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Abstract
Despite the significant advances achieved in recent years, the development of efficient electrolyte additives to 
mitigate the performance degradation during long-term cycling of high-energy density lithium||nickel-rich (Li||Ni-
rich) batteries remains a significant challenge. To achieve a rational design of electrolytes and avoid unnecessary 
waste of resources due to trial and error, it is crucial to have a comprehensive understanding of the underlying 
mechanism of key electrolyte components, including salts, solvents, and additives. Herein, we present the 
utilization of lithium difluoro(oxalate) borate (B) (LiDFOB), a B-containing lithium salt, as a functional additive for 
Li||LiNi0.85Co0.1Mn0.05O2 (NCM85) batteries, and comprehensively investigate its mechanism of action towards 
enhancing the stability of both anode and cathode interfaces. The preferential reduction and oxidation 
decomposition of DFOB- leads to the formation of a robust and highly electronically insulating boron-rich interfacial 
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film on the surface of both the Li anode and NCM85 cathode. This film effectively suppresses the consumption of 
active lithium and the severe decomposition of the electrolyte. Furthermore, the presence of B elements in the 
cathode-electrolyte interfacial film, such as BF3, BF2OH, and BF2OBF2 compounds, can coordinate with the lattice 
oxygen of the cathode, forming strong coordination bonds. This can significantly alleviate lattice oxygen loss and 
mitigate detrimental structural degradation of the Ni-rich cathode. Consequently, the Li||NCM85 battery cycled in 
LiDFOB-containing electrolyte displays superior capacity retention of 74% after 300 cycles, even at a high charge 
cut-off voltage of 4.6 V. The comprehensive analysis of the working mechanisms of LiDFOB offers valuable insights 
for the rational design of electrolytes featuring multifunctional lithium salts or additives for high energy density 
lithium metal batteries.

Keywords: Lithium metal battery, lithium difluoro(oxalate) borate, Li anode, Ni-rich cathode, SEI/CEI film

INTRODUCTION
Lithium-ion batteries (LIBs) are widely used in various electronic equipment as energy storage devices, 
while the rapid development of electric vehicles (EVs) has put forward higher requirements for LIBs in 
terms of energy/power density and cyclic stability[1-6]. To this end, the development of high-specific energy 
LIBs with lithium metal as the anode (currently the largest energy density) and a suitable cathode is the key 
to improving the overall energy density of LIBs[7-10]. Among all the identified cathode materials, nickel (Ni)-
rich-layered oxide Li[NixCoyMn1-x-y]O2 (x ≥ 0.8) with suitable Ni, Co, and Mn atomic ratios is considered 
one of the most promising cathode materials due to their high specific capacity of more than 200 mAh g-1 
and low cost[11,12]. However, the practical application of the Ni-rich cathode material is limited by severe 
capacity decay and thermal instability[13]. Several possible reasons have been proposed to explain the 
performance degradation of Ni-rich materials, mainly including irreversible structural changes and 
interfacial degradation[14]. On the one hand, at a highly delithiated state, the irreversible phase transition 
from the second hexagonal phase (H2) to the third hexagonal phase (H3), accompanied by abrupt lattice 
contraction and rise of internal stress, will result in partial structure collapse at the near-surface area of 
crystal and serious grain intergranular or intragranular cracking of particles[15,16]. Meanwhile, the structure 
collapse accompanied by oxygen evolution and transition metal dissolution will cause the spread of this 
collapse and cracks into the particle core, which leads to fast capacity loss. Additionally, the electrolyte can 
penetrate into these cracks, which can be catalyzed by highly active Ni4+ and superoxide ions (O-) to form an 
undesired phase transition layer and excessive deposition of electrolyte decomposition products. This 
results in a substantial reduction in the kinetics of Li-ion (Li+) migration and electron transfer of the 
electrode[17-19]. In addition, Ni4+ ions are easily reduced into stable Ni2+ ions in the presence of O-, resulting in 
capacity loss and O2 release[20]. Meanwhile, due to the similar size of Ni2+ and Li+, it will cause more serious 
Li+/Ni2+ mixing, which further reduces the stability of the structure[21,22]. Therefore, achieving a stable Ni-rich 
cathode necessitates the high stability of surficial/interfacial structure, especially at a higher voltage.

To solve these problems, several strategies have been explored in recent studies, such as coherent surface 
coating[20,23-30] and near-surface element doping or substitution[31-37], to better stabilize the near-surface 
structure of the material (especially the stability of surface lattice oxygen) and effectively suppress electrolyte 
decomposition. However, these approaches usually involve complicated synthetic processes, and the 
introduction of inert compositions reduces the specific capacity of cathodes. More importantly, these 
methods can only target the cathode alone but cannot simultaneously protect the anode, especially the 
hyperactive lithium metal anode. Detrimental and persistent interfacial side reactions occur between lithium 
metal and the electrolyte, which induces the generation of lithium dendrites and inactive lithium, resulting 
in short cycle life and causing safety issues[38-42].
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In this regard, optimizing electrolytes by using interfacial film-formation functional additives to 
simultaneously regulate Ni-rich cathode and Li anode interfacial properties is a promising strategy[43,44]. 
Among the diverse electrolyte additives that have been reported so far, borate (B)-containing additives, 
especially B-containing lithium salts, have been employed as effective salts or additives for high-voltage 
cathodes or alkali metal anodes[45-60]. For example, Zhang et al. introduced trace (~2%) lithium 
bis(oxalato)borate (LiBOB) as an electrolyte additive to improve the cyclic stability of Li-rich layered oxide 
(LRLO) cathode by optimizing the cathode interfacial structure and eliminating the detrimental 
nucleophilic superoxide attack under the synergy effect of LiPF6

