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Abstract
Nickel-catalyzed reductive cross-coupling (RCC) reactions using two carbon electrophiles as coupling partners 
provide one of the most reliable and straightforward protocols for facile construction of valuable C-C bonds in the 
realm of organic chemistry. In recent years, significant progress has been made in the methodological 
developments and mechanistic studies of these reactions. This review summarizes four widely accepted 
mechanisms for RCC reactions that have been proposed by experiments or density functional theory calculations. 
The major difference between these four types of mechanisms lies in the oxidation state of the active catalyst, the 
change in the valence of nickel during the catalytic cycle, the involvement of carbon radicals, and the form in which 
the radicals are present. Herein, we focus on covering representative advancements in experimental and 
theoretical mechanistic studies, aiming to offer vital mechanistic insights into key intermediates, reaction rates, the 
activation modes of electrophiles, rate- or selectivity-determining steps, and the origin of the cross-selectivity.
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INTRODUCTION
Nickel-catalyzed RCC reaction, also known as cross-electrophile coupling (XEC), offers a powerful strategy 
for C−C bond formation, which has attracted considerable research interest[1-8]. This protocol selectively 
joins two commercially available electrophiles under reducing conditions with a wide substrate scope of 
both coupling partners [Scheme 1A and B]. Typically, bidentate and tridentate nitrogen ligands, such as 
bipyridine (bpy), bioxazoline (biOx), biimidazole (biIm), bisoxazoline (box), terpyridine (terpy), and 
pyridine-biscarboxamidine (PyBCam), and bidentate phosphine ligands, such as Xantphos, BINAP, and so 
on, were usually used in this system [Scheme 1C]. In general, when nitrogen ligands are used, the reaction 
tends to proceed via a radical pathway, while a closed-shell reaction generally occurs with phosphine 
ligands. There are various mild reducing conditions available, including metal reductants such as Mn and 
Zn[9,10] and organic reductants such as B2pin2 and hydrazine[11,12]. In addition, photoredox catalysis[13-17] and 
electrochemistry[18-23] can also be utilized [Scheme 1D]. This strategy enables the construction of a range of 
C(sp2)−C(sp2)[24-26], C(sp2)−C(sp3)[27-31], and C(sp3)−C(sp3)[32-34] bonds with high levels of cross-selectivity and 
stereoselectivity. For example, Kim et al. discovered the first nickel-catalyzed RCC of aryl chlorides with 
primary alkyl chlorides, utilizing a small amount of iodide or bromide in conjunction with the pyridine-2,
6-bis(N-cyanocarboxamidine) (PyBCamCN) ligand and Zn reductants[28].

With the continuous development of RCC reactions, some mechanistic problems have sparked intense 
research interest of chemists [Scheme 1E]: (1) The mechanism of RCC deviates from traditional cross-
coupling (XC) reactions that typically proceed through oxidative addition (OA)/transmetalation (TM)/
reductive elimination (RE) process[35,36]; (2) Nickel intermediates likely possess various oxidation states 
ranging from Ni0 to NiIV; (3) Reaction appears to undergo both two-electron and single-electron redox 
processes; (4) The radical forms are involved in cage-escaped radicals or solvent caged radicals; (5) The 
origin of cross-selectivity over homo-selectivity involved in reactions. Until now, considerable achievements 
have been made in both experimental and computational mechanistic studies to answer these mechanistic 
problems[37-44]. In this review, we focus primarily on the mechanistic aspects of RCC reactions, with an 
emphasis on experimental studies, such as stoichiometric, competitive, radical, kinetics, kinetic isotope 
effect (KIE) experiments, and so on. However, we also take into account theoretical research where 
appropriate. The aim of this review is to enhance the comprehension of the mechanism and selectivity of 
these reactions, thereby aiding chemists in designing novel catalytic systems. In the following sections, we 
will provide an integrated discussion of these mechanisms, including their fundamental steps, catalytic 
systems, detailed mechanistic studies, and the origin of cross-selectivity.

