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Abstract
Most cryptographic applications use randomness that is generated by pseudo-random number generators (PRNGs).
Apopular PRNGpractical choice is theNIST standardizedCTR_DRBG. In their recentACNS2023publication, Andreeva
and Weninger proposed a new and more efficient and secure PRNG called FCRNG. FCRNG is based on CTR_DRBG

and uses the 𝑛-to-2𝑛 forkcipher expanding primitive ForkSkinny as a building block. In this work, we create a new
BKRNG PRNG, which is based on FCRNG and employs the novel 𝑛-to-8𝑛 expanding primitive Butterknife. Butterknife
is based on the Deoxys tweakable blockcipher (and thus AES) and realizes a tweakable expanding pseudo-random
function. While both blockciphers and forkciphers are invertible primitives, tweakable expanding pseudo-random
functions are not. This functional simplification enables security benefits for BKRNG in the robustness security game
- the standard security goal for a PRNG. Contrary to the security bound of CTR_DRBG, we show that the security of
our BKRNG construction does not degrade with the length of the random inputs, nor the number of requested output
pseudo-random bits. We also empirically verify the BKRNG security with the NIST PRNG test suite and the TestU01
suite.

Furthermore, we show the 𝑛-to-8𝑛 multi-branch expanding nature of Butterknife contributes to a significant speed-up
in the efficiency of BKRNG compared to FCRNG. More concretely, producing random bits with BKRNG is 30.0% faster
than FCRNG and 49.2% faster than CTR_DRBG.
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INTRODUCTION
Good randomness is needed for almost all cryptographic protocols. Physical true randomness sampling de-
vices usually do not produce perfectly uniform outputs, but more importantly, they are too slow for many
practical applications. For this reason, pseudo-random number generators (PRNGs) are used. They expand
high entropy bitstrings into longer bitstrings that are indistinguishable from uniform random. PRNGs are of
high practical and theoretical interest.

Barak and Halevi [1] are the first to propose a theoretical model that defines how a PRNG recovers from a state
compromise when it is given good randomness in the so-called refresh algorithm. Prior to that, PRNGs were
treated as single functions that take a uniformly random seed as input to produce a single (long) output. In
2013, Dodis et al. [2] extended the model of Barak and Halevi so as to not require the PRNG to fully recover in
a single call to the refresh algorithm. Instead, their model allows the PRNG to slowly accumulate randomness
over the course of many calls to the refresh algorithm, which is the commonly accepted security model at
present.

In terms of practical PRNGs, NIST recommends several PRNGs in their SP 800-90A standard. Among these,
the AES-basedCTR_DRBG is themost popular choice. (Cohney et al. [3] noted that 67.8% of all certified imple-
mentations from NIST’s Cryptographic Module Validation Program (CMVP) in 2019 supported CTR_DRBG,
making it the most popular design among these certifications.) Its security was formally analyzed in 2020 by
Hoang and Shen [4]. The CTR_DRBG design includes some odd choices, such as running CBC-MAC three
times for the randomness extraction algorithm (called CtE by Hoang and Shen [4]), without a clear justification
for its provable security.

In 2023, Andreeva and Weninger [5] proposed a new PRNG called FCRNG. FCRNG is based on CTR_DRBG
and improves the internal algorithms of CTR_DRBG. Furthermore, it replaces the use of a blockcipher as
a building block with a forkcipher – a primitive introduced by Andreeva et al. [6]). FCRNG with forkcipher
achieves better performance and security than CTR_DRBG and is better suited for lightweight applications.
Forkciphers are similar to (tweakable) block ciphers, yet they produce two ciphertext blocks for a single in-
put message block. Current forkciphers, such as ForkSkinny [6], are based on existing tweakable blockciphers,
such as Skinny [7]. A forkcipher produces the output more efficiently than two evaluations of the correspond-
ing tweakable block cipher. The expanding nature of forkciphers makes them a natural fit for PRNGs. Similar
to PRNGs which expand by designing a short high entropy string into a longer pseudo-random output, fork-
ciphers expand their input. As a result, the FCRNG forkcipher-based design is 33% faster than the block
cipher-based CTR_DRBG [5]. FCRNG also offers improved security over CTR_DRBG due to the improved
internal randomness extraction algorithm (FCTRCond) and the fact that the used internal forkcipher Fork-
Skinny is tweakable. The forkciphers are yet underused in FCRNG as they have functionalities that are not
utilized by the FCRNG design. In particular, forkciphers are invertible (given one of the ciphertext blocks and
the key, the message can be computed), and they offer the functionality to compute one ciphertext block from
the other when given the key.

On the other hand, tweakable Pseudo-Random Functions (TPRF) are a type of expandable primitives that
have only forward evaluating functionality. A recent instance of a TPRF is the Butterknife [8] construction.
Butterknife offers eight-fold (𝑛-to-8𝑛-bit) input expansion as compared to the two-fold (𝑛-to-2𝑛-bit) expansion
of forkciphers. At the same time, Butterknife prohibits inversion and computation of one output block from
the other by design, with the added benefit of additionally eliminating extra attack vectors. Butterknife is
based on Deoxys [9] and thus reuses internally the AES structure. Hence, it can utilize existing implementation
optimizations, such as the Intel AES-NI. All these Butterknife features can be advantageous when it comes
to generating pseudo-random outputs. Butterknife is already used for efficient key derivation in the Signal
protocol [10]. Another natural Butterknife application is in generalized CTR mode encryption [11].
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Contributions
In this work, we present our new BKRNG (ButterKnife PRNG) construction. The design idea of BKRNG is
based on the FCRNG [5] and the NIST standardized CTR_DRBG constructions. The main difference is in the
secure and efficient integration of a TPRF as an internal primitive. For our practical instantiation, we suggest
the Butterknife TPRF. BKRNG conforms to the notion of a robust PRNG by Dodis et al. [2]; thus, it comprises
a setup function for the initial setup, a refresh function for absorbing random inputs (to recover after a
possible internal state compromise) and a next function for producing pseudo-random outputs.

• Our BKRNG construction is similar to FCRNG. FCRNG was specified with two variants, FCRNG-c and
FCRNG-t. FCRNG-c gives the better performance, while FCRNG-t offers better security. This improve-
ment in security was achieved by changing the tweak for each output block. This was needed to allow for
a specific output block to repeat within the same call to the randomness generation function next. While
Butterknife does offer tweakability as well, changing the tweak is not required since the individual output
blocks are independent by design. For this reason, we chose to design BKRNG similar to the more per-
formant FCRNG-c. By not changing the tweak for each output block, we allow practical implementations
to compute the tweakey schedule only once instead of repeatedly refreshing it for each block thus further
pushing the performance improvement.

