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Abstract
Liver disease accounts for approximately 2 million deaths per year worldwide with cirrhosis, viral hepatitis, and 
malignancy being the most common causes. Consequently, the regenerative capacity of the liver is a topic of 
extreme interest in the search for curative therapies to end-stage liver disease. Mesenchymal stem cells (MSCs) 
have emerged as a promising new therapy for hepatic regeneration. MSCs have multiple properties that make them 
an appropriate treatment option for liver disease including easy accessibility, targeted migration, 
immunomodulatory potential and antifibrotic/antioxidant effects. Additionally, MSCs have potential clinical 
applications in acellular therapy and tissue engineering. Liver regeneration with concurrent attenuation of liver 
injury makes MSCs a compelling therapeutic target in the setting of severe liver disease. This review outlines the 
mechanisms of MSC-driven liver regeneration and suggests potential clinical applications.

Keywords: Mesenchymal stem cell, liver regeneration, end-stage liver disease

https://creativecommons.org/licenses/by/4.0/
https://hrjournal.net/
https://dx.doi.org/10.20517/2394-5079.2021.07


Page 2 of Lee et al. Hepatoma Res 2021;7:53 https://dx.doi.org/10.20517/2394-5079.2021.0719

INTRODUCTION
The liver is constantly subjected to noxious damage from both exogenous and endogenous toxins, thus 
requires a method to recover from injury. Normal liver regeneration is achieved primarily through 
proliferation of existing mature hepatocytes and biliary epithelial cells (BECs)[1]. Studies have demonstrated 
that regeneration of the liver following hepatectomies are characterized by phenotypic fidelity, meaning 
each cell is responsible for propagating its own cell type[2]. That is, hepatocytes make other hepatocytes, and 
the same applies to most other liver cell types including BECs and hepatic stellate cells (HSCs). Stem cells 
are not typically associated with physiologic liver proliferation, with the exception of Kupffer cells and liver 
sinusoidal endothelial cells (LSECs), both of which can be derived from bone marrow stem cells[3]. Of note, 
in the setting of impaired hepatocyte or BECs proliferation, the unaffected cell type can transdifferentiate 
into the impaired cell type and effectively function as facultative stem cells[4].

Despite the exceptional regenerative capacity of the liver, chronic injury can overwhelm the liver’s ability to 
regenerate and this leads to fibrosis. Liver fibrosis is a secondary wound healing process driven by 
myofibroblasts to degrade normal extracellular matrix (ECM) and accumulate excess connective tissue[5]. 
The majority of myofibroblasts in liver fibrosis is derived from trans-differentiation of quiescent HSCs, 
which lead to activation of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs)[6]. A 
subset of myofibroblasts are derived from portal myofibroblasts and bone marrow (BM)-derived 
fibrocytes[7]. Portal myofibroblasts drive fibrogenesis exclusively in the biliary system, while the BM-derived 
fibrocytes minimally contribute to hepatic fibrosis[7]. Interestingly, fibrocytes share many phenotypic 
features with MSCs. Fibrocytes are BM-derived, collagen type 1 producing cells that produce ECM 
components and contribute to liver fibrosis. Fibrocytes appear to have regenerative properties and express 
surface markers like CD11b, CD14, CD34, CD45 and α-smooth muscle antibody (SMA) that are seen in 
cells of hematopoietic lineage[8]. However, fibrocytes lack the heterogeneity of MSCs and have unique 
proteomes that suggest BM-derived fibrocytes are distinct from MSCs[9]. Regardless of the source of 
myofibroblasts, they all express high levels of fibrillar collagen, TIMPs, and they are dominant contributors 
to liver fibrosis[5].