THE INVESTIGATION OF MECHANISM I
Scheme 2 depicts the scenarios of Mechanism I, which consists of five elementary steps: OA, radical 
addition, RE, radical formation, and reduction. This mechanism essentially proceeds through a radical chain 
process and involves a key Ni0/NiII/NiIII catalytic cycle. It is worth emphasizing that radicals are generated at 
one nickel center, and the resulting cage-escaped radicals subsequently combine with another nickel species 
prior to the OA step. Additionally, when a photoredox catalyst is employed, the formation of radicals may 
exhibit variability and typically be independent of the catalytic cycle of nickel. A detailed discussion on this 
will be presented later. Finally, it should be noted that in the product release process, no reducing agents are 
involved. Alternatively, there is another possibility that radicals may directly combine with Ni0 to form NiI

[45,46] intermediates. Xu et al. has computationally demonstrated that even though the addition of radicals to 
Ni0 is energetically more favorable than the OA of Ni0 to substrates aryl bromides, OA still occurs due to the 
low concentration of radicals and the abundance of aryl bromides[47]. Hence, it will not be further elaborated 
here.



Page 3 of Wu et al. Chem Synth 2023;3:39 https://dx.doi.org/10.20517/cs.2023.20 20

Scheme 1. Nickel-catalyzed reductive cross-coupling reactions. (A) Experimental studies; (B) The scope of substrates; (C) Some 
common ligands; (D) Reducing conditions; (E) Several mechanistic questions.

Mechanism I predominantly occurs in the Ni0-catalyzed reductive couplings between C(sp2) and C(sp3) 
electrophiles in the presence of pyridine-type nitrogen ligands and Zn or Mn reductants. The substrates for 
this mechanism mainly consist of unactivated simple halogenated hydrocarbons. As shown in Figure 1A, 
Biswas et al. conducted a series of experimental mechanistic investigations on the Ni0/L1 (L1 = 4,4'-di-tert-
butyl-2,2'-bipyridine (dtbpy))-catalyzed RCC of iodobenzene 1a with iodooctadecane 1b, using Mn as a 
reductant[48]. Compared to the previously published reactions[49,50], several small modifications were made to 
these reaction conditions.

According to Mechanism I, the reaction begins with the initial OA to give NiII intermediate. To determine 
whether aryl or alkyl NiII intermediate was formed initially, competition reaction studies between 1a and 2a 
were performed [Figure 1B]. The results showed that iodobenzene reacts with Ni0 species 4.7 times faster 
than iodooctadecane, which preferentially leads to NiII aryl intermediate. Wotal et al. also isolated NiII acyl 
intermediates and discovered that they can react with a series of carbon electrophiles[51]. In addition, the 
similar aryl nickel complex [(dtbpy)NiII(o-tolyl)I] was synthesized by Sheng et al.[52]. Subsequently, 
stoichiometric experiment studies between isolated and characterized NiII aryl intermediates IM1 and 1b 
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Scheme 2. The catalytic cycle of Mechanism I.

were conducted to further verify that IM1 acts as the initial key intermediate of the catalytic cycle 
[Figure 1C]. Significantly, cross-product 4c can be formed through this process without the Mn reductant, 
which not only confirms that NiII aryl species is the active intermediate of the reaction but also proves the 
release of the product does not require reducing agents. Moreover, radical clock experiments implied that 
the alkyl radical would be formed in the system [Figure 1D]. Furthermore, the findings from radical lifetime 
studies reveal a positive linear correlation between the 7c/8c ratio and the catalyst concentration [Ni], 
suggesting the involvement of a radical chain process [Figure 1E]. Additionally, they carried out 
organometallic experiments and excluded the possibility of an organozinc reagent acting as an intermediate. 
Based on all the experimental mechanistic investigations, it has been confirmed that this type of 
transformation [Figure 1A], which is restricted to the coupling of C(sp2) electrophiles with C(sp3) 
electrophiles, predominantly proceeds through a radical chain pathway.

More importantly, Biswas et al. also elucidated the origin of the cross-selectivity over homo-selectivity[48] 
[Figure 2]. They found that iodobenzene PhI reacts with Ni0 species faster than iodooctadecane C8H17I to 
afford NiII aryl intermediate, while L1NiII species may react with C8H17I rather than PhI, resulting in alkyl 
radicals. This sequential activation mode accounts for the experimentally observed cross-selectivity. 
Typically, due to the lower stability of aryl radicals compared to alkyl radicals, C8H17I is more prone to 
generate radicals by reacting with Ni0 species. In contrast, PhI is more likely to undergo OA with Ni0 
species, which can be attributed to the favorable π-metal interactions between the substrate and the 
metal[53]. Several theoretical calculations have confirmed that C(sp2) electrophiles undergo OA more rapidly 
than C(sp3) electrophiles. For instance, Ren et al. demonstrated that the activation energy barrier of aryl 
halides is 4.4 kcal/mol lower than alkyl halides[54]. Similarly, Kumar et al. obtained identical results[55].
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Figure 1. Experimental mechanistic investigations of Mechanism I. (A) Model reaction used in experimental mechanistic investigations; 
(B) Competition reaction studies between 1a and 1b; (C) Stoichiometric studies of IM1; (D) Radical clock experiments; (E) Radical 
lifetime studies. DMA: N,N-Dimethylformamide; TMSCl: Trimethylchlorosilane; ND: not detected; Conversion with respect to the 
amount of L1Ni0(cod).