• We provide full security proof forBKRNG in the robustness security game byDodis et al. [2]. The proof bears
similarity to the proofs for FCRNG [5] and CTR_DRBG [4]. Similar to the previous PRNG security proofs,
we treat the internal TPRF primitive as ideal, which means that we consider it to be randomly drawn from
all possible TPRFs with the same input, output, and tweakey size. Changing the internal primitive to a
TPRF required new analysis since both forkciphers and blockciphers are invertible. This change allowed us
to prove a security bound for BKRNG that is strictly better than those of CTR_DRBG and FCRNG (both for
FCRNG-c and FCRNG-t). Compared to FCRNG-c (with which we also compare the performance in the
next paragraph), the security bound of BKRNG improves several constant factors and entirely removes the
summand 12𝑝𝑞

2𝑛 , where 𝑝 is the number of queries to the setup and refresh algorithms and 𝑞 the number of
queries tonext. Compared to the analysis ofCTR_DRBG byHoang and Shen [4], we additionally eliminated
a summand related to the maximum length of each random input and a summand related to the maximum
length of each pseudo-random output.

• We implement BKRNG and compare its performance to FCRNG and CTR_DRBG. Our results show that
generating pseudo-random output with BKRNG is 30.0% faster than FCRNG (in its performance-oriented
variation FCRNG-c) and 49.2% faster thanCTR_DRBG. We also used our implementation to run the NIST
PRNG test suite and the TestU01 suite and successfully passed all tests.

METHODS
Preliminaries
Notation.
Let 𝑎 + 𝑏 and 𝑎 ∗ 𝑏 denote regular integer addition and multiplication, respectively. By 𝑎 ⊕ 𝑏, we denote bitwise
XOR of two (equal length) bitstrings 𝑎, 𝑏. Let ⌈𝑟⌉ denote the smallest integer 𝑖 s.t. 𝑖 ≥ 𝑟 for the real number 𝑟 .
|𝑎 | denotes the length of bitstring 𝑎. By [𝑥]𝑦 , we denote encoding the value 𝑥 as a bitstring of length 𝑦. 𝑋 [𝑎 : 𝑏]
denotes the bitstring that is obtained by taking bits 𝑎, 𝑎 +1, ..., 𝑏 of bitstring 𝑋 . 𝑎 | |𝑏 denotes the concatenation
of bitstrings 𝑎, 𝑏. Let 𝑀1, ..., 𝑀𝑚 ←𝑛 𝑀 denote splitting a bitstring 𝑀 , with |𝑀 | being a multiple of 𝑛, into the
blocks 𝑀1, ..., 𝑀𝑚 (∀1 ≤ 𝑖 ≤ 𝑚 : |𝑀𝑖 | = 𝑛; hence, 𝑚 = |𝑀 |/𝑛). Perm(𝑛) denotes the set of all permutations
with range and domain {0, 1}𝑛.

Blockciphers and Forkciphers.
A blockcipher 𝐸 is defined as the pair of algorithms (𝐸 , 𝐸−1), where 𝐸, 𝐸−1 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛, and
it holds that ∀𝐾 ∈ {0, 1}𝑘 , 𝑀 ∈ {0, 1}𝑛 : 𝐸−1(𝐾, 𝐸 (𝐾, 𝑀)) = 𝑀 . We denote by 𝑘 the key size and 𝑛 the block
size. By BC(𝑘, 𝑛), we denote the set of all such blockciphers.
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Following [6], a forkcipher is a pair of deterministic algorithms, the forward encrypting and inverse algorithms,
respectively:

𝐹 : {0, 1}𝑘 × {0, 1}𝑡 × {0, 1}𝑛 ×
{0,1,b} → {0, 1}𝑛 ∪ {0, 1}𝑛 × {0, 1}𝑛

𝐹−1 : {0, 1}𝑘 × {0, 1}𝑡 × {0, 1}𝑛 × {0, 1} ×
{i,o,b} → {0, 1}𝑛 ∪ {0, 1}𝑛 × {0, 1}𝑛

Note that we use ∪ in the definitions since the output can be a single 𝑛-bit string or a pair of such strings,
depending on the chosen mode, as we define below. A forkcipher uses an additional tweak of size 𝑡. By
FC(𝑘, 𝑡, 𝑛), we denote the set of all such forkciphers. A tweakable forkcipher 𝐹 meets the correctness condition
if for every 𝐾 ∈ {0, 1}𝑘 ,T ∈ {0, 1}𝑡 , 𝑀 ∈ {0, 1}𝑛� and 𝛽 ∈ {0, 1}, all of the following conditions are met:

1. F−1(𝐾,T,F(𝐾,T, 𝑀, 𝛽), 𝛽,i) = 𝑀
2. F−1(𝐾,T,F(𝐾,T, 𝑀, 𝛽), 𝛽,o) = F(𝐾,T, 𝑀, 𝛽 ⊕ 1)
3.

(F(𝐾,T, 𝑀,0),F(𝐾,T, 𝑀,1)) = F(𝐾,T, 𝑀,b)
4.

(F−1(𝐾,T, 𝐶, 𝛽,i),F−1(𝐾,T, 𝐶, 𝛽,o)) = F−1(𝐾,T, 𝐶, 𝛽,b)
For each pair of a key and a tweak, the forkcipher applies two independent permutations to the input to produce
the two output blocks. We use the shorthand 𝐹𝑇,𝑠𝐾 (𝑚) := 𝐹 (𝐾,𝑇, 𝑚, 𝑠). Since most of our algorithms only use
𝑠 = 𝑏; we also use 𝐹𝑇𝐾 (𝑚) := 𝐹𝑇,b𝐾 (𝑚). Furthermore, denote (𝐹−1)𝑇,𝛽,𝑠𝐾 (𝑐) := F−1(𝐾,𝑇, 𝑐, 𝛽, 𝑠).

