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Abstract
Antiferroelectrics are a kind of unique dielectric materials, mainly due to their polarization behavior, and 
composition-induced antiferroelectricity stability also draws considerable attention. In this work, single 
orthorhombic phase (Pb0.95Bi0.05)ZrO3 (PBZ), Pb(Zr0.95Bi0.05)O3 (PZB), and PbZrO3 (PZO) films with good density and 
flatten surface was prepared on Pt/Ti/SiO2/Si substrate via sol-gel method. Compared with pure PZO films, the 
PBZ and PZB films possess increased switching electric field difference Δ E due to enhanced forward switching field 
and the late response of backward switching field. In terms of stabilizing AFE phase, changing the tolerance factor t 
has the similar effect as Bi-doping the A/B sites in PZO, with the modification of the A-site being more effective 
than that of the B-site. PBZ films achieve a high recoverable energy density (Wrec) of 26.4 J/cm3 with energy 
efficiency (η) of 56.2% under an electric field of 1278 kV/cm, which exceeds other pure AFE materials. This work 
provides a fundamental understanding of the crystal structure-related antiferroelectricity of PZO materials and 
broadens the chemical doping route to enhance the electric properties of AFE materials.
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INTRODUCTION
Dielectric materials, an essential part of capacitors, would generate polarization under an electric field, 
enabling them to be widely used in electrocaloric, actuator, and energy storage devices. According to 
different polarization behaviors, dielectrics can be divided into linear dielectrics (LDs), ferroelectrics (FEs), 
and antiferroelectrics (AFEs)[1-4]. The energy storage performances of dielectric materials could be 
determined by the polarization-electric field (P-E) curves as follow:

where Wrec, η, Wloss, Pmax, and Pr are the recoverable energy density, the energy efficiency, the dissipated 
energy, the maximum polarization, and the remnant polarization under an applied electric field E, 
respectively. Therefore, FE and AFE materials are suitable for energy storage applications due to a large Pmax, 
low Pr, and moderate E. Meanwhile, dielectric films with much larger breakdown strength Eb could attain 
higher energy density than their bulk counterparts[3-6].

AFE materials possess a characteristic known as a double hysteresis loop, which corresponds to four current 
peaks under an applied electric field. The current peaks represent the AFE-to-FE phase transition at forward 
switching field EF and FE-to-AFE phase transition at backward switching field EA, respectively[7-10]. PbZrO3 
(PZO), as a prototype AFE material, exhibits an apparent double hysteresis loop characteristic, while the 
antiferroelectricity's origin is still controversial[11,12]. Hao et al. used the tolerance factor (t) to evaluate the 
antiferroelectricity of PZO films, and later an increasing researches focus on chemical doping to adjust 
antiferroelectricity of Pb-based and Pb-free AFE materials using t value[13]. The equation of tolerance factor 
(t) of perovskite structure can be expressed as follow:

where rA, rB and rO denote the ion radius of A-site, B-site, and oxygen, respectively. It is accepted that the 
AFE phase is stabilized at t < 1, and the FE phase is stabilized at t > 1. For example, a reduced t value can be 
found in La-doped PZO and Ca-doped AgNbO3 materials corresponding to an enhanced EF and EA to 
stabilize the AFE phase[14,15]. In 2017, Zhao et al. prepared Ag(Nb1-xTax)O3 ceramics in a similar t value and 
proposed that enhanced antiferroelectricity should be attributed to reduced polarizability of the B-site[10]. In 
addition, (Ca, Zr), (Sr, Zr) and (Ca, Hf) modified NaNbO3 AFE ceramics both possess a double hysteresis 
loop by decreasing the value of t while keeping the value of electronegativity fixed[16-18]. It can be seen that 
the electric field-induced AFE phase could be affected by a tolerance factor, polarizability, and 
electronegativity in A/B-sites for Pb-based and Pb-free materials. In the case of only considering the 
tolerance factor t, whether the role of A/B-sites on influencing antiferroelectricity of PZO films exists 
difference.