Figure 2. The origin of the cross-selectivity.

It is gratifying to note that Ren et al. performed detailed density functional theory (DFT) calculations on 
NiBr2/4,4'-di-methyl-2,2'-bipyridine-catalyzed RCC of aryl bromide and alkyl bromide[54]. They found that 
radical addition is the rate-limiting step with the energy barrier of 10.4 kcal/mol, suggesting that the radical 
chain mechanism is a feasible process. In addition, Wang et al. disclosed this mechanism still operates when 
aryl iodides and tertiary alkyl halides are used[56]. These two research groups also independently calculated 
an alternative Mechanism II (discussed below), and both mechanisms are energetically feasible, making it 
difficult to distinguish between them based solely on calculations. Recently, Ji et al. carried out experimental 
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mechanistic investigations on the Ni(1,2-Dimethoxyethane (DME))Br2/box-catalyzed enantioselective 
coupling of acid chlorides with α-bromobenzoates, indicating that this system also follows a radical chain 
mechanism[57]. It is worth noting that some of the recently developed Ni/photoredox[58-62] and 
Ni/electrochemistry[63,64] dual catalytic RCCs also involve a radical chain process. Despite the changes in 
reduction conditions, the essence of the Ni-involved catalytic cycle remains unchanged, primarily 
influencing the formation pathway of the radicals.

Although Weix proposed a possible mechanism and suggested that radicals may be generated with the 
assistance of NiIX species, no conclusive evidence has been provided to support this claim. Building on 
previous studies[65-69], there are four different pathways that can be taken, including single electron transfer, 
either outer-sphere or inner-sphere, two-electron OA, and concerted halogen-atom abstraction, as shown in 
Figure 3.

Thankfully, Lin et al. used electrochemical methods and DFT calculations to investigate the activation 
modes of radical formation in the (bpy)Ni-catalyzed system[69]. They ruled out electron transfer and two-
electron OA and revealed radical formation occurs through a halogen atom abstraction process via 
transition state TS1, with the energy barrier of 7.4 kcal/mol [Figure 4]. Note that, unlike the study of Weix, 
the radical is assisted by NiI aryl intermediates IM4 rather than NiIX in this process. Additionally, Diccianni 
et al. further confirmed that alkyl radicals are generated in a similar manner in the (Xantphos)Ni-catalyzed 
system with the aid of kinetic studies and DFT calculations[65].

Of particular note, photoredox catalysts can also aid in the generation of radicals. In a study by Wang et al., 
they reported a Ni/photoredox-catalyzed enantioconvergent RCC between α-bromophosphates and aryl 
iodides[60] [Figure 5A]. To determine whether the radicals were generated by the photoredox catalyst or the 
nickel, they conducted comparison experiments using substrates 3a and 5b under conditions with 
photoredox and Ni catalysts, respectively [Figure 5B]. The results showed that the photoredox catalyst was 
responsible for generating the desired product 10c, suggesting that the radicals are formed by the 
photoredox catalyst in this system. The process of free radical formation is illustrated in Figure 5C. Initially, 
the photoredox catalyst 4CzIPN is excited by light, and the resulting excited 4CzIPN* subsequently 
undergoes reductive quenching with Hantzsch ester (HEH), leading to 4CzIPN−• with a strong reducing 
capacity [4CzIPN/4CzIPN−• = -1.21 vs. saturated calomel electrode (SCE)]. Eventually, the single-electron 
transfer process occurs between 4CzIPN−• and 5b to release radicals and regenerate photoredox catalyst 
4CzIPN. Moreover, they also confirmed that the radical addition step is the enantioselectivity-determining 
step through DFT calculations. Similar results were also reported in the work by Guo et al. for the Ni/
photoredox-catalyzed enantioselective three-component carboarylation of alkenes with tertiary and 
secondary alkyltrifluoroborates and aryl bromides[70]. It is important to note that the photoredox catalysts 
assisted generation of radicals occurs independently of the Ni catalyst. Consequently, this catalytic cycle 
involves a Ni0/NiII/NiIII/NiI/Ni0 sequence, in which the reduction occurs directly from NiI to Ni0, rather than 
the NiI→NiII→Ni0 pathway proposed by Weix, where NiI reacts with alkyl halides to generate radicals and Ni
II, followed by the reduction of NiII to Ni0.

