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Abstract
This commentary is primarily devoted to a recent observational study by Mantovani and colleagues (Aliment 
Pharmacol Ther. 2023; 57: 1093-102) examining the adverse effect of the patatin-like phospholipase domain-
containing protein-3 (PNPLA3) rs738409 G allele on the kidney function in a cohort of 1,144 middle-aged Italian 
individuals with metabolic dysfunction. In this study, the authors found that the PNPLA3 rs738409 G allele was 
significantly associated with lower levels of estimated glomerular filtrate rate (eGFR), even after adjusting for not 
only common anthropometric and cardiometabolic risk factors but also ethnicity, serum liver enzymes, use of drugs 
against dyslipidemia and chronic kidney disease polygenic risk score. Additionally, in a subgroup of 144 patients 
followed for a median of 17 months, the authors also found that the PNPLA3 rs738409 G allele was independently 
associated with a faster eGFR decline. Commenting on the cohort study by Mantovani et al., we also summarized 
the rapidly expanding evidence linking the PNPLA3 rs738409 variant with the risk of kidney disease. Furthermore, 
we discussed the potential research implications of these findings.

Keywords: Nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, glomerular filtration rate, kidney function, 
chronic kidney disease, PNPLA3 rs738409

The PNPLA3 gene, also known as adiponutrin, encodes for a protein of 481 amino acids mainly located in
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lipid droplets of hepatocytes and hepatic stellate cells[1,2]. The PNPLA3 protein exerts a hydrolase activity on 
triglycerides and a transacylase activity on polyunsaturated fatty acids in phospholipids[1,2]. The rs738409 C > 
G single nucleotide polymorphism in the PNPLA3 gene leads to an Ile148Met substitution (i.e., 148 
isoleucine to methionine protein variant)[1,2], causing a loss of function in the enzymatic activity of the 
PNPLA3 protein. Such loss of function in the PNPLA3 protein leads to an accumulation of lipid droplets in 
hepatocytes and hepatic stellate cells mainly due to a reduction in very-low-density lipoprotein (VLDL) 
secretion and a lack of proteasomal degradation, thus inducing liver damage and fibrosis over time[1,2]. It is 
universally acknowledged that the most extensive proportion of heritability in hepatic fat content among 
adults from the general population, increased proneness to developing nonalcoholic fatty liver disease 
(NAFLD), nonalcoholic steatohepatitis, cirrhosis, and primary liver cancer is accounted for by the PNPLA3 
rs738409 polymorphism[2-4].

As summarized in Table 1 many observational studies performed both in adults and adolescents[5-14], 
although not all[15-17], have reported that carriers of the PNPLA3 rs738409 G allele have an increased risk of 
developing NAFLD and its more advanced forms, but also an increased risk of decreased eGFR and chronic 
kidney disease (CKD stage ≥ 3), regardless of the presence or absence of type 2 diabetes mellitus (T2DM) 
and hepatic steatosis. For instance, a cross-sectional analysis conducted in 227 Chinese adults with biopsy-
proven NAFLD has shown that the PNPLA3 rs738409 G allele was significantly associated with an increased 
prevalence of CKD, abnormal albuminuria, and higher levels of urinary neutrophil gelatinase-associated 
lipocalin (i.e., a biomarker of kidney tubule damage), irrespective of sex, adiposity measures, hepatic and 
cardiometabolic risk factors[10].

In a clinical and experimental study of 157 Italian postmenopausal women with T2DM, Mantovani et al. 
showed that homozygous carriers of the PNPLA3 rs738409 G allele had lower eGFR levels and a higher 
prevalence of CKD than those carrying the PNPLA3 rs738409 C allele[11]. In a large cross-sectional study of 
1,022 Chinese patients with chronic hepatitis virus C infection (22% of whom had coexisting CKD), Liu et 
al. reported that the PNPLA3 rs738409 G allele was significantly associated with an increased risk of 
prevalent CKD, after controlling for BMI, HOMA-estimated insulin resistance, hypertension, plasma lipids, 
C-reactive protein levels, and hepatic steatosis[14]. Conversely, there is very little information about a possible 
association between the PNPLA3 rs738409 G allele and the presence of abnormal albuminuria[6,8].