[61]. Chen et al. demonstrated lithium 
difluorobis(oxalato)phosphate (LiDFBOP) as the multifunctional additive can build a stable and robust 
organic/inorganic hybrid interphase on Na anode and Na3V2(PO4)2F3 cathode surface by the preferential 
reduction and oxidation of DFBOP-, realizing excellent cyclic stability for high-voltage Na||Na3V2(PO4)2F3 
system[62]. Mao et al. configured 1 M lithium difluoro(oxalate) borate (LiDFOB)-based electrolyte, where the 
LiDFOB can not only in-situ construct a hierarchical and robust cathode/electrolyte interface (CEI) film on 
the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode surface but also induce the uniform plating of Li, resulting in 
greatly improved cyclic stability of Li||NCM811 batteries[63]. While B-containing lithium salts are widely 
utilized in batteries, a systematic investigation of the differences in the interfacial films formed from their 
decomposition on the anodes and cathodes is rarely reported. It is crucial to have a comprehensive 
understanding of the working mechanism of key components in the electrolyte for the rational design of 
electrolytes to improve the performance and stability of the batteries.

Herein, LiDFOB, as a B-containing lithium salt type additive incorporating the advantages of both lithium 
tetrafluoroborate (LiBF4) and LiBOB, was selected for high-energy-density Li||LiNi0.85Co0.1Mn0.05O2 (NCM85) 
battery. Theoretical calculations and experimental studies systematically demonstrated that DFOB- is 
preferentially reduced on the Li anode surface to form a highly electrochemically stable, electronically 
insulating, and ion-conductive solid electrolyte interface (SEI) film under the synergistic effect of ethylene 
carbonate (EC), which effectively promotes the homogenous plating of Li and suppresses the continuous 
decomposition of the electrolyte and the formation of inactive lithium. On the NCM85 cathode surface, the 
DFOB- is preferentially oxidized and spontaneously captures the harmful hydrofluoric acid (HF) and O- to 
form an antioxidant and electronically insulating CEI film, which can effectively suppress the oxidative 
decomposition of the electrolyte and the erosion of HF to electrodes. Meanwhile, the B element in CEI film 
will form a strong bond with the lattice O of the cathode surface, thereby stabilizing the phase structure of 
NCM85 and inhibiting the subsequent irreversible structural transition and O2 release. Consequently, the 
cyclic stability and rate capability of Li||NCM85 batteries are significantly improved, even at a high charge 
cut-off voltage of 4.6 V. The comprehensive examination of LiDFOB in this work offers valuable insights 
and helpful guidance for the design of B-contenting electrolyte additives or lithium salts for high-energy-
density lithium metal batteries.

EXPERIMENTAL
Preparation of electrolytes and electrodes
The electrolytes and electrodes were both prepared in the Mbraun glove box (Ar atmosphere) with moisture 
and oxygen levels less than 0.1 ppm. 1 M LiPF6 in EC and ethyl methyl carbonate (EMC) 
(EC:EMC = 3:7 wt%) (provided by Shenzhen Capchem Technology Co., Ltd.) was used as the base 
electrolyte. A range of electrolytes was prepared by dissolving various concentrations of LiDFOB (obtained 
from Guangdong Canrd New Energy Technology Co., Ltd.) additive into the base electrolyte (abbreviated 
as "base" in the figures). The cathode was prepared by mixing NCM85 (provided by Ningbo Ronbay New 
Energy Technology Co., Ltd.), polyvinylidene fluoride (mixed in N-methyl2-pyrrolidone), and acetylene 
black with the weight ratio of 8:1:1 uniformly. After coating the slurry onto the aluminum current collector 
(12-mm diameter) and drying in vacuum for 8 h at 110 °C, the cathode was then stored in a glove box for 
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use. The active material loading of the cathode was ~3 mg cm-2. The electrodes were separated by a single-
layer separator (Celgard 2500) in a CR2025 coin cell filled with 100 uL electrolyte.

Electrochemical measurement
The fabricated cells were charged and discharged after standing for 8 h at room temperature, measured by 
the LAND system (CT2001A, Wuhan, China). For regular cycles, each Li||NCM85 battery was charged/
discharged galvanostatically at 0.3 C (1 C = 200 mAh g-1) for two cycles before testing, then set the charge-
discharge rate at 1C to analyze cyclability, voltage ranging from 3.0 V to 4.3 V/4.6 V. After two formation 
cycles at 0.2 C, the rate test was carried out at 1 C, 3 C, 5 C, 7 C, 10 C, and 0.2 C again for five cycles, 
respectively. A high current charge and discharge test was carried out to further assess the cyclic stability of 
the batteries at the charge/discharge rate of 2 C/5 C. In the galvanostatic intermittent titration test (GITT), 
the parameter pulse current was 1 C, the pulse charge/discharge time was 90 s, and the resting time was 2 h. 
The Li+ diffusion coefficient is calculated by Equation (1)[64]:

where DLi+ is the chemical diffusion coefficient, S is the surface area of the electrode (1.13097 cm2 in our 
case), τ is pulse duration, ΔEs is the  steady-state voltage change, ΔEt is the transient voltage change, and m, 
M, and Vm is the mess, molecular weight (97.28 g mol-1), and molar volume (19.3491 cm3 mol-1) of the 
electrode, respectively. For Li||Li symmetric cells and Li||Cu cells, Li foils with a diameter of 10 mm and 
450 μm thickness were used as both working and counter electrodes. Li||Cu cells were performed to evaluate 
coulombic efficiency (CE) by using Aurbach’s test method[65]. Especially, 4 mAh cm-2 of Li was pre-
deposited on Cu under a current density of 0.5 mA cm-2 and then followed by reversible plating/stripping 
with 1 mAh cm-2 for two cycles, and finally stripping to 1.0 V (vs. Li/Li+). This CE was calculated by 
Equation (2):

where Qs is the final stripping capacity, Qp is the initial plating capacity, Qc is the constant plating/stripping 
capacity for each cycle, and n is the cycle number[66]. Li||Li symmetric cells were cycled at a current density 
of 0.5 mA cm-2 and a capacity of 1.0 or 3.0 mAh cm-2. Linear sweep voltammetry (LSV) and electrochemical 
impedance spectrum (EIS) analysis were both performed on an electrochemical workstation (Autolab, 
PGSTAT-302N, Metrohm, Netherlands), with the sweep scan rate at 1 mV s-1 for LSV and a 5 mV 
amplitude and a frequency between 105 Hz and 10 mHz for EIS.

Material characteristic
The batteries were dissembled after cycling, and the electrodes were rinsed and soaked with dimethyl 
carbonate (DMC) to remove the residual electrolyte and dried naturally in the glove box. Scanning electron 
microscopy (SEM, Zeiss GeminiSEM 500, Germany) was used to analyze the morphology of Li anodes and 
NCM85 cathodes. The transmission electron microscope (TEM, JEM-2100HR, Japan) was carried out to 
analyze the evolution of NCM85 surface microstructure before and after cycling. The ion beam polished 
with Cross Section Polisher (Leica, EM TIC 3X, Germany) was used to prepare the cross-section samples. 
The crystal structure and phase transformation of NCM85 were detected by ex-situ X-ray diffraction (XRD, 
Rigaku Ultima IV diffractometer, Japan) and in-situ XRD (Bruker D8 discover diffractometer, German) at a 
scan rate of 5o/min with Cu Kα radiation over 2θ range of 20o to 60o. As for the components on the surface 
of the Li anode and NCM85 cathode, X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific, 
UK) was employed with the binding energy in the measured spectrum calibrated based on C1s at 284.8 eV. 
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The fitting results of XPS peaks were obtained using XPSPEAK Version 4.0. In-situ differential 
electrochemical mass spectrometry (DEMS) experiments were carried out to test the CO2 emission during 
charging using a commercial quadrupole mass spectrometer (Hiden Analytical) equipped with a digital 
mass flow meter (Bronkhorst). The homemade Swagelok-type cell was assembled in the glove box and then 
charged to 4.6 V at 0.2 C after resting for 3 h. Time of flight secondary ion mass spectrometry (TOF-SIMS, 
IONTOF, German) was employed to investigate the surface structure evolution of both NCM85 cathode 
and Li anode. All detected secondary ions of interest in the TOF-SIMS analysis had a mass resolution of 
over 17,000. The samples were prepared in a glove box and transferred to the instruments using an air-tight 
holder during TOF-SIMS characterizations.

Calculation methods
The first-principles calculations were implemented using Vienna Ab-initio Simulation Package (VASP) 
version 5.4.1[67] and Gaussian 09 package[68], with strongly constrained and appropriately normed (SCAN) 
and Perdew-Burke-Ernzerhof (PBE) functional, respectively. The (104) and (100) surfaces of the layered 
LiNiO2 and Cubic lithium metal crystal were simulated by four-layer slab Li32Ni32O64 and Li100, respectively. 
The plane-wave cut-off energy was set to be 520 eV, and the convergence criteria were 10-4 eV and 
0.05 eV Å-1 for electron energy and ions force, respectively, in all calculations. The structures of EC, EMC, 
LiDFOB, and DFOB- and the corresponding redox reaction process of the EC and DFOB- were optimized at 
the B3LYP/6-311++G (d, p) level. To investigate the role of the solvent effect, the polarized continuum 
model (PCM) was performed with a dielectric constant of 20.5 (acetone) as the default solvent[69]. The 
atomic charge distributions were analyzed from natural population analysis (NPA) using the natural bond 
orbital (NBO) theory. The adsorption energy Wad of molecules on the crystal surface can be acquired 
according to Equation (3):

where EX-slab, Ex, and Eslab are the total energy of the interfacial supercell, the adsorbed redox products, and 
the bottom layer (LiNiO2 (104) or Li (100)), respectively. The calculated oxidation potential (Eox) and 
reduction potential (Ere) were converted from the absolute oxidation/reduction potential of the species (vs. 
Li/Li+), according to Equation (4):

where G(M) and G(M+) are the free energies of the species M and its oxidized/reduced form M+ at 298.15 K, 
respectively, and F is the Faraday constant.