Almost Universal (AU) Hash.
Let 𝐻 : Seed ×Dom → {0, 1}𝑛 be a (keyed) hash function. For each string 𝑋 , define its block length to be
max{1, |𝑋 |/𝑛}. For a function 𝛿 : N→ [1,∞), we say that 𝐻 is a 𝛿-almost universal hash if for every distinct
strings 𝑋1, 𝑋2 whose block lengths are at most 𝑙, we have

Pr
𝑠𝑒𝑒𝑑←$Seed

[𝐻 (𝑠𝑒𝑒𝑑, 𝑋1) = 𝐻 (𝑠𝑒𝑒𝑑, 𝑋2)] ≤
𝛿(𝑙)
2𝑛

Conditional Min-Entropy and Statistical Distance.
For two random variables 𝑋 and 𝑌 , the (average-case) conditional min-entropy of 𝑋 given 𝑌 is

H∞(𝑋 |𝑌 ) = − log(
∑
𝑦

Pr[𝑌 = 𝑦] ∗max
𝑥

Pr[𝑋 = 𝑥 |𝑌 = 𝑦])

The statistical distance between two random variables 𝑋 and 𝑌 is defined as

SD(𝑋,𝑌 ) = 1
2

∑
𝑧

| Pr[𝑋 = 𝑧] − Pr[𝑌 = 𝑧] |

SD(𝑋,𝑌 ) is the best possible advantage of an (even computationally unbounded) adversary in distinguishing
𝑋 and 𝑌 .

Systems, Transcripts and the H-coefficient Proof Technique.
Following [4,12], we consider the interactions of a distinguisher A with an abstract system 𝑆 that answers A’s
queries. The resulting interaction then generates a transcript 𝜏 = ((𝑋1, 𝑌1), ..., (𝑋𝑞 , 𝑌𝑞)) of query-answer pairs.
𝑆 is entirely described by the probabilities ps(𝜏) that correspond to the system 𝑆 responding with answers as
indicated by 𝜏 when queries in 𝜏 are made. We will generally describe systems informally or more formally in
terms of a set of oracles they provide and only use the fact that they define corresponding probabilities ps(𝜏)
without explicitly giving these probabilities. We say that a transcript is valid for system 𝑆 if ps(𝜏) > 0.
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For any systems 𝑆1 and 𝑆0, let ∆A (𝑆1, 𝑆0) denote the distinguishing advantage of the adversaryA against the
“real” system 𝑆1 and the “ideal” system 𝑆0.

Following [4], we now describe the H-coefficient technique of Patarin [13,14]. Generically, it considers a deter-
ministic distinguisherA that tries to distinguish a “real” system 𝑆1 from an “ideal” system 𝑆0. The adversary’s
interactions with those systems define transcripts 𝑋1 and 𝑋0, respectively, and a bound on the distinguishing
advantage ofA is given by the statistical distance SD(𝑋1, 𝑋0).

Lemma 1 (see [13,14]). Suppose we can partition the set of valid transcripts for the ideal system into good and bad
ones. Further, suppose that there exists 𝜖 ≥ 0 such that 1 − ps1 (𝜏)

ps0 (𝜏)
≤ 𝜖 for every good transcript 𝜏. Then,

SD(𝑋1, 𝑋0) ≤ 𝜖 + Pr[𝑋0 is bad]

Pseudo-Random Functions.
A TPRF is a keyed function 𝐹 : {0, 1}𝑘 × {0, 1}𝑡 × {0, 1}𝑛 → {0, 1}𝑚 .

Let TPRF(𝑘, 𝑡, 𝑛, 𝑚) denote the set of all such TPRFs.

PRNG.
We recall the security definition by Dodis et al. [2]. A PRNGwith input 𝐼 with state spaceState and seed space
Seed is a tuple of deterministic algorithms 𝐺 = (setup, refresh,next).
• setup(𝑠𝑒𝑒𝑑, 𝐼) takes a seed 𝑠𝑒𝑒𝑑 ∈ Seed and a string 𝐼 as input, to then output an initial state 𝑆 ∈ State.
• refresh(𝑠𝑒𝑒𝑑, 𝑆, 𝐼) takes as input 𝑠𝑒𝑒𝑑 ∈ Seed, 𝑆 ∈ State, and string 𝐼 and then outputs a new state.
• next(𝑠𝑒𝑒𝑑, 𝑆, 𝑙) takes as input 𝑠𝑒𝑒𝑑 ∈ Seed, 𝑆 ∈ State, and a number 𝑙 ∈ N to then output a new state
and an 𝑙-bit output string.

For our constructions, we will not have an explicit seed but rather treat the full description of the idealized
primitives (in our case, an ideal TPRF 𝐹) as the seed, as was done in several previous works (e.g., [4,5]).

Condensers.
A condenserCond [15] takes a bitstring that has low entropy (i.e., is not uniformly random) and outputs a value
that is hard to predict. We follow [4] and [5] for the subsequent definitions. Let 𝑆 be a 𝜆-source, meaning a state-
less, probabilistic algorithm that outputs a random input 𝐼 and some side information 𝑧, such thatH∞(𝐼 |𝑧) ≥ 𝜆.
For any adversaryA, we define the guessing advantage ofA against condenser Cond with a source 𝑆 as

AdvguessCond(A, 𝑆) = Pr[Gguess
Cond(A, 𝑆)]

The corresponding game is described in Figure 1.

Game Gguess
Cond(A, 𝑆)

(𝐼, 𝑧) ←$ 𝑆; 𝑠𝑒𝑒𝑑 ←$ Seed;𝑉 ← Cond(𝑠𝑒𝑒𝑑, 𝐼)
(𝑌1, ..., 𝑌𝑞) ←$A(𝑠𝑒𝑒𝑑, 𝑧); return (𝑉 ∈

{
𝑌1, ..., 𝑌𝑞

}
)

Game G1-blk-guess
Cond (A, 𝑆)

(𝐼, 𝑧) ←$ 𝑆; 𝑠𝑒𝑒𝑑 ←$ Seed;𝑉 ← Cond(𝑠𝑒𝑒𝑑, 𝐼)[1:𝑛]

(𝑌1, ..., 𝑌𝑞) ←$A(𝑠𝑒𝑒𝑑, 𝑧); return (𝑉 ∈
{
𝑌1, ..., 𝑌𝑞

}
)

Figure 1. Security games for a condenser Cond

http://dx.doi.org/10.20517/jsss.2023.45
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For any adversaryA, the 1-block-guessing advantage ofA against condenserCondwith a source 𝑆 is defined
as

Adv1-blk-guessCond (A, 𝑆) = Pr[G1-blk-guess
Cond (A, 𝑆)]

The corresponding security game is also described in Figure 1.