To date, there are no clinical studies examining the risk of developing renal dysfunction in carriers of the 
PNPLA3 rs738409 G allele among individuals with metabolic dysfunction and normal or near-normal 
kidney function. Mantovani et al. examined the nexus linking the rs738409 G allele of the PNPLA3 gene and 
renal function in a cohort of 1,144 Italian adults with dysmetabolic features belonging to the Liver-Bible-
2022 cohort (that enrolled volunteers with either fully preserved or nearly normal renal function at baseline 
who were submitted to extensive screening for hepatic and cardio-metabolic conditions)[13]. In this cohort, 
the authors reported that the PNPLA3 rs738409 G allele was significantly associated with lower eGFR levels 
after controlling for sex, ethnicity, adiposity measures, cardiometabolic risk factors, serum liver enzymes, 
lipid-lowering medication use, albuminuria and a CKD polygenic risk score (PRS)[13]. It should be noted 
that the statistical significance of this association remained unaltered even after controlling for Fibroscan®-
assessed controlled attenuation parameter (CAP) or liver stiffness measurement (LSM)[13]. Notably, in a 
subset of 144 individuals followed for a median period of 17 months, the authors also found that the 
PNPLA3 rs738409 G allele was independently associated with a faster decline in eGFR (delta eGFR: -3.57 
mL/min/1.73 m2 per allele, 95% confidence interval: -6.94 to -0.21; P = 0.037)[13].
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Table 1. Principal observational studies examining the association between the PNPLA3 rs738409 G allele (or other NAFLD-associated genetic risk variants) and the risk of kidney dysfunction

Author, year Study characteristics NAFLD 
diagnosis Genetic polymorphism eGFR 

equation Covariate adjustments Main findings

Oniki et al.[5] 2015 Cross-sectional analysis: 740 Japanese and 
retrospective longitudinal study of 393 Japanese 
(follow-up 5.5 years)

Ultrasound PNPLA3 rs738409 G allele MDRD equation Age, sex, BMI, T2DM, 
hypertension, dyslipidemia, 
and hepatic steatosis

PNPLA3 rs738409 G allele was linked 
with lower eGFR levels

Musso et al.[6] 2015 Cross-sectional analysis: 202 Italians who were free 
of obesity and T2DM

LB PNPLA3 rs738409 G allele CKD-
epidemiology 
collaboration 
equation

Age, sex, BMI, and MetS PNPLA3 rs738409 G allele was linked 
with higher risks of microalbuminuria 
and CKD

Mantovani et al.[7] 
2019

Cross-sectional study: 101 Italian postmenopausal 
women with T2DM

FLI ≥ 60 
(ultrasound in 
a subset of 
patients)

PNPLA3 rs738409 G allele CKD-
epidemiology 
collaboration 
equation

Age, T2DM duration, HbA1c, 
IR, systolic BP, hypertension 
treatment, and FLI ≥ 60

PNPLA3 rs738409 G allele was 
associated with lower eGFR and a 
higher prevalence of CKD

Targher et al.[8] 
2019

Cross-sectional analysis: 142 NAFLD cases in Italian 
adolescents/children

LB PNPLA3 rs738409 G allele Bedside 
schwartz 
equation

Age, sex, systolic BP, 
adiposity, IR, NASH, and stage 
of hepatic fibrosis

PNPLA3 rs738409 G allele was linked 
with reduced renal function and 
proteinuria

Marzuillo et al.[9] 
2019

Cross-sectional study: 591 Italian obese children Ultrasound PNPLA3 rs738409 G allele Bedside 
schwartz 
equation

Sex, duration of obesity, ALT, 
IR, and lipids

PNPLA3 rs738409 G allele was linked 
with lower eGFR levels

Di Costanzo et al.[17] 
2019

Cross-sectional study: 230 Italian overweight or 
obese children

MRI PNPLA3 rs738409 G allele Bedside 
schwartz 
equation

Age, sex, pubertal status, WC, 
diastolic BP, and liver steatosis

No significant difference was observed 
among PNPLA3 rs738409 alleles

Sun et al.[10] 2020 Cross-sectional study: 227 Chinese patients with 
NAFLD

LB PNPLA3 rs738409 G allele CKD-
Epidemiology 
collaboration 
equation

Age, sex, BMI, WC, 
hyperuricemia, IR, 
hypertension, T2DM, and 
hepatic fibrosis assessed 
histologically

PNPLA3 rs738409 G allele was linked 
with an increased risk of glomerular 
and tubular injuries