Following the above discussion, we choose Bi3+ (~1.38 Å for CN = 12 and 1.03 Å for CN = 6) to replace Pb2+ 
(1.49 Å for CN = 12) and Zr4+ (0.72 Å for CN = 6) at A/B-sites respectively[19], compare the difference of 
A/B-sites on influencing antiferroelectricity of PZO, and hence fabricate (Pb0.95Bi0.05)ZrO3 (PBZ), 
Pb(Zr0.95Bi0.05)O3 (PZB) and pure PbZrO3 (PZO) films. A schematic representation of the crystal structure of 
the Bi-doping PZO material can be seen in Figure 1. Based on Equation (3), calculated t values are 0.9639, 
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Figure 1. The schematic of 5 mol% Bi3+ replaces Pb2+ at A-site and Zr4+ at the B-site of PZO. PZO: PbZrO3.

0.9621, and 0.9569 for PZO, PBZ, and PZB compositions, respectively. Meanwhile, a correlation between 
the tolerance factor t and the stabilized antiferroelectricity of PZO is discussed. Our work provides a new 
perspective in improving energy storage properties of AFE materials and prompts the development of AFE 
materials.

MATERIALS AND METHODS
(Pb0.95Bi0.05)ZrO3 (PBZ), Pb(Zr0.95Bi0.05)O3 (PZB), and pure PbZrO3 (PZO) films were prepared on 150-nm 
Pt/20-nm Ti/100-nm SiO2/Si substrate via sol-gel method. Pb (CH3COO)2·3H2O (AR, 99.5 %), 
Bi (NO3)3·3H2O (AR, 99 %), and Zr(OCH2CH2CH3)4 solution (70 wt%) were used as starting raw materials to 
prepare a stable 0.2 M precursor solution. Simultaneously, 2-methoxyethanol, acetic acid, and acetylacetone 
were used as solvents and stabilizers. A 10 % excess lead was added to the solvent to compensate for lead 
loss during the annealing process. The completed sol was spin-coated on the substrate at 4500 rpm for 30 s, 
pyrolyzed at 450 °C, and annealed at 650 °C to attain the desired thickness. The annealing process was 
achieved using an RTP-500 furnace in an air atmosphere. Finally, a Pt electrode with a diameter of ~200 μm 
was deposited through a magnetron sputtering system.

The crystal phase of PZO-based films was examined by grazing incident X-ray diffraction (GIXRD, 
Empyrean, PANalytical, Netherlands) with Cu Kα1 radiation. The cross-section morphology of the PZO-
based thin films was measured using a field emission scanning electron microscope (SEM, Zeiss Ultra Plus, 
Germany). The surface information of thin films was collected by atomic force microscopy (AFM, 
Nanoscope IV, Veeco, USA). The thicknesses of PZO-based films are about 180 nm. The dielectric and 
ferroelectric properties of the PZO-based thin films were measured using an impendence analyzer (Agilent 
4294) and a ferroelectric workstation (Precision Premier II, Radiant Technologies Inc., USA).
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RESULTS AND DISCUSSION
Figure 2A shows the GIXRD patterns of PZO-based films at 2θ = 20°-60°. In the case of a PZO-based film 
with good crystallinity, the perovskite crystalline structure is orthorhombic phase, and no secondary phase 
is detectable in the range of accuracy of GIXRD technology. In order to investigate the effect of Bi doping in 
PZO, the enlarged patterns of PZO-based films at 2θ = 30°-31° are shown in Figure 2B. The diffraction peak 
(122) around 30.5° of PBZ and PZB compared to pure PZO has a slight shift towards the low angle and high 
angle, respectively, which demonstrates Bi successfully replaces Pb and Zr at A/B-sites. In terms of the 
change in diffraction peak, similar phenomena have been observed in La-doped PZO films at low content[15].

Figure 3A shows the SEM images of PZO-based films. It can be seen that all films possess good density and 
no pores and crack in the surface morphology. The grain size of PZB films exceeds PBZ and pure PZO 
films, which should be related to a reduced Pb/Zr ratio compared to PZO and PBZ. Figure 3B displays the 
AFM images of PZO-based films. The surface roughness Rq is 2.91 nm, 3.32 nm, and 4.04 nm for pure PZO, 
PBZ, and PZB films. PZO-based thin films are characterized by a smooth and flattened surface, indicating 
high-quality materials.