THE INVESTIGATION OF MECHANISM II
As shown in Scheme 3, unlike the radical chain process, Mechanism II proceeds through successive OA, 
reduction, OA, RE, and reduction, and it features a key Ni0/NiII/NiI/NiIII process. Notably, the second OA 
can occur via a concert two-electron (NiI→NiIII, black line) or stepwise single-electron process (NiI→NiII→
NiIII, blue line). When C(sp2) electrophiles are used, the reaction generally undergoes a two-electron OA 
process. On the other hand, the reaction can generate radicals through a single electron process when the 
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Figure 3. Several pathways for radical formation.

Figure 4. Concerted halogen atom abstraction process. Selected bond distances are given in Å.

Figure 5. Photocatalyst-assisted radical formation. (A) Model reaction of Ni/photoredox-catalyzed enantioconvergent reductive cross-
couplings; (B) Competition experiments between 3a and 5b; (C) Photoredox catalyst-mediated radical formation process. SCE: 
saturated calomel electrode.
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Scheme 3. The catalytic cycle of Mechanism II.

C(sp3) electrophiles are present. The main differences between Mechanism II and Mechanism I can be 
summarized as follows: (1) Mechanism II involves twice OA and reduction and requires a reduction step 
before the release of the product, while Mechanism I only experiences once OA and reduction in the whole 
catalytic cycle; (2) Mechanism I necessarily involves the radicals, and the formation of radicals occurs prior 
to OA, whereas Mechanism II may or may not involve radicals. Even if radicals are involved, they are of the 
solvent-caged type and undergo a radical rebound process during the reaction while being cage-escaped 
radicals in Mechanism I.

Mechanism II is mainly observed in reductive coupling systems involving C(sp2)-C(sp2) electrophiles or 
C(sp2)-C(sp3) electrophiles, which are catalyzed by nickel/pyridine-type ligands in the presence of metal 
reductants. Generally, when C(sp3) electrophiles are involved, the system may generate radical 
intermediates, making it difficult to distinguish from Mechanism I merely from a computational point of 
view. In such cases, corresponding experimental mechanistic studies are needed to differentiate between 
them. As early as 2014, Jiang et al. investigated the mechanisms on (dtbpy)Ni/Zn-catalyzed RCC reaction of 
aryl halides from a theoretical calculation perspective[71]. They confirmed the feasibility of the Ni0/NiII/NiI/Ni
III/NiI cycle and identified the second OA is the rate-determining step.

Later, Liu et al. reported a similar reaction of aryl halides with vinyl bromides [Figure 6A] and further 
explored the mechanism of this reaction by a combination of experimental and DFT calculations, offering a 
more in-depth understanding[72]. Firstly, they conducted a control experiment using TEMPO (2,2,6,6-
Tetramethylpiperidin-1-oxyl) to demonstrate that the reaction does not involve a radical chain process and 
that the participation of vinyl radicals is less likely. Next, a possible mechanism was determined through 
calculations, as shown in Figure 6B. The results revealed that the Ni0 catalyst initially undergoes an OA 
process with vinyl bromides through the concerted two-electron, three-member transition state TS2, 
resulting in the formation of the vinyl NiII intermediate IM7. This intermediate is subsequently reduced by 
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Figure 6. Computational mechanistic studies. (A) Model reaction used for DFT calculations; (B) Energy profile for oxidative addition 
process. Gibbs free energies are given in kcal/mol. Computations at the B3LYP-D3(BJ)/SDD for Ni, 6-311G(d,p) for Br, 6-31G(d,p) level. 
Selected bond distances are given in Å.

Zn to form the vinyl NiI intermediate IM8. The second OA involving bromobenzene then occurs via the 
transition state TS3, generating the NiIII intermediate IM10. This process has an activation energy of 
14.2 kcal/mol and constitutes the rate-determining step of the reaction.