Distribution Samplers.
Distribution samplers are similar to 𝜆-sources but are stateful and give an estimate of how much entropy they
provide. A distribution samplerD is a stateful, probabilistic algorithm. Given the current state 𝑠, it will output
a tuple (𝑠′, 𝐼, 𝛾, 𝑧) in which 𝑠′ is the updated state and 𝐼 is the next randomness input for the PRNG 𝐺. 𝛾 ≥ 0
is a real number that, informally speaking, will tell us the amount of entropy in 𝐼 . 𝑧 is some side information
of 𝐼 given to an adversary attacking 𝐺. Let 𝑝 be an upper bound of the number of calls to D in our security
games. Let 𝑠0 be the empty string, and let (𝑠𝑖 , 𝐼𝑖 , 𝛾𝑖 , 𝑧𝑖) ←$D(𝑠𝑖−1) for every 𝑖 ∈ {1, ..., 𝑝}. For each 𝑖 ≤ 𝑝, let

I𝑝,𝑖 = (𝐼1, ..., 𝐼𝑖−1, 𝐼𝑖+1, ..., 𝐼𝑝 , 𝛾1, ..., 𝛾𝑝 , 𝑧1, ..., 𝑧𝑝)

We say that samplerD is legitimate if H∞
(
𝐼𝑖 |I𝑝,𝑖

)
≥ 𝛾𝑖 for every 𝑖 ∈ {1, ..., 𝑝}. A legitimate sampler is 𝜆-simple

if 𝛾𝑖 ≥ 𝜆 for every 𝑖. Following [4], in this work, we will only consider simple samplers for a sufficiently large
min-entropy threshold 𝜆. As they noted, this is somewhat limiting as it fails to show that the PRNG can slowly
accumulate randomness by absorbing many low entropy inputs. However, the results are still meaningful and
are the setting that was considered in the NIST SP 800-90A standard.

Robustness.
The game Grob

𝐺,𝜆 (A,D) is defined in Figure 2. It is played for a PRNG 𝐺 = (setup, refresh,next), an adver-
sary A, and a distribution sampler D, with respect to an entropy threshold 𝜆. The internal variable 𝑐 counts
the current amount of entropy. While it is too low, the oracle RoR is designed to be useless to the adversary.
Define

Advrob
𝐺,𝜆 (A,D) = 2 ∗ Pr[Grob

𝐺,𝜆 (A,D)] − 1

Game Grob
𝐺,𝜆 (A,D)

𝑏 ←$ {0, 1}; 𝑠← 𝜖 ; 𝑠𝑒𝑒𝑑 ←$ Seed
𝑐 ← 0; (𝑠, 𝐼, 𝛾, 𝑧) ←$D(𝑠);
𝑆 ← setup(𝑠𝑒𝑒𝑑, 𝐼); 𝑐 ← 𝑐 + 𝛾

𝑏′ ←$AREF,RoR,Get,Set (𝑠𝑒𝑒𝑑, 𝛾, 𝑧)
return (𝑏′ = 𝑏)

REF()
(𝑠, 𝐼, 𝛾, 𝑧) ←$D(𝑠)
𝑆 ← refresh(𝑠𝑒𝑒𝑑, 𝑆, 𝐼); 𝑐 ← 𝑐 + 𝛾
return (𝛾, 𝑧)

RoR(1l)
(𝑅1, 𝑆) ← next(𝑠𝑒𝑒𝑑, 𝑆, 𝑙)
if (𝑐 < 𝜆) then
𝑐 ← 0;

return 𝑅1

𝑅0 ←$ {0, 1}𝑙 ; return 𝑅𝑏

Get()
𝑐 ← 0

return 𝑆

Set(S∗)
𝑆 ← 𝑆∗; 𝑐 ← 0

Figure 2. Robustness game (see Fig. 1 in [4])

http://dx.doi.org/10.20517/jsss.2023.45
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Generalized Leftover Hash Lemma

Lemma 2 (Generalized Leftover Hash Lemma [4]). Let Cond : Seed × Dom → {0, 1}𝑛 be a 𝛿-AU hash
function, and let 𝜆 > 0 be a real number. Let 𝑆 be a 𝜆-source whose random input 𝐼 has at most 𝑙 blocks. For any
adversaryA, making at most 𝑞 guesses,

AdvguessCond(A, 𝑆) ≤
𝑞

2𝑛
+
√
𝑞

2𝜆
+ 𝑞 · (𝛿(𝑙) − 1)

2𝑛

Lemma 2 was first stated this way by Hoang and Shen [4] and was originally proven by Barak et al. [16]. We use
the same security game Gguess

Cond(A, 𝑆) as
[4]; thus, we can adopt this version of the notion.

Ideal TPRF
The ideal TPRF model is similar to the ideal cipher model: The TPRF 𝐹 is modeled as being drawn uniformly
randomly fromTPRF(𝑘, 𝑡, 𝑛, 𝑚). In security games, the adversary can query 𝐹 directly with full control over
all parameters.

Constructions
We present BKCond, our new condenser, and BKRNG, our new PRNG.

Condenser BKCond.
Our constructionBKCond (Figure 3), a condenser, is based onFCTRCond [5]. Instead of using a forkcipher
as primitive, we use a TPRF 𝐹 ∈ TPRF(𝑘, 𝑡, 𝑛, 𝑚) with 𝑚 = 2𝑛.

As themain practical instantiation, we will use Butterknife [8] (restricted to 2 branches). With this instantiation,
we have 𝑘 + 𝑡 = 2𝑛; thus, the code in Figure 3 will not append any 0’s at the end but discard the last bit instead.

BKCond(I)
𝑀 ← pad∗ (𝐼)
𝑀1, ..., 𝑀𝑎 ←𝑘+𝑛+𝑣 𝑀

𝐵← 02𝑛

for 𝑖 ← 1 to 𝑎 do
𝐾 ← 𝑀𝑖 [1 : 𝑘]
𝑉 ← 𝑀𝑖 [𝑘 + 1 : 𝑘 + 𝑛]
𝑊 ← 1 | | [𝑖]𝑡−𝑣−1 | |

𝑀𝑖 [𝑘 + 𝑛 + 1 : 𝑘 + 𝑛 + 𝑣]
𝐵← 𝐵 ⊕ 𝐹𝑊𝐾 (𝑉)

if |𝐵| < 𝑘 + 𝑡 − 1 then
𝐵← 𝐵 | | 0𝑘+𝑡−1−2𝑛

return 𝐵[1 : 𝑘 + 𝑡 − 1]

Figure 3. The condenser BKCond (see Figure 4 in [5]). 𝐹 is a TPRF.

