; therefore, their precision and accuracy in this context remain to be validated.

Confirming miRNA targets in prokaryotes remains challenging. A common approach uses quantitative 
polymerase chain reaction (qPCR) to determine if the expression level of target genes changes in response 
to synthetic miRNA, compared to a scramble-sequenced miRNA[7,73,90,102,104]. Limitations of this approach 
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include a lack of proof of miRNA binding to specific target mRNAs and overlooking indirect effects on 
upstream regulatory elements. Other indirect methods include measuring metabolites produced by the 
encoded protein[108] or observing miRNA effects on bacterial growth[66,101-104,106,108,109]. However, these 
approaches only capture the secondary effects of miRNA-gene modulation and do not validate miRNA-
mRNA interactions. The mechanisms of miRNA uptake and regulation in prokaryotes are not well 
understood, complicating the development of direct confirmation assays and making it challenging to 
design effective validation experiments or translate in silico predictions into biological applications.

MiRNA target confirmation in eukaryotes is more advanced, with well-established techniques such as the 
luciferase reporter assay, a gold-standard method[179]. In this assay, cells are transfected with plasmids 
containing the miRNA target sequence fused to the 3’ end of a luciferase coding sequence. If the miRNA 
binds to the target sequence, changes in luminescence can be measured after cell lysis and substrate 
addition, confirming the interaction. In prokaryotes, similar GFP-based fluorescence assays have been 
adapted to validate sRNA targets[180]. These established methods in eukaryotes and prokaryotes provide 
valuable insights for adapting target confirmation techniques for bacterial miRNA studies. For instance, 
developing bacterial-compatible reporter assays or applying high-throughput sequencing-based methods 
could enhance the accuracy of miRNA target validation in bacteria. With further research into miRNA 
uptake direct action on mRNA, these approaches could help translate computationally predicted miRNA 
targets into experimentally confirmed biological phenomena in bacterial systems.

CONCLUSION
Fecal miRNAs represent a complex and dynamic interface between the host, diet, and gut microbiota. While 
significant progress has been made in characterizing the fecal miRNome and identifying key miRNAs 
involved in intestinal homeostasis, many questions remain unanswered. The form in which miRNAs exist 
in the gut lumen (e.g., exosomal or naked) requires further investigation to better understand their stability 
and functional relevance. This will contribute to the exploitation of fecal miRNAs in clinical applications as 
diagnostic biomarkers and therapeutic tools. Moreover, the impact of diet and microbiota composition on 
the fecal miRNome remains an area of active research. These findings will not only underscore the 
complexity of miRNA interactions within the gut but also reveal novel mechanisms by which the host can 
modulate the intestinal microbiota. The human fecal miRNome seems to be individualized. This diversity 
may partly explain the interindividual variability observed in responses to treatments targeting the 
microbiota, and that could be modulated via miRNA. Engineered miRNA mimics offer exciting prospects 
for selectively modulating gut microbiota and enabling personalized interventions in gut health.

Recent evidence suggests that miRNAs can directly interact with gut microbiota by modulating bacterial 
growth and gene expression. The discovery that both nanoparticle-encapsulated and naked miRNAs can 
enter bacterial cells may indicate the existence of multiple uptake mechanisms, although the exact pathways 
remain poorly investigated. Host- and diet-derived miRNAs may influence bacterial growth by regulating 
genes involved in nutrient degradation and DNA/RNA synthesis. Research is needed to uncover the 
mechanisms of miRNA entry and their regulatory effects, and it could draw on existing knowledge about 
prokaryotic sRNAs and eukaryotic miRNA gene regulation. Advancing this field will require the 
development of tailored computational tools and experimental methodologies, using appropriate controls to 
assess miRNA direct effects. A comprehensive understanding of the diversity, origin, and functional roles of 
fecal miRNAs in gut health will require interdisciplinary efforts that integrate microbiology, RNA biology, 
bioinformatics, and systems biology, to name a few. Studies that combine miRNA profiling with omics data 
would be needed to investigate the impacts of miRNA regulatory networks on the intestinal microbiota. 
Bridging these knowledge gaps will help reveal the role of miRNAs in maintaining gut health and explore 
their potential use in disease prevention and treatment strategies.
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