Mantovani et al.[11] 
2020

Cross-sectional analysis: 157 Italian 
postmenopausal women with T2D

Ultrasound and 
VCTE

PNPLA3 rs738409 G allele CKD-
epidemiology 
collaboration 
equation

Diabetes duration, HbA1c, 
hypertension, presence of 
significant fibrosis (on VCTE), 
and abnormal albuminuria

PNPLA3 rs738409 G allele was linked 
with lower eGFR levels and a higher 
prevalence of CKD

Koo et al.[15] 2020 Cross-sectional study: 396 South Korean individuals 
with biopsy-proven NAFLD from the Boramae 
NAFLD study

LB PNPLA3 rs738409 G allele; 
TM6SF2 rs58542926 T 
allele; MBOAT7 rs641738 T 
allele

CKD-
epidemiology 
collaboration 
equation

Age, sex, BMI, and MetS MBOAT7 rs641738 T allele was linked 
with a higher prevalence of CKD. 
Conversely, CKD was not linked with 
PNPLA3 rs738409 G or TM6SF2 
rs58542926 T alleles

Baratta et al.[16] 
2022

Cross-sectional analysis: 538 individuals with 
NAFLD (in whom data regarding kidney function 
were available) were recruited on an outpatient 
basis

Ultrasound PNPLA3 rs738409 G allele; 
MBOAT7 rs641738 T allele; 
TM6SF2 rs58542926 T 
allele; GCKR rs780094 T 
allele

CKD-
epidemiology 
collaboration 
equation

BMI, MetS, and liver fibrosis 
(as assessed by FIB-4 index)

Deterioration of renal function was not 
associated with any of NAFLD-related 
polymorphisms

Panel data analysis: 46 postmenopausal T2DM 
women with preserved kidney function at baseline 

CKD-
epidemiology 

Annual changes in age, HbA1c, 
hypertension, albuminuria, and 

PNPLA3 rs738409 G allele was linked 
with a faster eGFR decline during a 5-

Mantovani et al.[12] 
2023

Ultrasound and 
VCTE

PNPLA3 rs738409 G allele
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(in 2017) who underwent follow-up in 2022 collaboration 
equation

use of specific glucose-
lowering agents during follow-
up

year follow-up

Mantovani et al.[13] 
2023

Cross-sectional study and longitudinal study: 1,144 
adults of middle age recruited from the cohort 
“Liver-Bible-2022”. The effect of the PNPLA3 
rs738409 G allele on kidney function was also 
examined in a subset of 144 individuals over a 
median follow-up of 17 months

VCTE with 
CAP

PNPLA3 rs738409 G allele CKD-
epidemiology 
collaboration 
equation

Age, sex, height, WC, systolic 
BP, lipids, transaminases, 
fasting insulin, albuminuria, 
use of lipid-lowering drugs, 
ethnicity, and PRS-CKD score

PNPLA3 rs738409 G allele was linked 
with eGFR decline in the cross-
sectional analysis. In the longitudinal 
analysis, the PNPLA3 rs738409 G allele 
was correlated to faster eGFR decline 
over time

Liu et al.[14] 2023 Cross-sectional study: 1,022 patients with chronic 
HCV infection, 226 of whom had CKD

VCTE with 
CAP

PNPLA3 rs738409 G allele; 
TM6SF2 rs58542926 T 
allele

CKD-
epidemiology 
collaboration 
equation

BMI, IR, hypertension, lipids, 
C-reactive protein, and liver 
steatosis on CAP

PNPLA3 rs738409 G allele was linked 
with an increased risk of CKD, while the 
TM6SF2 rs58542926 T allele was 
linked with a reduced risk of CKD

LT: alanine transferase; BMI: body mass index; BP: blood pressure; CAP: controlled attenuation parameter; CKD: chronic kidney disease; eGFR: estimated glomerular filtration rate; FIB-4: Fibrosis-4; FLI: fatty liver 
index; GCKR: glucokinase regulatory protein; HOMA-IR: homeostasis model assessment-estimated insulin resistance; IR: insulin resistance; LB: liver biopsy; MBOAT7: membrane-bound O-acyltransferase domain 
containing 7; MetS: metabolic syndrome; MRI: magnetic resonance imaging; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; PNPLA3: patatin-like phospholipase domain-containing 3; 
PRS-CKD: polygenic risk score of chronic kidney disease; T2DM: type 2 diabetes; VCTE: vibration-controlled transient elastography; TM6SF2: trans-membrane 6 superfamily member 2; WC: waist circumference.