RESULTS AND DISCUSSION
Redox activity of LiDFOB
Li/graphite [Figure 1A] and Li/Pt [Figure 1B] cells were assembled to analyze the electrochemical stability of 
the electrolytes with and without LiDFOB additive, respectively. As shown in Figure 1A, an additional 
reduction peak at ~1.6 V can be observed before lithiation of graphite in the 2% LiDFOB-containing 
electrolyte, corresponding to the preferential reduction of LiDFOB compared to the solvent molecules. 
Besides, a significant negative shift in the onset decomposition potential observed in the LSV curves 
[Figure 1B] of Li/Pt cell with the LiDFOB-containing electrolyte reveals that LiDFOB is also preferentially 
oxidized on the cathode surface compared to the base electrolyte. Furthermore, the order of HOMO and 
LUMO energy levels obtained from the calculations are as follows: DFOB- > LiDFOB > EMC> EC and 
LiDFOB < DFOB- < EC< EMC, respectively [Figure 1C]. This result further supports the preferential 
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Figure 1. LSV curves of (A) Li/graphite and (B) Li/Pt cells cycled in the electrolytes with & without LiDFOB additive. The inset is the 
enlarged view within the range of 3.5-4.6 V of (B); (C) Molecular orbital models and calculated HOMO/LUMO energy levels of EC, 
EMC, Li+-DFOB -, and DFOB -, respectively.

oxidation and reduction of DFOB- and LiDFOB on the cathode and anode surface, which contributes to the 
formation of the CEI film and SEI film, respectively.

Effects of LiDFOB on Li anode
The effect of the LiDFOB additive on the reversibility of Li plating/stripping was first evaluated using Li||Cu 
and Li||Li cells. It can be noted from Figure 2A that the CE (evaluated by Aurbach’s method[65]) of the Li||Cu 
cells increases significantly from 53.95% to 83.82% with the addition of LiDFOB and is accompanied by a 
decreased nucleation overpotential at a current density of 0.5 mA cm-2, indicating that LiDFOB-derived SEI 
film can effectively regulate Li plating/stripping with the lower barrier and enhance the reversibility of active 
lithium. Besides, the cells with the prelithiated Cu foil deposited with 4.0 mAh cm-2 Li can stably cycle for 
more than 60 h in the LiDFOB-containing electrolyte, compared to the sudden voltage fluctuations after 
cycling for 15 h in the base electrolyte [Supplementary Figure 1]. The voltage fluctuations are related to 
interfacial instability during the Li platting/stripping process, which results in irreversible loss of active Li in 
the base electrolyte[65]. In comparison, the SEI film derived by the addition of LiDFOB is robust to guarantee 
a stable interface for the homogenous plating/stripping of Li. As a result, the Li||Li symmetric cells with the 
LiDFOB-containing electrolyte exhibited superior cyclic stability at either 1.0 mAh cm-2 or the higher 
platting/stripping capacity of 3.0 mAh cm-2 [Figure 2B and C]. Then, the morphology of the lithium metal 
after cycling was studied using SEM. As shown in Figure 2D, a sparse and needle-like morphology on the 
surface of the cycled Li anode in the base electrolyte is observed. This porous structure with a high surface 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/5787-SupplementaryMaterials.pdf
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Figure 2. (A) CE in Li||Cu cells by Aurbach’s test method with Li stripping/plating at 0.5 mA cm-2 and 1 mAh cm-2. The lithium 
plating/stripping behaviors of Li||Li symmetric cells at (B) 0.5 mA cm-2 and 1 mAh cm-2 and (C) 1 mA cm-2 and 3 mAh cm-2. SEM image 
of the Li anode after Li plating/stripping at 1 mA cm-2 and 3 mAh cm-2 in (D) the base electrolyte and (E) LiDFOB-contenting 
electrolytes. (F) Nyquist plots of Li||Li cells after cycling for 400 h at 1 mA cm-2 and 3 mAh cm-2 in the electrolyte with and without 
LiDFOB additive. (G) XPS spectra of O 1s, C 1s, F 1s, P 2p, and P 2s/B1s for the cycled Li anode in different electrolytes.

area intensifies the reaction with electrolytes, thus resulting in continuous consumption of electrolytes and 
active lithium. Differently, a compact and planar structure is presented with the addition of LiDFOB 
[Figure 2E], further implying that adding LiDFOB can induce the homogeneous plating/stripping of the Li 
and significantly inhibit the growth of lithium dendrites.