Currently, liver transplantation is the only definitive treatment for end-stage liver disease (ESLD). 
Fortunately, improvements in immunosuppressive drugs and surgical methods have improved 
transplantation outcomes and the global organ transplantation market is projected to grow significantly 
through the next few years[10]. The wide range of therapeutic potential of MSCs can further improve 
outcomes in ESLD as adjuvant or alternative therapy to liver transplantation. First, MSCs are pluripotent 
stem cells capable of differentiating into hepatocyte-like cells both in vivo and in vitro[11,12]. Second, MSCs 
are readily accessible from multiple potential sources including adipose tissue, umbilical cord (UC), 
umbilical cord blood, peripheral blood, synovial membranes, muscle, dermis, and liver[13-17]. Importantly, the 
harvested MSCs maintain their pluripotent potential, robust proliferative ability, and capacity for ex vivo 
expansion[18]. Third, MSCs have the ability to migrate and engraft at sites of injured tissue[19]. Fourth, MSCs 
have immunosuppressive properties that allow for allogeneic transplantation. The immunosuppressive 
ability of MSCs also includes anti-fibrotic and antioxidant effects which can protect the liver from fibrosis 
and oxidative damage[20]. Lastly, MSCs produce extracellular vesicles (EV) that contain growth factors and 
cytokines that promote regeneration of impaired tissue such as liver parenchyma[20]. In this review, we will 
focus on the potential therapeutic mechanisms of MSCs and future studies that can help develop more 
effective treatments for ESLD [Table 1].

HOMING AND MIGRATION OF MSCS IN LIVER REGENERATION
A major criterion for effective stem cell therapy is the induction and engraftment of cells into the region of 
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Table 1. Advantages and disadvantages among different cell types for treatment of liver disease

Cell type Advantages Disadvantages

Hepatocytes[21] Key metabolic and synthetic cell of liver, suitable for replacing enzyme deficiency 
and in metabolic disorders

Donor shortages, limited engraftment and 
proliferation, infection risk

Hemopoietic 
cells[22,23]

Pluripotency Requires bone marrow aspiration

Immune cells[24] Relatively easy to isolate and culture Can lead to inflammatory storms

EPCs[25,26] Antifibrotic and pro-regenerative Complicated isolation process, unclear 
clinical efficacy

MSCs[27-30] Relatively easy to isolate and culture, pluripotent, immunomodulatory, anti-
inflammatory, anti-fibrotic, extracellular signaling, allograft potential

Pro-tumor potential 
Risks of isolation procedures

EPCs: Endothelial progenitor cells; MSCs: mesenchymal stem cells.

damage. The regenerative potential of MSCs in ESLD is largely reliant on the MSCs’ ability to migrate to the 
liver following administration. MSCs homing involves initial tethering by selectins, activation by cytokines, 
arrest by integrins, and extravascular migration towards chemokine gradients[31]. Tissue injury releases stress 
signals that attract MSCs to the site of damage[32]. Molecules expressed on MSC surfaces such as CXCR4, E-
selectin, CD44, VLA-4, VCAM-1, and TIMP3 facilitate the subsequent adhesion, activation, and migration 
into damage tissue[33]. Unfortunately, MSC homing is inefficient and only a small percentage of cells reach 
the target tissue following systemic administration. In rat models of carbon tetrachloride (CCl4)-induced 
liver necrosis treated with green fluorescent protein (GFP)-labeled MSCs, the quantity of GFP-labeled 
MSCs detected in the liver was significantly less than what would be expected compared to the injected 
quantity[34]. In vivo studies have shown that a large fraction of MSCs become trapped in the lung after 
intravenous injection[35]. However, there is evidence that pretreatment with vasodilators significantly 
increases MSC homing to the site of injury[35].

Multiple studies have demonstrated that the stromal cell-derived factor (SDF)-1a plays an important role in 
stem cell homing, chemotaxis, engraftment, proliferation, and survival[36-42]. SDF-1a is a chemotactic protein 
of the CXC family of proteins produced by bone marrow stromal cells. SDF-1a and its receptor chemokine 
CXC receptor 4 (CXCR4) are expressed in a variety of cells and tissues including immune cells, brain, heart, 
liver, kidney, lung, and spleen[43]. SDF-1a promotes the migration of stem cells to damaged tissue by binding 
to CXCR4 on stem cell membranes[40-42]. CXCR4 expression is endogenously regulated by tissue 
environmental factors such as cytokines, chemokines, stromal cells, adhesion molecules, tissue damage, and 
hypoxia[44]. For example, hypoxic conditions in the kidney appeared to increase CXCR4 expression of MSCs 
which enhanced functional recovery, accelerated mitogenic response, and reduced cell death[45]. This finding 
is further supported by rat models of myocardial infarction where increased expression of CXCR4 
maximized the effect of SDF-1a to increase MSC migration and cardiac tissue regeneration[46].