Thereafter, Long et al. reported a similar mechanism for a reductive coupling of 2-Haloanilines[73]. They also 
discovered that the energy required for single-electron halide abstraction is less favorable than that of the 
two-electron OA process by 15.4 kcal/mol. This further implies that the formation of aryl radicals in this 
system is quite challenging. Recently, Long et al. developed a (bpy)Ni/Mn-catalyzed reductive coupling of 
2-halophenol derivatives[74]. They successfully synthesized the NiII aryl intermediate through the reaction of 
Ni0 and aryl halides. Moreover, this intermediate was found to efficiently catalyze the reaction, leading to 
the desired coupling products. This observation suggests that the OA of Ni0 to aryl halides takes place in the 
catalytic cycle, and the resulting NiII aryl intermediate might be a key active species. All of the 
aforementioned findings indicate that the Ni0/NiII/NiI/NiIII process is possible for Ni/(pyridine-type 
ligands)-catalyzed reductive couplings involving C(sp2) and C(sp2) electrophiles using Zn or Mn reductants.

According to Mechanism II, when involving C(sp3) electrophiles, a stepwise single-electron OA process can 
occur. Ren et al. revealed that the stepwise single-electron OA process between the NiI aryl intermediate 
IM11 and CyBr 7b is completed through the successive halogen atom abstraction transition state TS4 and 
the radical addition transition state TS5[54] [Figure 7]. This process forms the NiIII intermediate IM12, 
requiring relatively low activation energy barriers of 5.0 and 10.4 kcal/mol, respectively. A similar result was 
obtained for nickel-catalyzed reductive XC of activated primary amines with aryl halides, as reported by 
Yue et al.[75].

THE INVESTIGATION OF MECHANISM III
In general, a fundamental question in these catalytic systems is identifying the nature of the active catalyst at 
the outset of the reaction. Mechanism III is distinct from the previously discussed two mechanisms, as it is 
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Figure 7. Stepwise single-electron oxidative addition process. Computations at the B3LYP/6-31g* level. Selected bond distances are 
given in Å.

characterized by the absence of Ni0 throughout the entire process, with NiI species serving as the active 
catalyst. As illustrated in Scheme 4, starting from the active catalyst LNiIX, the reaction can proceed through 
two distinct OA pathways. The first possibility involves a bimolecular OA to form LNiIIX(R1), while the 
second involves a single-molecule process that yields LNiIII(X)2(R1). These two intermediates are then 
reduced to LNiI(R1), followed by halogen atom abstraction to form R2 radical and LNiIIX(R1), which, upon 
radical rebound, produce LNiIII(X)(R1)(R2). Finally, RE occurs, leading to the formation of the product and 
regeneration of the active catalyst. Generally speaking, in the reductive coupling system involving C(sp2) 
and C(sp3) electrophiles, catalyzed by Ni catalyst and pyridine-type nitrogen ligands, it has been observed 
that when the substrates change to alkyl halides featuring more complex structures, such as alkenes and 
heteroatoms, the reaction mechanism tends to shift towards Mechanism III.

This mechanism was corroborated through various experimental mechanistic investigations, including 
kinetic, spectroscopic, and organometallic studies, conducted by Lin et al.[76]. They used the model reaction 
depicted in Figure 8A, where aryl bromide 5a and alkyl bromide 8b can be effectively cross-coupled to 
generate product 12c in the presence of Zn and NiBr2·DME/1,10-phenanthroline. Firstly, they carried out 
substrate probe experiments to demonstrate the presence of radical intermediates in the system. 
Subsequently, the kinetic studies were performed, and the reaction order was obtained, as illustrated in 
Figure 8B. The zero-order dependence on substrates 5a and 8b, together with the first-order dependence on 
[Ni], and the observation that the reaction rate increases along with increasing agitation rate and Zn 
loading. Integrating these results suggests that the reduction of Ni by Zn is the rate-determining step of the 
reaction. After that, they identified NiII intermediates IM13 and IM14 as the catalyst resting state through 
EPR, 1H NMR, and UV-visible spectroscopy analysis [Figure 8C]. In contrast to the previous system where 
Ni0 served as the reducing species, the resting state IM13 can only be reduced by Zn to NiI species IM15, 
which was confirmed by comparing its cyclic voltammetry (CV) and EPR data with those of isolated and X-
ray characterized (phen*)NiIBr IM16 (phen* = 2, 9-di-sec-butyl-phenanthroline) [Figure 8D]. Therefore, NiI

Br IM15 serves as the starting point for the reaction. Several reports have also demonstrated that the NiIX 
complex serves as the initial active catalyst in nickel-catalyzed reductive coupling reactions[77-80].