The interfacial impedance of the Li anode after cycling for ~400 h at 1 mA cm-2 with an areal capacity of 
3 mAh cm-2 was analyzed by the EIS [Figure 2F], and the corresponding fitting results were listed in 
Supplementary Table 1. It shows that the ohmic impedance (R1), interfacial impedance (R2), and charge 
transfer impedance (R3) of cells cycled in the LiDFOB-containing electrolyte are all obviously lower than 
those in the base electrolyte, indicating the improved interfacial stability. Then, XPS was carried out to 
explore the interphase components on the cycled lithium metal surface [Figure 2G]. In O 1s spectra, the 
peaks associated with C-O (285.5 eV) and C=O (288.5 eV) species primarily correspond to ROCO2Li or 
polycarbonates resulting from the reaction of Li with organic solvents in the electrolyte. This observation is 
further supported by the C 1s spectra, which exhibit peaks at 285.5 eV (C-O), 288.5 eV (C=O), and 289.8 eV 
(Li2CO3)[26,70,71]. The intensity of these peaks, represented by the peak areas [Supplementary Figure 2], is 
significantly lower for the Li anode cycled in the LiDFOB-containing electrolyte than in the base electrolyte, 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/5787-SupplementaryMaterials.pdf
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indicating the effective suppression of electrolyte decomposition by the SEI film derived from LiDFOB. The 
F 1s spectra provide valuable information regarding the SEI on the Li anode. In the case of the Li anode 
cycled in the base electrolyte, the observed peaks at 684.42 eV and 686.65 eV can be attributed to the 
presence of LiF and LiPxFy/LiPxFyOz, resulting from the decomposition of LiPF6. It is well known that the 
decomposition of LiPF6 to LiF often leads to the generation of PF5. While LiF has been extensively studied 
for its beneficial effects[72], its advantages may be overshadowed by the strong reactivity of PF5 with the 
electrolyte due to its Lewis acid property. Furthermore, Supplementary Figure 3 demonstrates a significantly 
higher energy barrier for breaking the B-F bond during the reduction decomposition of LiDFOB compared 
to its ring-opening reaction. This finding suggests that the ring-opening reaction is the predominant 
pathway for the decomposition of LiDFOB, thereby confirming that a major portion of the LiF originates 
from the decomposition of LiPF6. The peaks of LiPxFy and LiPxFyOz can also be observed in P 2p spectra. The 
peak areas of the two compounds, along with LiF, as represented in Supplementary Figure 2, indicate that 
the intensity of these compounds is greater in the case of Li anode cycled in the base electrolyte as compared 
to the LiDFOB-containing electrolyte. This provides further confirmation that the SEI film formed by 
LiDFOB is stable and robust enough to suppress severe electrolyte decomposition. Notably, the weak peak 
signal observed in the position range from 198 eV to 184 eV for the Li anode cycled in the base electrolyte 
can be attributed to the overlap between B 1s and P 2s XPS peak positions. Specifically, the peak signal in 
the base electrolyte primarily corresponds to the P 2s spectra of LixPFyOz (192.1 eV) and LixPFy (194.5 eV) 
species as detected in P 2p spectra. The electrode cycled in the LiDFOB-containing electrolyte displays 
additional peaks associated with B-F (193.1 eV) and B-O (191.1 eV) in P 2s/B 1s spectra, B-O eV in O 1s, 
and B-O-C (290.3 eV) in C 1s spectra[52,73]. These results suggest that the reduction decomposition products 
of LiDFOB participate in the SEI formation process.

Protection of microstructure for Ni-rich cathode
To evaluate the compatibility of LiDFOB with Ni-rich cathodes, various concentrations of the LiDFOB 
additive were added to the base electrolyte and evaluated in Li||NCM85 batteries with the cut-off voltages of 
4.3 V. As shown in Supplementary Figure 4, Li||NCM85 batteries show improved capacity retention with 
the addition of LiDFOB additive, from 85.5% (utilizing the base electrolyte) to 91.9 % (with 1 wt% LiDFOB-
added electrolyte), 100% (with 2 wt% LiDFOB-added electrolyte), and 88.4% (with 3 wt% LiDFOB-added 
electrolyte). These results suggest that 2 wt% is the optimized content of LiDFOB for Li||NCM85 batteries. It 
can be noted from Figure 3A that the Li||NCM85 battery cycled in the 2 wt% LiDFOB-containing electrolyte 
demonstrates a notable initial CE of 85.7% and an average CE of 99.9% throughout the 6th cycle to the 200th 
cycle, surpassing those observed in the base electrolyte. These findings suggest that the CEI film derived 
from LiDFOB effectively mitigates interfacial parasitic reactions. Consequently, the capacity retention of the 
battery after 250 cycles is substantially higher at 90.9% compared to the base electrolyte at 64.6% [Figure 3B, 
vs. the discharge capacity at the 3rd cycle]. Accordingly, by comparing the GITT curves of the battery after 
the first and 150 cycles, the corresponding overpotentials, and Li+ diffusion coefficients (DLi+), the battery 
cycled in the base electrolyte exhibits a significantly increased overpotential, accompanied by a rapidly 
reduced DLi+ [Figure 3C and Supplementary Figure 5]. This may be related to the increasing electrode 
polarization due to the continuous accumulation of electrolyte parastic reaction products and the structural 
degradation of the NCM85 cathode[64]. In contrast, the NCM85 electrodes maintained a lower overpotential 
and a higher DLi+ during cycling with the addition of LiDFOB, which is attributed to the stable NCM85 
i n t e r f a c i a l  s t r u c t u r e  i n  t h e  p r e s e n c e  o f  t h e  L i D F O B - d e r i v e d  C E I  f i l m  
[Figure 3D and Supplementary Figure 5]. Moreover, we further investigated the effect of LiDFOB on the 
stability of the NCM85 interfacial structure by increasing the charge cut-off voltage to 4.6 V. As shown in 
Figure 3E, the introduction of LiDFOB into the base electrolyte can achieve a remarkable enhancement in 
the electrochemical performance of NCM85 with capacity retention as high as 74% after 300 cycles. This 
comprehensive performance is comparable to the high-voltage Ni-rich cathodes that have been reported 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/5787-SupplementaryMaterials.pdf
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Figure 3. Electrochemical performance of the Li||NCM85 batteries with the base electrolyte and LiDFOB-containing electrolyte. (A) 
Typical voltage profiles of Li||NCM85 batteries with different electrolytes. (B) Cyclic stability of batteries at 1 C in the voltage range of 
3.0-4.3 V at selected electrolytes. GITT curves and corresponding overpotential of (C) charging process and (D) discharging process 
after 150 cycles. (E) Cyclic stability of batteries at 1 C with a cut-off voltage of 4.6 V at selected electrolytes. The dQ/dV curves of 
Li||NCM85 batteries (F) without and (G) with 2 wt% LiDFOB additive. Nyquist plots for batteries (H) after the first cycle and (I) after 
300 cycles, respectively. The inset is the enlarged view of the high-frequency area in the red dotted box of (I). (J) Rate capability of 
Li||NCM85 batteries in the voltage range of 3.0-4.6 V. (K) Cyclic stability and coulombic efficiency of Li||NCM85 batteries at the 
charge/discharge rate of 2 C/5 C in the voltage range of 3.0-4.6 V.