SDF-1a is a potent chemoattractant for cells expressing CXCR4, and studies have demonstrated increased 
concentrations of SDF-1a in the liver following acute liver injury[47]. However, MSCs have low native levels 
of CXCR4 which could explain the poor mobilization of MSCs in the setting of liver disease[48]. 
Furthermore, MSCs gradually downregulate the expression of CXCR4 after culturing and these cells lose the 
ability to migrate towards SDF-1a[49]. In a study of MSC stimulated regeneration of reduced size liver 
transplants, CXCR4 overexpressed rats exhibited enhanced MSC engraftment following MSC therapy with 
improved hepatocyte proliferation and increased survival compared to control[50]. Interestingly, the 
engrafted MSCs did not express markers of hepatocytes suggesting that these cells promoted regeneration of 
the remnant liver by a paracrine (relating to, promoted by, or being a substance secreted by a cell and acting 
on adjacent cells) mechanism. A subsequent study of genetically modified MSC with CXCR4 
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overexpression demonstrated similar results with increased migration and engrafted of MSC at the liver 
following acute liver failure[48]. This study also demonstrated significantly increased levels of hepatocyte 
growth factor (HGF) and vascular endothelial growth factor (VEGF), again indicative of the presence of 
additional paracrine signaling that stimulates endogenous liver regeneration.

MSC DIFFERENTIATION INTO HEPATOCYTE-LIKE CELLS
MSCs are pluripotent stem cells with the potential to differentiate into cells of all three germ layers, 
including the endoderm, mesoderm, and ectoderm. In both in vivo and in vitro experiments, MSCs have 
demonstrated the ability to differentiate into hepatocyte-like cells with liver-specific morphology and 
function in the presence of cytokines and growth factors including HGF, fibroblast growth factor (FGF), 
oncostatin M (OsM), epidermal growth factor (EGF), leukemia inhibitory factor, and insulin-like growth 
factor (IGF)[51]. This pluripotent capacity is demonstrated by the presence of human hepatocyte markers 
such as albumin, α-fetoprotein (AFP), CK18, and CK19 in liver tissue of cirrhotic rats after human UC-
derived MSC administration[52]. These hepatocyte markers were not detected prior to MSC injection and 
there was no detection of rat-lineage hepatocyte albumin, AFP, CK18, or CK19, suggesting the transplanted 
human UC-derived MSCs were entirely responsible for differentiating into hepatocyte-like cells.

Although MSCs can be induced to differentiate in culture, an organ-specific microenvironment is the most 
suitable method for differentiation into a specific cell type[53]. Hepatic-differentiated cells are characterized 
by the expression of hepatocyte-specific genes and these genes are influenced by the microenvironmental 
conditions[54]. Studies have demonstrated that human UC-derived MSCs differentiated into hepatocyte-like 
cells more rapidly when in a fibrotic liver microenvironment, mimicked by rat fibrotic liver tissue extract[55]. 
Allyl alcohol-treated rat liver models have demonstrated human MSCs ability to convert into functional 
hepatocyte-like cells when directly administered intra-hepatically to damaged rat liver[56]. Notably, liver 
function was restored within a week of transplantation through mechanisms suggestive of 
microenvironmental cues rather than cell fusion[56].

Zhang et al.[52] have demonstrated that MSCs do not directly differentiate into functional hepatocytes; 
instead, they first differentiate into BEC-like cells and subsequently differentiate to hepatocyte-like cells. In 
contrast, other studies indicate that trans-differentiation of MSCs is rare following MSC infusion in animal 
models[54]. For example, menstrual blood-derived MSCs were shown to inhibit HSC and liver fibrosis, thus 
improving liver function[54], but only a small fraction of the transplanted MSCs differentiated into functional 
hepatocyte-like cells[57]. Based on these findings, the current understanding is that MSCs exert their 
therapeutic effects through both direct cell differentiation and indirect paracrine signaling [Table 2].