Subsequently, competition experiments were conducted to explore the electrophile activation of substrates 
[Figure 8E]. The reaction rates of 5a and 8b with IM15 were 1.2 and 0.42 mM/min, respectively, indicating 
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Scheme 4. The catalytic cycle of Mechanism III.

that the OA of NiIBr with PhBr is faster than its reaction with haloalkanes to generate radicals. They 
speculate that the OA process takes precedence over radical formation. These findings contradict the results 
proposed by the radical chain mechanism, which suggests that NiIBr preferentially activates alkyl halides to 
generate radicals, occurring prior to OA. It is important to note that Ting et al. further demonstrated that 
aryl halides undergo OA with NiI halide complexes through quantitative experiments, in which they 
obtained structurally characterized bipyridine-ligated NiIII aryl complexes[81]. In addition, Till et al. 
discovered that (dtbpy)NiIBr can be generated through pulse radiolysis, and it is capable of undergoing OA 
with aryl halides[82]. Then, Breitenfeld et al. performed stoichiometric experiments to demonstrate that 6a 
o-TolBr reacts with IM15 via bimolecular OA, leading to IM13 and IM17[83,84] [Figure 8F]. EPR spectroscopy 
reveals that IM17 can also only be reduced by Zn to form NiI aryl species. Similar structures of (IPr)NiI alkyl 
and aryl complexes have been characterized by Laskowski et al., and they confirmed that NiI alkyl species 
can activate alkyl halides via a radical process[85]. In order to identify how NiII aryl intermediate interacts 
with substrate 8b, an array of control experiments was carried out [Figure 8G] . Stoichiometric experiments 
have shown that the efficiency of the reaction is low in the absence of Zn, with only 30% of 8b being 
converted (entry 1). However, with the addition of Zn, the conversion of 8b increases to 100% (entry 2), 
suggesting that Zn plays a crucial role in promoting the reaction. This finding contrasts with the results 
reported by Weix, where the reaction could efficiently yield the desired product even without Zn. Moreover, 
the formation of 14c infers the existence of the radical intermediate that undergoes cyclization and 
dimerization, while the cross-coupled product 15c is obtained through a radical addition and reduction 
elimination process. They also found that when the substituent Ar is o-Tol, both 15c and 14c can be 
obtained (entry 2). When the substituent is Mes, only dimer 14c can be formed (entry 3). This suggests that 
the larger steric hindrance prevents radical addition to Ni center. Taken together, these results are 
consistent with Mechanism III.

By comparing the catalytic systems of Weix and Diao, significant differences were found. (1) The types of 
electrophilic substrates used are different: Weix employed simple linear alkyl halides such as iodobenzene, 
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Figure 8. Experimental mechanistic investigations of Mechanism III. (A) Model reaction used for mechanistic investigations; (B) Kinetic 
studies of model reaction; (C) Spectroscopic studies; (D) Reduction of NiII by Zn; (E) Competition experiments between 5a and 8b; (F) 
Stoichiometric experiments; (G) Control experiments. a and b: refer to conversion and yields, respectively; DMA: N, N-
dimethylacetamide, DME: 1,2-Dimethoxyethane.

while Diao used structurally complex alkyl halides substituted with heteroatoms and olefins; (2) The ligands 
used are different: although both ligands belong to the pyridine-type nitrogen ligands, they have different 
substitution patterns, one being a bipyridine and the other being a phenanthroline; (3) The reducing agents 
used are different: Weix used Mn, while Diao used Zn. These differences in catalytic systems are important 
factors that lead to changes in the reaction mechanism. More importantly, Ju et al. discovered that the use of 
biOx ligand excludes the reduction step of (biOx)NiII[86]. This can be attributed to the lack of ligand redox 
activity, resulting in more negative reduction potentials of (biOx)NiII complexes, rendering them unable to 
be reduced by Zn and Mn. This further highlights the significant impact of ligands on the mechanism[87].

Similar to Weix, Diao found that the cross-selectivity also originates from the different activation sequences 
of the two electrophiles. Unlike the Weix’s system, which utilizes Ni0 and NiII species, Diao employs NiIBr 
and NiIPh to activate different electrophiles, respectively. Specifically, the OA is mainly influenced by steric 
effects, while the formation of radicals via halogen-atom abstraction is related to electronic effects. 
Therefore, sterically assessable NiIBr preferentially undergoes two-electron OA with PhBr 5a to give C(sp2) 
NiII species, while electron-rich but sterically hindered NiIPh predominantly activates alkyl bromides 8b via 
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halogen-atom abstraction to forms C(sp3) radicals [Figure 9], thus resulting in cross-selectivity.