[Supplementary Table 2]. The corresponding charging/discharging profiles [Supplementary Figure 6] and 
dQ-dV profiles at different cycles [Figure 3F and G] demonstrate that the voltage drop and peak potential 
shift of the battery cycled with the LiDFOB-containing electrolyte are effectively mitigated. This observation 
further confirms that the CEI film derived from LiDFOB is robust and effectively protects the electrode 
from electrolyte erosion, even at high voltage.

Interfacial impedance was analyzed by EIS measurements to explore the interfacial evolution of the NCM85 
electrode. The Nyquist plots of the battery mainly consist of two semicircles at high-to-medium frequency, 
corresponding to interfacial resistance (Rf) and charge transfer resistance (Rct), while the slope of the line at 
low frequency provides the Warburg impedance (Wo) associated with the diffusion of Li+[74,75]. The fitting 
results listed in Supplementary Table 3 were obtained via the equivalent circuit model (inset in Figure 3H). 
It is worth noting that both Rf and Rct values obtained from the battery cycled with the base electrolyte 
exhibit a rapid increase, which can be attributed to the overgrowth of the interfacial film with high 
resistance that is formed due to electrolyte decomposition and the exacerbated structural degradation at the 
near-surface of the NCM85 crystal [Figure 3H]. In contrast, the NCM85 cathode cycled in the LiDFOB-
containing electrolyte exhibits a less resistant interface and faster Li+ transport kinetics with the slow growth 
of Rf and Rct [Figure 3I], indicating that the CEI film derived by LiDFOB can effectively mitigate the 
excessive decomposition of electrolyte and structural degradation at the near-surface of NCM85 crystal. The 
fast Li+ transport kinetics facilitates the rate performance of the battery. As shown in Figure 3J and K, the 
discharge capacity of the battery at 10 C increases significantly from 137 mAh g-1 to 176 mAh g-1 with the 
addition of LiDFOB. Besides, the battery cycled in the LiDFOB-containing electrolyte exhibits a high 
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capacity retention of 51.6% after 1,000 cycles at the charge/discharge rate of 2 C/5 C, compared with 
capacity retention of only 6% after 1,000 cycles in the base electrolyte with a more rapid capacity decay 
during the first 300 cycles.

More details about the evolution of structure were investigated by XRD (in/ex-situ XRD). The evolution of 
the (003) peak in in-situ XRD is related to the variation of the unit cell along the c-axis direction[21,76]. It can 
be noted from the results of in-situ XRD [Figure 4A and B] that the interlayer spacing along the c-axis 
direction expands as Li+ is continuously extracted (with charging voltage ≤ 4.16 V) and responds by the shift 
of the (003) peak to a lower angle. When the charging potential is higher than 4.16 V, the sharp shift of the 
(003) peak to a high angle indicates a rapid contraction of the layer spacing along the c-axis, corresponding 
to the structural transformation from the H2 phase to the H3 phase, which leads to an increase in internal 
stress and structural degradation[77]. For the battery cycled in the LiDFOB-containing electrolyte, the 
evolution angle of the (003) peak during the transition from the H2 phase to the H3 phase is observed to be 
lower than that in the base electrolyte [Figure 4A and B], especially when the current rate increases from the 
initial 0.1 C to 0.2 C in the second cycle (1.0774° vs. 1.1820°). This result indicates that the LiDFOB-derived 
CEI film is robust enough to mitigate the irreversible structural degradation of the cathode, which could be 
beneficial for improving the cycling stability of the battery. Similar conclusions can be drawn by testing the 
structural evolution before and after long cycles by ex-situ XRD [Supplementary Figure 7]. The variation 
range of the (003) peak in the base electrolyte (0.35°) after 300 cycles is larger than that in LiDFOB-
containing electrolyte (0.28°), suggesting the superior structural reversibility of the NCM85 cathode cycled 
in the LiDFOB-containing electrolyte.

The phase transition process at high voltage is often accompanied by the oxidation of lattice oxygen to form 
O-[78]. The high catalytic activity of O- and the released oxygen will exacerbate the electrolyte decomposition, 
accompanied by the generation of CO2

[79]. Therefore, the CO2 content obtained by in-situ DEMS is used to 
monitor the gas evolution at the electrodes during cycling. It can be observed from Figure 4C that the 
battery cycled in the base electrolyte displays a sharply rising CO2 signal when the charging cut-off voltage is 
higher than 4.5 V, suggesting the intensification of the lattice oxygen loss and electrolyte decomposition. In 
comparison, the CO2 evolution in the LiDFOB-containing electrolyte is significantly suppressed, indicating 
that the introduction of LiDFOB can effectively stabilize lattice oxygen and suppress interfacial side 
reactions [Figure 4D].