SECRETION OF TROPHIC FACTORS FOR LOCAL AND SYSTEMIC SIGNALING
The therapeutic effects of transplanted MSCs were initially thought to be solely mediated by their migration 
to the site of injury, where integration and differentiation would take place. However, studies have shown 
that only a small proportion of MSCs have been observed to actually engraft and proliferate in the damaged 
tissue[58]. One proposed explanation is that MSCs elicit their therapeutic effects through the secretion of 
trophic factors. MSCs release a collection of trophic factors that signal for the regeneration of damaged 
tissues. These factors include growth factors, cytokines, and chemokines, which not only reduce the 
inflammation, apoptosis, and fibrosis of damaged tissues but also stimulate angiogenesis and tissue cell 
regeneration[58]. Local inflammatory cytokines, ligands of Toll-like receptors (TLRs), and hypoxic conditions 
all stimulate MSC migration to sites of cell damage. These conditions increase the production of MSC-
released growth factors and enhance the regenerative processes[59,60].
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Table 2. Sources for MSC harvest, growth factors for differentiation, and markers of differentiation into hepatocyte-like cells

Source of MSC[13-17] Growth factors[51] Markers of hepatocyte-like 
differentiation[52]

Adipose, UC, UC-blood, peripheral blood, synovial 
membranes, muscle, dermis, liver

HGF, FGF, OsM, EGF, leukemia 
inhibitory factor, IGF

Albumin, AFP, CK18, CK19

MSC: Mesenchymal stem cell; UC: umbilical cord; HGF: hepatocyte growth factor; FGF: fibroblast growth factor; OsM: oncostatin M; EGF: 
epidermal growth factor; IGF: insulin-like growth factor; AFP: α-fetoprotein.

In the setting of liver fibrosis, MSC-secreted trophic factors can increase hepatocyte survival via anti-
apoptotic (stromal cell-derived factor 1, HGF, IGF-1, and VEGF), mitogenic [EGF, HGF, nerve growth 
factor (NGF), and transforming growth factor alpha (TGF-α)], and angiogenic effects (VEGF)[61-63]. Trophic 
factors lengthen the replicative cycle of injury and repair of both living and dying hepatocytes[63]. MSC 
transplantation was also associated with alterations in HGF and IGF-1 expression that correlated with 
reduced inflammation of fibrotic tissue during anti-apoptotic events[64,65]. HGF, EGF, and TGF-α are potent 
mitogens primarily associated with hepatocyte proliferation and VEGF enhances angiogenesis which is 
crucial for liver regeneration[66-69]. In addition to hepatocytes, hepatic progenitor cells, which are located in 
the Canals of Herring, can be differentiated into hepatocyte-like cells or biliary lineage cells following 
treatment with EGF or HGF, respectively[70]. Trophic factors, such as IL-10, HGF, NGF, TGF-β and tumor 
necrosis factor (TNF)-α regulate the proliferation of activated HSCs and decrease collagen synthesis in liver 
fibrosis[71].

Several studies on MSC-derived extracellular vesicles support the theory of paracrine signaling in MSC-
based liver therapy. MSC-derived EVs contain MSC trophic factors that protected mouse liver against 
CCl4-induced injury by activating proliferative and regenerative responses[72]. A study demonstrated that 
EVs suppressed toxin-induced hepatocyte apoptosis by promoting the expression of anti-apoptotic protein 
B-cell lymphoma-extra large (Bcl-xL). EVs isolated from human UC-derived MSCs showed reduction in 
hepatic inflammation and collagen deposition of CCL4-induced fibrotic liver[73]. Additionally, there was an 
increase in liver aspartate transaminase (AST) activity, suggestive of functional liver recovery. MSC-derived 
EVs also demonstrated immunosuppressive properties associated with MSCs such as upregulation of T 
regulatory (Treg) cells and anti-inflammatory cytokines[74,75]. Further research on the exact mechanism of 
MSC-derived trophic factors is important for determining how MSCs exert their effects of liver regeneration 
and can subsequently lead to more targeted therapy for severe liver disease [Table 3].

MSC AND REGULATION OF IMMUNOLOGIC RESPONSE
MSCs exert an immunosuppressive effect through a multifaceted approach. MSCs have low expression of 
major histocompatibility complex (MHC)-II and costimulatory cell surface markers which is a major reason 
behind its allograft potential[76]. MSCs also directly interfere with immune response through direct cell-to-
cell interactions and secretion of soluble factors. For instance, MSCs can inhibit cell proliferation of T-, B-, 
natural killer (NK)-, and dendritic cells (DC) to induce cell division arrest anergy[77]. MSCs stop a wide 
range of innate and adaptive immune cell functions through the cytotoxicity of T and NK cells, B cell 
antibody secretion, inhibition of monocytes, DC antigen presentation, induction of apoptosis via 
programmed death (PD)-1, and upregulation of Tregs, especially in the setting of inflammation which 
activates MSCs[77].