Meanwhile, by combining experimental and DFT calculations, Shu et al. investigated the mechanism of 
dipyridine-ligated nickel-catalyzed reductive dicarbofunctionalization of propene with tert-butyl iodide and 
iodobenzene with the use of Zn reductants[88]. Their findings confirmed the feasibility of the pathway 
involving NiI species. More recently, Zhu et al. developed an RCC reaction of α-oxy halides enabled by Mn 
reductants, photocatalysis, electrocatalysis, or mechanochemistry in the presence of nickel and 
phenanthroline ligands[89]. Surprisingly, through detailed experimental and theoretical studies, they found 
the mechanisms of all four catalytic systems are consistent with Mechanism III. Besides, they noted that the 
NiIII intermediate, obtained through OA, may trigger comproportionation with NiI species to afford the NiII 
intermediate. Intriguingly, Day et al. disclosed that polypyridine-ligated NiII halide complexes can undergo 
the comproportionation with Ni0 to form NiI species[90]. These electron-transfer events were corroborated by 
electrochemical techniques and detailed quantum mechanical calculations. It is worth noting that 
Tang et al. conducted comprehensive mechanistic studies on the OA of Ni(I) to aryl iodides using 
electroanalytical and statistical modeling techniques[91]. And predicted OA rates can be utilized not only to 
interpret observed reactivities but also to rationalize the mechanism. This indicates that an expanding array 
of techniques can assist us in predicting reaction models, understanding reaction mechanisms, and guiding 
the design of novel catalytic systems.

THE INVESTIGATION OF MECHANISM IV
In contrast to the aforementioned initial three mechanisms, Mechanism IV fundamentally encompasses an 
SN2 process and the Ni0/NiII catalytic cycle. As depicted in Scheme 5, commencing with Ni0, the reaction 
proceeds sequentially through OA, TM, an SN2 reaction, a second TM, and ultimately RE. Notably, this 
particular mechanism employs organic Grignard reagents as reductants, as opposed to their conventional 
use as coupling reagents, thereby deviating significantly from traditional XC reactions. Mechanism IV is 
chiefly observed in the intramolecular reductive coupling reaction system, which is facilitated by Ni0 
catalysts in the presence of phosphine ligands and organic Grignard reagents. The primary substrates for 
this mechanism encompass a range of active pyrrole and amine derivatives. It is important to note that 
Mechanism IV demonstrates fundamental differences in terms of reaction conditions and substrates when 
contrasted with the previously discussed three mechanisms.

Chen et al. conducted a comprehensive mechanistic investigation on Ni0/BINAP-catalyzed stereospecific 
intramolecular RCC reactions of benzylic ethers through a combination of experimental and computational 
approaches, thereby confirming the feasibility of this particular mechanism[92]. In this discussion, we 
concentrate on the key transition states for the product formation, as illustrated in Figure 10A. The reaction 
proceeds sequentially through the OA transition state TS6, TM transition state TS7 and intramolecular 
SN2-like attack transition state TS8 to achieve C−O bond cleavage, alkyl transfer, and C−Cl bond cleavage, 
ultimately leading to the product 16c. The energy barriers associated with these steps are 21.9, 12.0, and 9.3 
kcal/mol, respectively. This process takes place under a closed-shell system without involving radicals and 
exhibits stereospecificity. Among these steps, the OA of the C−O bond occurs with stereoinversion of the 
benzylic stereogenic center, which is facilitated by the assistance of Grignard reagents, constituting the rate- 
and selectivity-determining step for product formation. Concurrently, they performed a 13C KIE study of 
the benzylic ether of 2-naphthyltetrahydropyran 9b, which revealed a significant (> 1.01) KIE numerical 
distribution for benzylic C11 compared to other atoms [Figure 10B]. This further substantiated that the 
activation of the C−O bond is the rate-determining step.
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Figure 9. The origin of the cross-selectivity.

Scheme 5. The catalytic cycle of Mechanism IV.

Moreover, the activation of both the C−O and C−Cl bonds collectively control the stereospecificity of 
overall reactions.