The morphologies and interfacial components of the cycled NCM85 electrode in the base and LiDFOB-
containing electrolytes were analyzed by the SEM (top-view and cross-section), TEM, and XPS, as shown in 
Figure 5. Compared with the fresh NCM85 electrode with an intact structure and clean and smooth surface 
[Figure 5A-C], severe interior cracks with partial crystal fragments can be observed on the particles after 200 
cycles in the base electrolyte, and the electrode surface is also covered with an amorphous and 
inhomogeneous interfacial film with a thickness of about 30-60 nm [Figure 5D-F], which mainly results 
from the structural disruption of the NCM85 crystal and the deposition of electrolyte decomposition 
products. In contrast, the morphology of the NCM85 cathode cycled in LiDFOB-containing electrolyte is 
well maintained, and only a few cracks are discernible [Figure 5G and H]. Moreover, a relatively thin and 
uniform CEI film derived from the LiDFOB additive was observed to cover the surface of the NCM85, with 
a thickness of about 10 nm [Figure 5I], which can effectively protect the NCM85 electrode from electrolyte 
erosion and particle cracking. In C 1s spectra of the XPS spectra [Figure 5J], the peaks located at 290 eV, 
288.5 eV, 286.5 eV, and 284.7 eV are assigned to the Li2CO3, C=O, C-O, and C-C species, respectively, which 
are mainly formed by the decomposition of organic solvent molecules (EC/EMC) in electrolyte[80-82]. The 
deposits of C-O and C=O can also be observed at 533.4 eV and 531.8 eV in the O 1s spectra. The peaks 
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Figure 4. In-situ XRD patterns during the first two cycles of Li||NCM85 batteries (A) without and (B) with LiDFOB. DEMS test of 
Li||NCM85 batteries charging to 4.6 V in (C) the base electrolyte and (D) 2 wt% LiDFOB-containing electrolyte.

located at 685 eV and 686.8 eV in F 1s spectra are related to LiF and LixPOyFz/LixPFy, arising from the 
decomposition of lithium salt (LiPF6) in the electrolyte[71,83]. The intensity of these peaks, represented by the 
peak area [Supplementary Figure 8], is significantly lower in the LiDFOB-containing electrolyte compared 
to the base electrolyte, providing evidence for the effective suppression of severe electrolyte decomposition 
by the application of LiDFOB additive. In addition, additional B-F (684.5 eV in F 1s spectra and 192.7 eV in 
B 1s spectra) and B-O peaks (190.5 eV in B 1s spectra)[52,73] can only be observed in the LiDFOB-containing 
electrolyte, indicating the participation of LiDFOB in the construction of the protective CEI film. 
Furthermore, a peak signal was also detected in B 1s spectra on the NCM85 cathode surface cycled in the 
base electrolyte [Figure 5J], similar to B 1s spectra observed on the Li anode surface [Figure 2G]. However, 
SEM and energy dispersive spectrometer (EDS)-mapping results [Supplementary Figure 9] clearly indicate a 
significantly higher amount of P element on the NCM85 cathode surface cycled in the base electrolyte, 
while the presence of B element is negligible. Therefore, the observed B 1s signal primarily arises from the 
overlap with the P 2s spectra peak positions. The robust signal intensity observed at the M-O (530.3 eV) 
peak in the LiDFOB-containing electrolyte, relative to the base electrolyte, provides evidence for the 
formation of a thinner and protective CEI film on the NCM85 electrode. This observation is consistent with 
the findings from TEM. In fact, the formation of a thinner CEI film has some advantages as it enables faster 
Li+ transport in CEI film and reduced interfacial resistances compared to the progressively thickening 
deposits resulting from the decomposition of the base electrolyte. This conclusion is also supported by the 
results that the battery cycled in the LiDFOB-containing electrolyte exhibits significant improvement in rate 
performance than in the base electrolyte [Figure 3J and K].

Mechanism of the LiDFOB on SEI/CEI film formation
The possible redox decomposition pathways and the corresponding decomposition products of solvent 
(EC) and additive molecule (DFOB-) were investigated by density functional theory (DFT) calculation. It 
shows that the preferential reduction of DFOB- triggers the decomposition of EC on the anode side 
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Figure 5. (A, D, G) Top-view, (B, E, H) cross-section SEM and (C, F, I) TEM images of (A-C) fresh and (D-I) cycled NCM85 electrodes 
after 200 cycles in the base and LiDFOB-containing electrolytes. (J) XPS spectra of C1s, O1s, F1s, and P 2s/B1s for the cycled NCM85 
electrodes in the base and LiDFOB-containing electrolytes.

[Figure 6A]. Under the synergistic effect of the two, BF2CH2CH2COOLi and BF2OCH2CH2CH2CH2OBF2 
polymers are formed, which are the main components of the SEI film, as confirmed by the B-O-C and B-F 
peaks detected in XPS [Figure 2G]. The reduction potentials of these polymers are comparable to those of 
the Li2CO3, LiOOC(CH2)4COOLi, and CH3CH2OLi products generated by the reduction decomposition of 
EC in the base electrolyte [Supplementary Figures 10A and 11], all of which exhibit good electrochemical 
stability on Li anode. While the higher LUMO-HOMO energy gaps (6.55 eV and 8.73 eV, 
Supplementary Figure 12) of these B-containing polymers indicate that the SEI film derived from DFOB- 
exhibits a higher degree of electronic insulation properties compared to the electrolyte decomposition 
deposits. This property is advantageous in suppressing the parasitic reactions between the Li anode and 
electrolyte during the Li plating/stripping processes. The adsorption energy [Figure 6B] of 
BF2CH2CH2COOLi and BF2OCH2CH2CH2CH2OBF2 on Li (100) surface are -1.46 eV and -0.59 eV, 
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Figure 6. The formation mechanism of SEI and CEI films in LiDFOB-containing electrolyte by DFT calculation. (A) Reduction pathways 
of EC and Li+-DFOB- and corresponding decomposition products on the anode side. (B) The adsorption energy of decomposition 
products on Li (100) surface. (C) Oxidation pathways of EC and DFOB- and corresponding decomposition products on the cathode side, 
searched by DFT. (D) The adsorption energy of decomposition products on the LiNiO2 (104) surface.