MSCs secrete immunomodulatory factors, including nitric oxide (NO), prostaglandin E2 (PGE2), 
indoleamine 2,3-dioxygenase (IDO), human leukocyte antigen (HLA)-G, IL-6 and -10[77]. MSC induction of 
NO synthase (NOS) is a major mechanism for T cell suppression by MSCs, while IDO and TGF-β had more 
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Table 3. Clinical application of MSCs in treatment of ESLD

Clinical applications MSC properties Ref.

Priming SDF-1a, CXCR4 upregulation improves targeting of MSC 
Enhanced survival with ZD

[38-44,140-142]

Cell-free therapy Anti-apoptotic, mitogenic, angiogenic effects through trophic factors [60-65]

Genetic modifications HSP-20, Akt, SDF-1b, HIF-1a, FGF-2 overexpression lead to increased cell survival [151-155]

Tissue engineering Ex-vivo culture can be implemented in 3D liver scaffolds to print transplantable organ [170-172]

MSCs: Mesenchymal stem cells; ESLD: end-stage liver disease; SDF-1a: stromal cell-derived factor-1a; CXCR4: CXC receptor 4; ZD: zeaxanthin 
dipalmitate; HSP-20: heat shock protein-20; SDF-1b: stromal cell-derived factor-1b; HIF-1a: hypoxia-inducible factor-1a; FGF-2: fibroblast growth 
factor-2.

questionable effects[78]. PGE2 exhibits multiple immunomodulatory effects, such as cell proliferation, 
apoptosis, tissue repair, angiogenesis, anti-inflammation, immune surveillance, and anti-cancer[79-81]. PGE2 
release has significant anti-inflammatory properties, specifically by stimulating the synthesis of anti-
inflammatory cytokine IL-10 and by decreasing the synthesis of pro-inflammatory cytokines such as tumor 
necrosis factor (TNF)-α, interferon (IFN)-γ, and IL-12 from DCs. MSC-secreted PGE2 has additional anti-
inflammatory effects through suppression of T cells, macrophages, monocytes, and NK cells[82-84]. PGE2 also 
favors Th2 humoral immune responses over Th1 cellular immune responses by inhibition of IL-2 synthesis 
and increased proliferation of Treg cells[85]. MSCs further suppress B and T cell proliferation through IDO 
and HLA-G, which contribute to DCs maturation and NK cell cytotoxicity[86,87]. Secretion of IL-6 is another 
inhibitor of T-cell mediated immunity and directly disrupts the DC maturation process[88,89]. IL-6 also 
contributes to immune suppression by inhibiting apoptosis in lymphocytes and neutrophils. Lastly, MSCs 
can downregulate the immune response by suppressing macrophage polarization and generating 
tolerogenic DCs[78].

In addition to immune suppression, MSCs can trigger active tissue regeneration and remodeling. MSCs 
secrete a variety of autocrine (a substance produced by a cell which stimulates its own secretion) and 
paracrine factors that support regenerative processes including angiogenesis, tissue repair, and 
regeneration[58]. MSC secreted trophic factors that facilitate the regeneration of specific tissues, including 
growth factors [brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor, EGF, 
FGF-2/-4/-7/-9/-17, HGF, IGF-1, NGF, and platelet-derived growth factor (PDGF)], cytokines (IFN-γ, 
TNF-α, and IL-1α/β, -2, -6, -8, -10, -12, and -13), chemokines (various CCLs and C-X-C motif ligands), 
antiapoptotic and angiogenic factors (VEGF), facilitating the regeneration of specific tissues[62]. The wide 
range of immunomodulatory effects of MSCs, from decreasing inflammatory responses to enhancing 
cellular repair demonstrates implications for treatment of severe liver disease as well as treatment for acute 
and chronic rejection following liver transplants.