Our PRNG BKRNG.
In this section, we present our scheme BKRNG = (setup, refresh,next) (Figure 4), which is designed as
a robust PRNG. It is based on FCRNG [5] and the NIST standardized CTR_DRBG (see analysis by [4]). Our
construction is based on a TPRF 𝐹 instead of a forkcipher (FCRNG) or a blockcipher (CTR-DRBG). As the
main practical instantiation, we will use Butterknife [8].
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setup𝐹 (𝐼)
𝑋 ← Cond(I)
𝐾 ← 0𝑘 ;𝑉 ← 0𝑡−1

𝑆 ← PRFCTR𝑉𝐾 (𝑋)
return 𝑆

refresh𝐹 (𝑆, 𝐼)
𝑋 ← Cond(I)
𝐾 ← 𝑆[1:𝑘 ]

𝑉 ← 𝑆[𝑘+1:𝑘+𝑡−1]

𝑆 ← PRFCTR𝑉𝐾 (𝑋)
return 𝑆

next𝐹 (𝑆, 𝑙)
𝐾 ← 𝑆[1:𝑘 ] ;𝑉 ← 𝑆[𝑘+1:𝑘+𝑡−1]

𝑟 ← 𝑛 ∗ ⌈𝑙/𝑛⌉
𝑃← PRFCTR𝑉𝐾 (0𝑟+𝑘+𝑡−1)
𝑅 ← 𝑃[1:𝑙 ]

𝑆 ← 𝑃[𝑟+1:𝑟+𝑘+𝑡−1]

return (𝑅, 𝑆)

Cond

PRFCTR

K V

I

(0 , 0    )k t-1

Cond

PRFCTR

K V

I

(K, V)

0

PRFCTR

K V

(K, V)

*

R

Figure 4. The construction BKRNG. Cond denotes a condenser, and 𝐹 is a TPRF. PRFCTR is described in Figure 5.

PRFCTR𝑉𝐾 (𝑀)
𝑃← ∅ // empty string

ctr← 0

while |𝑃 | < |𝑀 | do
𝑇 = 0| |𝑉
𝑃 = 𝑃 | |𝐹𝑇𝐾 ([ctr]𝑛)
ctr← ctr + 1

𝐶 ← 𝑀 ⊕ 𝑃[1 : |𝑀 |]
return 𝐶

Figure 5. Algorithm PRFCTR (tPRF CounTeR mode). 𝐹 is a TPRF. The tweak starts with the 0 bit for domain separation with respect to calls
in BKCond.

Security Proofs
We now give a security proof for BKCond, a generic proof for BKRNG, and the security when instantiated
with BKCond.

Security of BKCond
Theorem 1. Let 𝐹 be a TPRF that we model as an ideal TPRF. LetBKCond be as described in Figure 3. Let 𝑆 be
a 𝜆-source that does not have access to 𝐹. Then, for any adversary A against BKCond in the 1-block-guessing
game, making at most 𝑞 guesses has an advantage at most.

Adv1-blk-guessBKCond (A, 𝑆) ≤
𝑞

2𝑛
+
√
𝑞

2𝜆/2

To prove this theorem, we will show that BKCond is a good AU-hash. Let BKCond∗ the construction that
always returns the first block BKCond, i.e., BKCond∗(𝐼) = BKCond(𝐼)[1:𝑛] .

Lemma 3. Let 𝐹 be a TPRF that we model as an ideal TPRF. Let BKCond∗ be as described above. Let 𝐼1, 𝐼2 be
arbitrary strings s.t. 𝐼1 ≠ 𝐼2. Then, Pr[BKCond∗(𝐼1) = BKCond∗(𝐼2)] ≤ 1

2𝑛 where the randomness is taken
over the choices of 𝐹.
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Proof. Let 𝑌1, . . . , 𝑌𝑦 be the random variables corresponding to the first blocks of the outputs of the 𝐹-calls
when computing BKCond∗(𝐼1). (Thus, BKCond∗(𝐼1) = 𝑌1 ⊕ . . . ⊕ 𝑌𝑦 .) Analogously, let 𝑍1, . . . , 𝑍𝑧 corre-
spond to the blocks for computing BKCond∗(𝐼2). Since 𝐼1 ≠ 𝐼2, there is at least one block in 𝐼1 or 𝐼2, which
is not present in the other string at that position. Without loss of generality, assume it is the first block of 𝐼1.
Let 𝛼𝑦2,...,𝑦𝑦 ,𝑧1,...,𝑧𝑧 denote 𝑌2 = 𝑦2, . . . , 𝑌𝑦 = 𝑦𝑦 , 𝑍1 = 𝑧1, . . . , 𝑍𝑧 = 𝑧𝑧 .

Pr[BKCond∗(𝐼1) = BKCond∗(𝐼2)]
=

∑
𝑦2,...,𝑦𝑦 ,𝑧1,...,𝑧𝑧∈{0,1}𝑛

Pr[𝑌1 = 𝑦2 ⊕ . . . ⊕ 𝑦𝑦 ⊕ 𝑧1 ⊕ . . . ⊕ 𝑧𝑧 |𝛼𝑦2,...,𝑦𝑦 ,𝑧1,...,𝑧𝑧 ] Pr[𝛼𝑦2,...,𝑦𝑦 ,𝑧1,...,𝑧𝑧 ]

=
∑

𝑦2,...,𝑦𝑦 ,𝑧1,...,𝑧𝑧∈{0,1}𝑛

1
2𝑛

Pr[𝛼𝑦2,...,𝑦𝑦 ,𝑧1,...,𝑧𝑧 ] =
1
2𝑛

The first equality is due to the law of total probability. The second one follows from the fact that 𝐹 is called
only once with the inputs corresponding to𝑌1 (due to the counter value in the tweak, and the two strings being
different), and thus an independently randomly sampled value.

As was done in previous works (e.g., [4,5]), we treat the full description of the ideal 𝐹 as equivalent to a seed.
Therefore, Lemma 3means thatBKCond∗ can be viewed as an 𝛿-almost universal hash function, with 𝛿(𝑙) = 1
for all 𝑙 ∈ N.