Due to the valence difference of Bi3+, Pb2+ and Zr4+, the chemical defect would be generated. The defect 
equation of Bi replaces Pb and Zr is given as follows:

It can be seen that the point defect of  and  could be generated when Bi acts as a donor and acceptor 
dopant, respectively. Figure 4 shows the room temperature frequency dependency of dielectric properties 
for PZO-based films. As frequency increases, the dielectric properties of PZO-based films maintain stability 
over the frequency range of 1 kHz-1 MHz. Figure 4A shows that the dielectric constant enhances from ~250 
for PZO films to ~325 for PBZ and PZB films, which may be related to an increased point defect 
contribution. In addition, Figure 4B illustrates that the dielectric losses of PZO-based films are around 0.1.

Figure 5A shows the room temperature P-E loops of PZO-based films at an applied electric field of 
800 kV/cm. PZO films exhibit an apparent double hysteresis loop. Bi-doped PZO films at A/B sites still 
show double hysteresis loops, but the polarization and switching fields have been changed. The polarization 
differences Δ P between Pmax and Pr of PZO-based films are exhibited in Figure 5C. The Pr of all PZO-based 
films is unchanged, but the Pmax of Bi-doped PZO films is lower than that of pure PZO films. Therefore, Δ P 
of Bi-doped PZO films cannot be enhanced effectively at the same electric field. Figure 5B shows the I-E 
loops of PZO-based films at an applied electric field of 800 kV/cm. Four current peaks correspond to the 
AFE-to-FE and FE-to-AFE phase transition, respectively[8,10]. Compared to pure PZO films, PBZ and PZB 
films both possess a lower current density and higher forward switching field EF of 562.2 kV/cm for PBZ 
and 537.3 kV/cm for PZB than 413.5 kV/cm for PZO films, which illustrates Bi-doping enhances 
antiferroelectricity of PZO materials in some degree. As discussed above, this result may be related to a 
reduction in t value to stabilize the AFE phase. Unfortunately, the increased Δ E value sacrifices the EF of 
PBZ and PZB, as shown in Figure 5D. It can be attributed to an enlarged grain size [Figure 3], which differs 
from the previous results. As grain size decreases, hysteresis loss in relaxor ferroelectric materials and 
antiferroelectric materials is reduced due to increased dipole mobility, and therefore PBZ and PZB with 
large grain sizes would possess a high Δ E. It can be seen that the antiferroelectricity of PZO is no positive 
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Figure 2. (A) The GIXRD patterns of PZO-based films at 2θ range from 20° to 60°. (B) The enlarged patterns at 2θ =30°-31°. 
GIXRD: Grazing incident X-ray diffraction; PZO: PbZrO3.

Figure 3. The (A) SEM images and corresponding (B) AFM images (5*5 μm) for PZO, PBZ, and PZB films. SEM: Scanning electron 
microscope; AFM: atomic force microscopy; PZO: PbZrO3; PBZ: (Pb0.95Bi0.05)ZrO3; PZB: Pb(Zr0.95Bi0.05)O3.

correlation with the tolerance factor in t in A/B-sites doping. In addition, grain size should be taken into 
account when enhancing antiferroelectricity.

Figure 6A shows the P-E loops of pure PZO films at different electric fields. As the electric field enhances, 
linear hysteresis loops gradually transform into double hysteresis loops causing Pmax to increase dramatically. 
With further improving the electric field, the P-E loops are unchanged and stay in a polarization saturation 
state. A detailed description of the division of regions into different states can be found in the following 
content. For PBZ and PZB films, the polarization saturation has a slight delay. Meanwhile, breakdown 
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Figure 4. Frequency-dependent (A) dielectric constant and (B) dielectric loss for PZO-based films at room temperature. PZO: PbZrO3.