ANTI-FIBROTIC AND ANTIOXIDANT PROPERTIES OF MSCS
Hepatic fibrosis can occur through a multitude of mechanisms including chronic liver injury from toxins 
(alcohol, drugs), viral infection, or metabolic imbalances. Fibrosis is a defining feature of chronic 
inflammation and is characterized by disruption of normal ECM architecture. HSCs are the key cells in 
hepatic fibrosis. HSCs can be activated from quiescent, vitamin A - storing cells to proliferative, α-SMA-
positive, myofibroblast-like cells with increased collagen synthesis[20]. MSCs have been reported in various 
animal models of heart, liver, kidney, lungs, pancreas, skin, peritoneum, and rectum to have anti-fibrotic 
activity[90].
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MSCs are effective in treating fibrosis due to their antifibrotic and immunosuppressive properties. MSCs 
can upregulate the expression of MMP-2, -9, -13, and -14[60,91,92] which have recently been shown to reduce 
liver fibrosis by degrading ECM[60]. MSCs further augment this effect by downregulating the TIMP[93]. The 
balancing of MMPs and TIMP is associated with resolution of fibrosis[91]. MSCs also directly and indirectly 
suppress the activation and proliferation of HSCs, and thereby collagen synthesis. The direct interaction of 
MSCs with HSCs serves to suppress HSC proliferation by arresting them in G0/G1 phase through the 
inhibition of phosphorylation of extracellular signal-regulated kinase (ERK)1/2[59]. When MSCs are directly 
co-cultured with HSCs, MSCs suppress the α-SMA expression of HSCs, partially mediated by Notch 
pathway activation[94]. Indirectly, MSCs secrete trophic factors (IL-10 , HGF, TGF-B3, and TNF-α) that 
inhibit the proliferation of HSCs and decrease collagen synthesis[59,95], while HGF and NGF promote the 
apoptosis of HSCs[59,95,96]. Additionally, MSCs promote the expansion of NK cell population in liver and 
peripheral blood[97]. Subsequently, NK cells have been found to inhibit HSC activation by direct killing 
through IFN-γ and thus alleviate hepatic fibrosis[98]. This association was noted in rat models of cholestatic 
hepatic fibrosis where the intrahepatic NK cell levels were significantly decreased compared to control[97]. 
Furthermore, T regulatory (Treg) cells exert pro-fibrotic effects by inhibiting NK cells[99]. However, this 
effect is inhibited by MSCs immunomodulation of T cell proliferation and thus contributes to the anti-
fibrotic effects of MSCs. Collectively, MSCs inhibit HSCs, and collagen synthesis, suppress overactive 
immune reactions and ultimately restrain fibrosis[59].

Oxidative stress from reactive oxygen species (ROS) is a common mechanism of liver injury leading to liver 
fibrosis, cirrhosis, viral hepatitis, hepatocellular carcinoma (HCC), and others[100-104]. Several studies have 
suggested that MSCs mediate strong antioxidant effects in various animal models[105-108]. Carbon 
tetrachloride (CCl4) and thioacetamide (TAA) are the most commonly used toxins to simulate oxidative 
liver damage[109,110]. These toxins cause hepatocyte damage through lipid peroxidation, and alkylation of 
proteins, nucleic acids, and lipids[105,106,111] leading to inflammation, hepatocellular damage, and fibrosis. 
Notably, the small amount of physiologic ROS produced by cellular respiration is necessary in cell signaling 
and homeostasis[112,113]. MSCs have demonstrated the capacity to alleviate CCl4- and TAA-induced oxidative 
stress both in vitro and in vivo[105,107]. MSCs upregulate the expression of superoxide dismutase and induction 
of AREs, thus enhancing antioxidant and cytoprotective activity to reduce hepatocyte apoptosis[105,107]. MSCs’ 
antioxidant effects have also been observed extra-hepatically in diseases such as dextran sulfate sodium-
induced colitis and neurodegenerative diseases (e.g., Friedreich’s ataxia)[114]. The antioxidant effects of 
MSCs, combined with their immunomodulatory effects, are promising properties for the development of 
therapies to treat liver disease [Figure 1].