Lemma 4. Let 𝐹 be a TPRF that we model as an ideal TPRF. Let BKCond∗ be as described above. Let 𝑆 be
a 𝜆-source that does not have access to 𝐹. Then, for any adversary A against BKCond∗ in the guessing game,
making at most 𝑞 guesses has an advantage at most.

AdvguessBKCond∗ (A, 𝑆) ≤
𝑞

2𝑛
+
√
𝑞

2𝜆/2

Proof. We use Lemma 2 and apply the result of Lemma 3 (thus 𝛿(𝑙) = 1).

From the above lemma, we can immediately derive Theorem 1.

Security of BKRNG
Wewill nowprove the security ofBKRNG. Specifically, wewill show that it is a robust PRNG.Our proof strategy
is similar to that of Andreeva and Weninger [5] and Hoang and Shen [4], with the main difference being that
the internal primitive is a TPRF in our case (instead of a forkcipher or blockcipher). This means we can avoid
classifying a certain set of transcripts as bad in terms of the H-coefficient technique, thus improving security.

First, we define some parameters. We model the TPRF 𝐹 underlying our construction as ideal. The adver-
sary A is allowed to make at most 𝑞 oracle queries, for which they can query 𝐹 and REF, RoR, Get, Set
(see Figure 2). Let D be a 𝜆-simple distribution sampler. The number 𝑝 denotes the maximum number of
random inputs 𝐼 that are produced by D. (Such random inputs are produced in the initial setup of the game
Advrob

𝐺,𝜆 (A,D) and the calls to REF.) 𝑙𝑖 denotes the maximum block length of the 𝑖-th random input pro-
duced by D.

Theorem 2. Let 𝐹 be a TPRF that we model as an ideal TPRF. Let Cond be a condenser without access to 𝐹
and let Adv1-blk-guessCond (𝑞′, 𝑙′) denote the maximum advantage against Cond of any adversary making at most 𝑞′
queries, where 𝑙′ is the maximum block length of the random inputs to Cond. Let BKRNG be the construction
as defined in Figure 4. Let D be a 𝜆-simple distribution sampler and A be an attacker against the robustness of
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BKRNG whose accounting of queries is given above. Then

Advrob
BKRNG,𝜆 (A,D) ≤

4𝑞2

2𝑘
+ 4

𝑝∑
𝑗=1

Adv1-blk-guessCond (𝑞, 𝑙 𝑗 ).

Proof. In our model, we consider computationally unbounded adversaries. For this reason, we are able to treat
the adversaryA as deterministic without loss of generality. Let Sideal and Sreal be the systems that model the
oracles accessed byA in Grob

𝐺,𝜆 (A,D) with challenge bit 𝑏 = 0 and 𝑏 = 1, respectively.

For our hybrid argument, we create an intermediate game, Shybrid. It behaves similarly toSreal but with some
changes. Firstly, when running PRFCTR, instead of using the underlying TPRF 𝐹, it produces uniformly
random bitstrings of length 𝑚 (i.e., the output length of 𝐹). Thus, the output of such a PRFCTR call is also
uniformly random. However, when the min-entropy level 𝑐 is lower than the threshold 𝜆, Shybrid will still
run the original PRFCTR. This is done to prevent trivial attacks. As another change, Shybrid will keep track
of the keys that occur in a list called Keys. The resulting pseudocode is shown in Figure 6, together with a
similar modification that we apply toSreal (the algorithm is functionally unchanged). We writeKeys(𝑆) with
𝑆 ∈

{
Sreal,Shybrid

}
to denote the corresponding list of system 𝑆.

When looking at Shybrid and Sideal, one might assume that they are trivially indistinguishable. This is not
necessarily the case sinceSideal only idealizes the output ofnext through theRoR oracle, whereas the updated
PRFCTR in Shybrid influences the other algorithms of the PRNG as well (setup and refresh). (Recall that
A can obtain the internal state with Get.)

PRFCTR𝑉𝐾(M) in Sreal
𝑂 ← 𝜖 // empty string

ctr← 0

if 𝑐 ≥ 𝜆 then Keys← Keys ∪ {𝐾}
while |𝑂 | < |𝑀 | do
𝑃 = 𝐹𝑉𝐾 ( [ctr]𝑛)
𝑂 = 𝑂 | |𝑃
ctr← ctr + 1

return 𝑀 ⊕ 𝑂 [1 : |𝑀 |]

PRFCTR𝑉𝐾(M) in Shybrid
𝑂 ← 𝜖 // empty string

ctr← 0

if 𝑐 ≥ 𝜆 then Keys← Keys ∪ {𝐾}
while |𝑂 | < |𝑀 | do

if 𝑐 ≥ 𝜆 then
𝑃←$ {0, 1}𝑚

else
𝑃 = 𝐹𝑉𝐾 ( [ctr]𝑛)

𝑂 = 𝑂 | |𝑃
ctr← ctr + 1

return 𝑀 ⊕ 𝑂 [1 : |𝑀 |]

Figure 6. Updated PRFCTR Algorithm in security proof of BKRNG

Proof argument. We define four main steps as propositions and prove them afterward.

1. There is an adversaryA∗ s.t.

∆A∗ (Sreal,Shybrid) = ∆A (Sideal,Shybrid)

2.

∆A (Sreal,Shybrid) ≤
2𝑞2

2𝑘
+ 2

𝑝∑
𝑗=1

Adv1-blk-guessCond (𝑞, 𝑙 𝑗 )
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3.

∆A∗ (Sreal,Shybrid) ≤
2𝑞2

2𝑘
+ 2

𝑝∑
𝑗=1

Adv1-blk-guessCond (𝑞, 𝑙 𝑗 )

4.

Advrob
BKRNG,𝜆 (A,D) ≤ ∆A (Sreal,Shybrid) +∆A∗ (Sreal,Shybrid) (1)

From the above arguments, it follows that

Advrob
BKRNG,𝜆 (A,D) ≤

4𝑞2

2𝑘
+ 4

𝑝∑
𝑗=1

Adv1-blk-guessCond (𝑞, 𝑙 𝑗 )

Proof of Item 1. We define A∗ as follows. A∗ runs A and uses its own oracles to answer A’s oracle queries.
Whenever A queries RoR, A∗ responds with a uniformly random string if 𝑐 ≥ 𝜆. When A outputs its final
guess 𝑏′,A∗ also outputs 𝑏′. As a result, ifA∗ is in the real world, then it perfectly simulates Sideal forA. On
the other hand, ifA∗ interacts with Shybrid, thenA∗ perfectly simulates Shybrid forA.