Figure 5. (A) The P-E loops of PZO-based films at 800 kV/cm, and corresponding (C) the polarization difference value of Δ P (Pmax - Pr). 
(B) The I-E loops of PZO-based films at 800 kV/cm, and corresponding (D) the switching field value of Δ E (EF - EA). PZO: PbZrO3.

strength enhances compared to pure PZO films, as exhibited in Figure 6B and C. The leakage current is a 
crucial parameter for evaluating dielectric film's electric properties and conduction mechanisms[20-23]. 
Figure 6D illustrates the leakage current for PZO-based films as a function of the electric field. It can be seen 
that the curve of leakage current of pure PZO films can be divided into two parts: For low electric field, the 
leakage conductivity belongs to the bulk-limited Ohmic mechanism. The Fowler-Nordheim tunneling (FN) 
mechanism dominates at high electric field. A similar phenomenon also exists in PBZ and PZB films. Note 
that the transition field from bulk-limited to FN mechanism gradually reduces for pure PZO, PBZ, and PZB 
films, which may be related to different defect types in aliovalent doping PZO at A/B sites. Compared to the 
lead vacancy, the oxygen vacancy may easily contribute more leakage currier; hence, the transformation 
field of PZB from Ohmic into FN mechanism reduces compared to PBZ.
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Figure 6. (A-C) The P-E loops of PBZ, PZB, and pure PZO films at different electric fields, respectively. (D) The leakage current 
functions of electric field for PZO-based films. (E) The recoverable energy density Wrec and (F) the energy efficiency η of PZO-based 
films at an applied electric field. PBZ: (Pb0.95Bi0.05)ZrO3; PZB: Pb(Zr0.95Bi0.05)O3; PZO: PbZrO3.

Figure 6E shows the recoverable energy density Wrec as a function of the electric field for PZO-based films. 
Similar to other literature[24], a corresponding curve can be divided into three regions as the electric field 
increases. For region I, PZO-based films possess a low Wrec value, which should belong to the AFE phase 
stage with a linear polarization curve. For region II, Wrec of PZO-based films both sharply enhance, which 
should correspond to AFE-FE co-existed phase stage. Note that the dashed and dot lines represent different 
terminal transition fields into region III, which means Bi dope PZO would delay the polarization 
enhancement. The Wrec only slightly enhances into region III, which should be attributed to the polarization 
saturation phenomenon at the high electric field[25,26]. The energy efficiency η as functions of electric field for 
PZO-based films is displayed in Figure 6F. Similarly, the curves of η also could be divided into three regions. 
As the electric field enhances, the η value gradually decreases and attains a relatively 50%-60% range. PBZ 
films achieve a maximum Wrec of 26.4 J/cm3 with a η of 56.2 %, which exceeds other reported pure AFE 
materials[27-29].

It is known that energy storage stability, including temperature and frequency[5,14,30], is an important 
parameter for evaluating the material applications, as shown in Figure 7. As temperature enhances, double 
hysteresis loop characteristics of PBZ films gradually transform into relaxor AFE, as shown in Figure 7A. 
Meanwhile, the Wrec gradually decreases and η value remains essentially unchanged (see Figure 7C), which 
should be related to the Curie temperature of PZO at about 230 °C, corresponding to the AFE-to-PE phase 
transition[8,31]. Figure 7B displayed frequency-dependent P-E loops of PBZ films at room temperature. As 
frequency enhances, polarization decreases and hysteresis loss also reduces. Therefore, the Wrec and η of PBZ 
films display good frequency stability, as shown in Figure 7D.
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Figure 7. (A) Temperature-dependent P-E loops and corresponding (C) W rec, η of PBZ films at 1 kHz. (B) Frequency-dependent P-E 
loops and corresponding (D) W rec, η of PBZ films at room temperature. PBZ: (Pb0.95Bi0.05)ZrO3.

CONCLUSIONS
PZO, PBZ, and PZB films are prepared on Pt/Ti/SiO2/Si substrate via the sol-gel method. Crystallized PZO-
based films with orthorhombic perovskite phases exhibit low roughness and good density. The dielectric 
constants of the Bi-doped PZO and pure PZO films are approximately 300, and these films possess good 
frequency stability at room temperature. Compared to pure PZO films, Δ E value increases and Δ P decrease 
for PBZ and PZB films hindering the effective energy storage. A/B-site doping in influencing the 
antiferroelectricity of PZO has a similar effect in only considering t value, and A-site doping would be better 
than B-site one in energy storage properties. PBZ films achieve a high Wrec of 26.4 J/cm3 with a η of 56.2 % 
under an applied electric field of 1278 kV/cm, accompanying a suitable temperature and frequency energy 
storage stabilities.
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