The study by Mantovani et al. is the first large cohort study reporting a nexus linking the PNPLA3 rs738409 G allele with reduced renal function, irrespective of 
ethnicity, and the PRS-CKD[13], which includes an evaluation of nearly 41,000 genetic predictors of CKD risk[18]. Collectively, therefore, the results of this study 
show a detrimental impact of the PNPLA3 p.I148M variant on eGFR levels in middle-aged individuals with metabolic dysfunction and preserved kidney 
function, suggesting that the identification of the PNPLA3 genotype might help to triage subjects who are at greater odds of progressive NAFLD forms and, at 
the same time, individuals who are at higher risk of CKD. This issue has also been recently recognized in a Delphi-based consensus statement[19]. In addition, as 
insulin resistance (more than other metabolic traits) appears to exacerbate the PNPLA3-rs738409-G genetic risk for NAFLD[20], it is reasonable to hypothesize 
that improving insulin resistance might offer additional clinical benefits in this patient population.

What is the net effect of PNPLA3 rs738409 polymorphism on kidney function? The study by Mantovani et al. tried to answer this research question, showing 
that compared to the wild-type genotype, heterozygous and homozygous carriages of the PNPLA3 rs738409 G allele had a reduction of -1.24 and -2.48 mL/
min/1.73 m2 in eGFR levels, respectively[13]. In addition, in this specific cohort of Italian adults with metabolic dysfunction, the PNPLA3 rs738409 G allele 
explained approximately 8% of the spectrum of eGFR variability dysfunction[13]. However, the presumed mechanisms underlying the nexus linking the 
PNPLA3 rs738409 G allele and kidney dysfunction are not fully understood. In a previous experimental study, the same group of investigators reported that 
the concentrations of mRNA of the PNPL A3 were expressed at the maximal levels both intrahepatically and intrarenally and that renal podocytes had the 
highest expression of mRNA and protein of the PNPLA3 gene compared to other renal cells[11]. Other experimental findings suggest that podocytes of renal 
glomeruli can store fatty substrates, such as retinol esters and lipid droplets, thereby promoting fatty kidney disease[21-23]. However, although these experimental 
findings are fascinating, they are preliminary data. As recently discussed by Pirola et al., some important research questions remain open: (i) Could different 
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PNPLA3 gene expression patterns in the kidney explain the association between the PNPLA3 rs738409 G
allele and kidney dysfunction[24]? (ii) Does current experimental data support a direct adverse effect of the
PNPLA3 rs738409 G allele on kidney function? (iii) Does the adverse effect of the PNPLA3 rs738409 G allele
on kidney function occur, at least partially owing to this genetic polymorphism affecting the liver? Growing
evidence indicates a significant link between NAFLD and the risk of both prevalent and incident CKD,
irrespective of common metabolic risk factors, such as diabesity[22,25-28]. Hence, additional pathogenic
investigation is required to better understand the long-term effect(s) of the PNPLA3 rs738409 G allele on
the risk of kidney dysfunction.

The results of the cohort study by Mantovani et al. should be interpreted with caution, considering the
possible inherent limitations of the study[13]. First, while the cross-sectional analysis was performed on the
entire cohort of individuals (n = 1,144), prospective assessment was restricted only to a subset of individuals.
Moreover, renal function was not assessed with direct measurements but with a validated creatinine-based
equation estimating eGFR, as usually done in routine clinical practice. Finally, the Liver-Bible-2022 cohort
enrolled Italian individuals without pre-existing T2DM and with normal or near-normal kidney function.
As a result, the findings of this study could not apply to the general adult population, other ethnic groups,
or other selected patient populations.

In conclusion, the findings of the recent observational study by Mantovani et al. support a detrimental effect
of the PNPLA3 p.I148M variant on eGFR levels in a large cohort of Caucasian middle-aged individuals with
metabolic dysfunction[13]. This association was independent of established renal risk factors, presence
/severity of NAFLD (as assessed by hepatic transient elastography), ethnicity, and genetic predisposition 
to CKD. Given the possible translational importance for personalized medicine approaches of the 
relationship linking the polymorphism p.I148M of the PNPLA3 gene to a faster decline of renal 
function, additional studies are required to exhaustively clarify the effect of this genetic polymorphism 
on the risk of CKD. Future research is also needed to examine whether PNPLA3 p.I148M silencing might 
protect against kidney damage progression in carriers.
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