Proof of bound on ∆A (Sreal,Shybrid) (Item 2): Defining bad transcripts. We will prove this proposition by using
the H-coefficient technique.

A transcript is called bad if one of the following conditions happens:

1. The transcript contains a query of A to 𝐹 or 𝐹−1 using some key 𝐾 ∈ Keys(S). In other words, A was
able to guess or derive 𝐾 .

2. There are two identical keys in Keys(S).
We do not need a Bad event that relates keys used in PRFCTR with keys used by Cond since Cond is
required to be independent of 𝐹. In comparison to the security analysis for similar constructions [4,5], we were
able to avoid several bad cases since our real construction is more similar to the ideal one. The reason is that
we use the TPRF primitive that gives us general functions instead of permutations (as would be the case for
blockciphers/forkciphers [4,5]).

If a transcript is not bad, then we say that it is good. Let Treal and Thybrid be the random variable of the
transcript for Sreal and Shybrid, respectively.

Proof of bound on ∆A (Sreal,Shybrid): Probability of bad transcripts. We continue by establishing a bound on the
chance that Thybrid is bad. Let Bad𝑖 be the event that Thybrid violates the 𝑖-th condition. By the union bound,

Pr[Thybrid is bad] = Pr[Bad1 ∪Bad2] ≤ Pr[Bad1] + Pr[Bad2]

We will start by giving a bound on Pr[Bad1]. The keys in Keys(Shybrid) were put there during a call to
PRFCTR. They can be categorized as follows:

• Idealized Keys: The key was picked uniformly at random. (This is the case if there was enough entropy 𝑐
during the previous call to PRFCTR.)

• Normal Keys: This key is the result of

𝐾𝑖 ← PRFCTR𝑉𝑖−1
𝐾𝑖−1
(Cond(𝐼))[1:𝑘]

(Indeed, all keys in Keys(Shybrid) that are not idealized must have been derived as described, and in
particular, cannot be the result of a call to next. Since 𝐾𝑖 ∈ Keys(Shybrid), we know that 𝑐 ≥ 𝜆 in the
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PRFCTR call that had 𝐾𝑖 as key. Furthermore, we know that in the PRFCTR call before that 𝑐 < 𝜆, since
𝐾𝑖 is not uniformly random. Because of the fact that 𝑐 increased, there must have been a call to REF and,
hence, Cond.)

For the idealized keys, the adversary has a probability of 𝑞/2𝑘 to guess a keywith a single attempt. The adversary
queries 𝐹 at most 𝑞 times (in other words 𝑞 guesses), thus resulting in the probability of less than 𝑞2/2𝑘 for
the adversary to guess an idealized key.

For each 𝑗 ≤ 𝑝, let Hit1( 𝑗) be the event that the key derived from the random input 𝐼 𝑗 is a normal key, and
causes Bad1 to happen. From the union bound

Pr[Bad1] ≤
𝑞2

2𝑘
+ Pr[Hit1(1) ∪ ... ∪Hit1(𝑝)] ≤

𝑞2

2𝑘
+

𝑝∑
𝑗=1

Pr[Hit1( 𝑗)] .

For all Hit1( 𝑗), we know 𝐾 𝑗 was derived during a REF query, which does not provide any information toA
besides 𝛾 and 𝑧 fromD. Then, the adversary has the following options for the next query: (a) corrupt the state
using Get or Set, or (b) use REF or RoR. If (a) is used, then 𝑐 ← 0. We can rule out this possibility since
𝐾 𝑗 is only added to Keys if 𝑐 ≥ 𝜆. Attempting to use REF to increase 𝑐 also overrides 𝐾 𝑗 before it is added
to the list. In case (b), note that 𝑐 ≥ 𝜆 during this next query since we only consider 𝜆-simple distribution
samplers. Hence, 𝐾 𝑗 is not being used at all and is immediately replaced with a new uniformly random key.

Thus, the only information available toA for guessing 𝐾 𝑗 is (𝛾, 𝑧). Guessing 𝐾 𝑗 implies guessing the first block
of 𝐾 𝑗 , which is exactly the setting of G1-blk-guess

Cond (A, 𝑆).

Pr[Hit1( 𝑗)] ≤ Adv1-blk-guessCond (𝑞, 𝑙 𝑗 )

Therefore, by summing up overall Hit1( 𝑗), we obtain

Pr[Bad1] ≤
𝑞2

2𝑘
+

𝑝∑
𝑗=1

Adv1-blk-guessCond (𝑞, 𝑙 𝑗 ).

We continue by analyzing the probability of Bad2. First, consider any idealized key colliding with any other
key. The probability for the idealized key to collide with any of the other 𝑞 keys in the system is at most 𝑞/2𝑘 .
Since there are at most 𝑞 such keys, the probability of this happening is at most 𝑞2/2𝑘 . What remains is the
case of two normal keys colliding. For any given normal key, the probability that another normal key is the
same is bounded by Adv1-blk-guessCond (A, 𝑆), similar to the argument regarding Bad1. The only difference is that
instead of the adversary directly guessing the outcome of Cond(𝐼), the environment “guesses” the outcome.
This results in the same bound;

Pr[Bad2] ≤
𝑞2

2𝑘
+

𝑝∑
𝑗=1

Adv1-blk-guessCond (𝑞, 𝑙 𝑗 )

Summing up, we have

Pr[Thybrid is bad] ≤ 2𝑞2

2𝑘
+ 2

𝑝∑
𝑗=1

Adv1-blk-guessCond (𝑞, 𝑙 𝑗 ) (2)
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Proof of bound on ∆A (Sreal,Shybrid): Transcript ratio. Let 𝜏 be a good transcript s.t. Pr[Thybrid = 𝜏] ≥ 0. We
now prove that

1 −
Pr[Treal = 𝜏]

Pr[Thybrid = 𝜏] ≤ 0 (3)

Note that both the adversaryA and the original game environment are deterministic. As such, all randomness
of the transcript is determined by the randomness of the distribution sampler D, the random instantiation of
𝐹, and the random values that Shybrid produces in the modified PRFCTR (instead of querying 𝐹).