They also discovered that the intramolecular reductive coupling reaction of halogenated sulfonylamine 
derivatives, catalyzed by air-stable ((R)-BINAP)NiCl2 and MeMgI organic Grignard reagents, still adheres to 
the Ni0/NiII catalytic cycle[93,94]. Furthermore, Xu et al. conducted a detailed theoretical study on the Ni0/
XantPhos-catalyzed intramolecular reductive coupling of tetrahydropyrans, indicating that Mechanism IV 
is applicable to this system[95]. Similarly, nickel-catalyzed intramolecular reductive coupling of 
difluoromethyl moiety and benzylic ether, reported by Lucas et al., also follows a comparable reaction 
mechanism[96]. It is noteworthy that Sanford et al. found that when utilizing non-cyclic 1,3-diol derivatives 
featuring two C(sp3)−I bonds for intramolecular reductive coupling, the activation of C(sp3)−I bonds 
proceeds via a radical pathway rather than the SN2 mechanism[97]. This finding highlights the notion that the 
intrinsic characteristics of the substrates can indeed exert a substantial impact on the reaction mechanism.
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Figure 10. Experimental and computational mechanistic studies. (A) DFT calculations for key transition states; (B) 13C KIE experiments 
and KIE numerical distribution of 9b. Computations at the B3LYP-D3(BJ)-SMD/def2-TZVPP//B3LYP-D3(BJ)/def2-SVP level. Selected 
bond distances are given in Å. The hydrogen atom was omitted for simplification.

CONCLUSION AND OUTLOOK
In summary, nickel-catalyzed reductive coupling reactions exhibit considerable diversity in their 
mechanisms, distinct from those catalyzed by palladium and platinum. This can be ascribed to the unique 
characteristics of nickel, including high paring energy, low electronegativity and redox potential, and 
multiple oxidation states (0, I, II, III, IV)[35]. These enable nickel catalysts to preferentially undergo both 
two- and one-electron redox processes, leading to comparatively diverse mechanistic scenarios. 
Additionally, these mechanisms are closely related to substrates, ligands, and reducing conditions, making it 
challenging to discern a unifying pattern. From the four potential reaction mechanisms summarized, we can 
identify some basic trends: (1) C(sp2) electrophiles tend to undergo two-electron OA, while C(sp3) 
electrophiles prefer a single-electron pathway initiated by halogen atom transfer; (2) When nitrogen ligands 
are employed and C(sp3) electrophiles are involved, the reaction is inclined to proceed via a radical pathway, 
whereas a closed-shell reaction generally occurs with phosphine ligands; (3) Reaction systems involving 
photoredox catalysts or electrocatalysis typically undergo a single-electron transfer process. However, 
determining the conceivable reaction mechanism requires considering various reaction conditions, such as 
the choice of ligands and substrates, and whether the reducing system involves conventional metal and 
organic reducing agents or emerging photoredox and electrocatalysis. It is particularly important to 
ascertain whether a NiII catalyst precursor is ultimately reduced to Ni0 or NiI, as this determines the active 
catalyst in the reaction.
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As for C(sp2)−C(sp3) XECs, the origin of the cross-selectivity over homo-selectivity can be ascribed to the 
different activation sequences of two electrophiles. Notably, different systems use different Ni species to 
activate electrophiles. For instance, in the Ni/dtbpy-catalyzed system for the XEC of iodobenzene with 
iodooctadecane, with Mn as the reducing agent, Ni0 and NiII are always used to activate the electrophiles. In 
contrast, NiIBr and NiIPh species can activate electrophiles when using more complex alkyl bromide 
containing olefins and heteroatoms substrate, Zn reductants, and 1,10-phenanthroline ligands. Generally 
speaking, due to the favorable π-metal interactions and the instability of aryl radicals, C(sp2) electrophiles 
tend to proceed through OA, while C(sp3) electrophiles are more likely to generate radicals. Additionally, 
OA and radical formation processes are also influenced by steric hindrance and electronic effects, 
respectively.

Despite significant progress made by both experimental and theoretical studies in characterizing the 
structures of key intermediates, providing reaction rates, identifying the activation modes of electrophiles, 
determining rate- or selectivity-determining steps, and identifying the origin of cross-selectivity, several 
limitations and challenges in mechanistic studies remain to be addressed: (1) There are limited studies on 
the mechanism of RCC reactions, especially those involving photoredox and electrochemistry catalysis; (2) 
The electron transfer process involved in the reduction process is still unclear; (3) So far, there is no data-
driven and artificial intelligence linkages to aid further mechanistic exploration and reaction prediction. 
Therefore, the mechanistic investigation of nickel-catalyzed reductive couplings is far from complete, and 
concerted endeavors of experimental and computational studies are highly demanded to help chemists 
design more powerful and novel catalytic systems.
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