respectively, which are both lower than that of -3.7 eV, -2.8 eV, and -1.73 eV for Li2CO3-Li (100), LEDC-Li 
(100), and CH3CH2OLi-Li (100), suggesting a low bonding effect to Li, which can reduce the energy barrier 
associated with Li plating/stripping (as confirmed by the reduced nucleation overpotential in Figure 2A), 
thereby effectively facilitating the homogeneous plating/stripping of Li and enhances the electrochemical 
reversibility and cycling performance. For the NCM85 cathode, the EC molecules in the base electrolyte can 
be easily oxidized, forming CH3COOLi and H+ under the catalysis of O- (formed from oxidation of the 
lattice oxygen) [Supplementary Figure 10B]. Furthermore, the formed HF will corrode the NCM85 cathode 
and further reduce the structural stability. With the introduction of the LiDFOB, the intermediates 
generated by its preferential oxidative decomposition can capture the harmful O-, H+, and F-, forming a BF3, 
BF2OH, and BF2OBF2-rich CEI film. These CEI film components have high antioxidant stability [Figure 6C, 
Supplementary Figure 13] and electronic insulation [Supplementary Figure 12], which can effectively 
suppress the decomposition of electrolytes and the subsequent attack of HF to the NCM85 crystal. 
Moreover, the stronger adsorption energy of these B-containing compounds on the LiNiO2 surface 
(-1.21 eV, -1.27 eV, and -9.3 eV for BF3, BF2OH, and BF2OBF2, respectively) compared to the -0.69 eV of 
CH3COOLi-LiNiO2 (104), indicates the B elements can form a strong bonding with the lattice oxygen on the 
NCM surface [Figure 6D], thus significantly mitigating the loss of lattice oxygen and degradation of the 
structural integrity of the cathode.

To further identify the composition and depth distribution of the SEI and CEI films, TOF-SIMS tests were 
performed for the Li anode [Figure 7A and B] and NCM85 cathodes [Figure 7C and D] after 20 cycles in the 
base and LiDFOB-containing electrolytes, respectively. The fragments of CH2

-, LiO2
-, and LiCO3

- are mainly 
derived from the redox decomposition products of carbonate-based solvents in the electrolytes, such as 
lithium alkyl esters and Li2CO3. The OH- and LiF2

- and NiF2
- fragments are by-products of the 

decomposition of the electrolyte or the corrosion of the electrodes by HF, respectively. It can be noted from 
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Figure 7. TOF-SIMS depth profiles and 2D mapping of (A and B) Li anodes and (C and D) NCM85 cathodes in different electrolytes.

the depth profiles [Figure 7A-D] that the intensity of these species on both electrodes cycled in the base 
electrolyte is higher than that in the LiDFOB-containing electrolyte, indicating that the introduction of 
LiDFOB can effectively suppress the decomposition of electrolytes and the corrosion of HF to both 
electrodes. In addition, compared to the electrodes cycled in the base electrolyte, the electrodes cycled in 
LiDFOB-containing electrolyte show significantly enhanced BF2O- fragment signals, suggesting that a stable 
and BF2

-rich interfacial film (SEI/CEI film) is constructed with the participation of LiDFOB on both the Li 
anode and NCM85 cathode surface, which is consistent with the theoretical calculation and XPS results.

CONCLUSIONS
In this study, the combination of computational and experimental results provides a comprehensive 
understanding of the working mechanisms of LiDFOB on suppressing the decomposition of electrolyte and 
stabilizing electrode structure in high voltage Li||NCM85 batteries. Based on the experimental results, it is 
evident that LiDFOB exhibits preferential reduction and oxidation decomposition on the surfaces of both Li 
anode and NCM85 cathode, leading to the formation of B-O-C, B-F bonds-containing SEI film and B-O, 
B-F bonds-containing CEI film, respectively, which can effectively prevent the degradation of the electrodes 
and inhibit the electrolyte decomposition. Theoretical calculations further confirm that the LiDFOB can be 
preferentially reduced on the Li anode surface to form highly electronically insulating BF2CH2CH2COOLi 
and BF2OCH2CH2CH2CH2OBF2-rich SEI film, which can effectively suppress the reaction of highly reactive 
lithium with electrolyte and the formation of inactive lithium with the help of synergistic effect of EC. On 
the NCM85 cathode, LiDFOB is oxidized preferentially to form a CEI film containing BF3, BF2OH, and 
BF2OBF2 species with high antioxidant stability and electronic insulation, which effectively suppresses the 
undesirable electrolyte decomposition and erosion of acidic species on the NCM85 cathode. Furthermore, 
the B element in the B-containing compounds of the CEI film forms a strong bond with the lattice oxygen 
of the NCM85 surface, mitigating the loss of lattice oxygen and structural degradation of the cathode. 



Page 15 of Yang et al. Energy Mater 2023;3:300029 https://dx.doi.org/10.20517/energymater.2023.10 18

Benefitting from the multifunctional nature of the LiDFOB additive, the Li||Li symmetry cell can also stably 
cycle for up to 1000 h at a current density of 0.5 mA cm-2 in the carbonate electrolyte. Moreover, the rate 
capability and cyclic stability of Li||NCM85 batteries are significantly improved, with a high capacity 
retention of 74% after 300 cycles, even at a high charge cut-off voltage of 4.6 V. Our in-depth understanding 
of the working mechanisms of LiDFOB is expected to play a strategic role in guiding the rational design of 
electrolyte systems for high-energy-density lithium metal batteries.
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