Thus, we can characterize the relevant probabilities as follows:

Pr[Treal = 𝜏] = Pr[Inputs] · Pr[Prim|Inputs] · Pr[Collreal |Inputs ∩Prim]
Pr[Thybrid = 𝜏] = Pr[Inputs] · Pr[Prim|Inputs] · Pr[Collhybrid |Inputs ∩Prim] (4)

where

• Inputs denote the event that the distribution sampler samples the same values as was done for 𝜏.
• Prim denotes the event that the primitive 𝐹 agrees with the result of any direct query to 𝐹 and that it
produces the correct values for PRFCTR calls where 𝑐 < 𝜆.

• Collreal denotes the event that, in Sreal, the randomly chosen 𝐹 produces the correct values for PRFCTR
calls where 𝑐 ≥ 𝜆.

• Collhybrid denotes the event that, inShybrid, the randomly chosen values in themodifiedPRFCTR comply
with the transcript (i.e., when 𝑐 ≥ 𝜆).

It follows
Pr[Treal = 𝜏]

Pr[Thybrid = 𝜏] =
Pr[Collreal |Inputs ∩Prim]

Pr[Collhybrid |Inputs ∩Prim] .

Let 𝑄 be the total number of calls to 𝐹 of queries for which 𝑐 ≥ 𝜆 was the case. In Shybrid, these queries are
answered in a uniformly (and independently) random way. Thus

Pr[Collhybrid |Inputs ∩Prim] = 1
(2𝑚)𝑄

Next, we examine Collreal. Due to the definition of a good transcript, we know that there are no two calls to
𝐹 with the same key and message. Hence

Pr[Collreal |Inputs ∩Prim] ≤ 1
(2𝑚)𝑄

This proves Equation (3).

Wrapping it up. Finally, from Lemma 1, together with Equation (2) and Equation (3), it follows that

∆A (Sreal,Shybrid) ≤
2𝑞2

2𝑘
+ 2

𝑝∑
𝑗=1

Adv1-blk-guessCond (𝑞, 𝑙 𝑗 )

Proof of Item 3. This follows immediately from Item 2 since the latter applies to all adversaries, and hence, it
applies to adversaryA∗ as well.
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Proof of Item 4. By the triangle inequality,

Advrob
BKRNG,𝜆 (A,D) = ∆A (Sreal,Sideal)

≤ ∆A (Sreal,Shybrid) +∆A (Shybrid,Sideal)
= ∆A (Sreal,Shybrid) +∆A∗ (Sreal,Shybrid)

(5)

Theorem 3. Let 𝐹 be a TPRF that we model as an ideal TPRF. Let (BKRNG,BKCond) denote BKRNG where
Cond is instantiated withBKCond. LetD be a 𝜆-simple distribution sampler andA be an adversary attacking
this construction whose accounting of queries is given above. Then

Advrob
(BKRNG,BKCond),𝜆 (A,D) ≤

4𝑞2

2𝑘
+ 4𝑝𝑞

2𝑛
+

4𝑝√𝑞
2𝜆/2

Proof sketch. This theorem can be proven in the same way asTheorem 2. Even though BKRNG andBKCond
use the same TPRF 𝐹, the domain separation (i.e., prepending all tweaks with 0 or 1) makes it effectively two
independent TPRFs. Thus, we can use the result fromTheorem 1.

RESULTS AND DISCUSSION
Security
The security bound for BKRNG is strictly better than the designs it is based on, i.e., CTR_DRBG [4] and
FCRNG [5] (both for FCRNG-c and FCRNG-t). Compared to FCRNG-c (with which we also compare the
performance in the next paragraph), the security bound of BKRNG improves several constant factors and en-
tirely removes the summand 12𝑝𝑞

2𝑛 , where 𝑝 is the number of queries to the setup and refresh algorithms,
and 𝑞 is the number of queries to next. Compared to the analysis of CTR_DRBG by Hoang and Shen [4], we
additionally eliminated a summand related to the maximum length of each random input and a summand
related to the maximum length of each pseudo-random output. We also empirically verified the security of
BKRNG using the NIST PRNG test suite as well as the TestU01 suite. BKRNG passed all tests.

Performance
We implemented BKRNG, FCRNG, and CTR_DRBG in C (without any platform-specific optimizations) and
compared their performance. For the TPRF in BKRNG, we chose the Butterknife implementation by Simon
Müller [17]. For AES in CTR_DRBG, we used the TinyAES implementation [18], and for ForkSkinny in
FCRNG, we used an implementation by Erik Pohle [19]. The benchmarks were performed on a 64-bit machine
with four CPUs (AMD EPYC 7713 64-Core Processor) and 4 GB of memory that runs Ubuntu 22.04 LTS.
Table 1 shows that BKRNG, when generating pseudo-random numbers, performs 30.0% better than FCRNG
and 49.2% better than CTR_DRBG (see also Figure 7). The setup and refresh algorithms are the fastest
for FCRNG-c, followed by BKRNG and then CTR_DRBG. These algorithms have little impact on the overall
performance of the algorithm since they can be executed during idle times. Even if this is not done, their
impact is negligible compared to the cost of next for most applications (How often an application should re-
fresh depends on the threat model, in particular how often an adversary is assumed to learn something about
the internal state, e.g., through side-channels. If this is not a concern, one finds that the NIST SP 800-90A
specification allows 𝑞 = 245 next queries without reseeding for CTR_DRBG. For our construction with im-
proved security, each of these queries can even be done for the maximum possible amount of requested bits,
i.e., around 2𝑛 blocks of 𝑚 = 8𝑛 bits.).
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Table 1. Runtimes of different PRNG implementations in CPU cycles. Setup and refresh were called with 24 bytes; next was called to
produce 1000000 bytes. The final column lists the cycles per produced byte

setup refresh next next (c/b)
BKRNG 89372 82166 277957107 277.96
FCRNG-c 44668 34646 396987185 396.99
CTR_DRBG 134121 126986 546715525 546.72

Figure 7. Comparison of PRNG performances. The requested output size ranged from 100000 to 1000000 bytes (depicted in the 𝑥-axis).

Example Output
When initializing the PRNGusing the setup function on the following input, and then callingnext to produce
ten bytes of output results in the value given in Table 2.

Table 2. Example input and output (all values given in hexadecimal format)

Input 01 02 03 04 05 06 07 08
Output 70 af ef e9 6f d4 03 ee 10 78
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