CLINICAL APPLICATION OF MSC IN LIVER REGENERATION
MSC-based cell therapy has multiple advantages over conventional liver transplantation or hepatectomies. 
MSCs are relatively easy to harvest from multiple different sources and they maintain their pluripotency 
following injection. A study by Kharaziha et al.[115] demonstrated that intravenous infusion of autologous 
bone marrow (BM)-derived MSCs among patients with decompensated cirrhosis resulted in statistically 
significant improvements in liver function, as measured by model for ESLD score (17.9-10.7), international 
normalized ratio (INR) (1.9-1.4), serum creatinine (114-80), serum albumin (30-33), and bilirubin (46-41) 
with no adverse events noted. Similarly, phase II clinical trials have shown similar results in alcoholic 
cirrhosis with histologic and quantitative improvement of hepatic fibrosis following MSC injection via 
hepatic artery[116,117]. The feasibility and safety of MSC transplantation is further supported by phase I studies 
showing improvements in liver function with MSC injection in liver disease of various causes with no noted 
adverse effects[118]. According to the National Institute of Health (NIH), there are currently 55 active clinical 
trials involving MSC-based therapy for liver disease of various etiology including cirrhosis, acute liver 
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Figure 1. Therapeutic mechanisms of MSC in liver disease. MSC: Mesenchymal stem cell; PGE2: prostaglandin E2; IDO: dioxygenase; 
SDF-1a: stromal cell-derived factor-1a; CXCR4: CXC receptor 4; HGF: hepatocyte growth factor; FGF: fibroblast growth factor; EGF: 
epidermal growth factor; IGF: insulin-like growth factor; OsM: oncostatin M; EVs: extracellular vesicles.

failure, and hepatitis[119]. The MSCs used in these trials are derived from various sources including bone 
marrow, umbilical cord, adipose tissue, and menstrual blood. Most studies are using allogenic cell 
transplantation through peripheral veins, but there are cases of hepatic artery or portal vein injections. In 
multiple phase II studies of chronic hepatitis B and C, treatment with HSC vs. standard supportive 
treatment showed significant improvement in Child-Pugh and MELD scores[27,120,121]. In chronic hepatitis B 
patients, MSC infusion resulted in improved ascites and fibrosis markers as well as MELD scores[122]. MSC 
also appeared to be more effective when administered via portal vein than peripherally[120]. There was no 
significant difference in improvements between direct MSC injection compared to pre-differentiation of 
MSC to hepatocyte-like cells before transplantation[27] [Table 4].

ADMINISTRATION AND DOSING OF MSC-BASED THERAPY
MSCs were first isolated from bone marrow (BM) in 1970[127]. Since then, MSCs have been found in various 
tissues including adipose tissue, UC (Umbilical Cord blood), peripheral blood, synovial membranes, 
muscle, dermis, liver, and many others[13-17]. There is no established standard for procurement of MSCs for 
the treatment of liver disease, but they are most often harvested from the UC or BM because these are the 
most well studied[128]. Between BM-derived MSCs and UC-derived MSCs, UC-derived MSCs are the 
preferred cell type for multiple reasons. First, MSC-based treatment requires large amounts of MSCs and 
the UC provides significantly larger quantities of MSCs compared to BM[129,130]. Second, UC-derived MSCs 
can be isolated without the invasive procedures required for BM harvesting for MSCs[131]. Third, UC-derived 
MSCs are at an earlier phase of organic development compared to BM-derived MSCs, thus showing higher 
self-renewal and differentiation capacity[132]. Lastly, UC-derived MSCs have demonstrated lower 
immunogenicity than that of BM-derived MSCs suggesting superior allogeneic transplantation 
capability[133,134].

Clinical trials have demonstrated various routes of administration for MSC-based liver therapy. The most 
common methods of administration were peripheral intravenous injection, followed by portal vein, hepatic 
artery, and intrasplenic injections[128]. Peripheral intravenous injection has an obvious advantage of 



Page 9 of Lee et al. Hepatoma Res 2021;7:53 https://dx.doi.org/10.20517/2394-5079.2021.07 19

Table 4. Summary of clinical trials with MSC for ESLD

Clinical trial MSC source Route of administration Dose Disease

Kharaziha et al.[115] BM Portal vein 3 × 107-5 × 107 cells Chronic liver failure

Amer et al.[120] BM Intrasplenic and intrahepatic 2 × 107 cells End-stage liver failure

Kantarcioglu et al.[123] BM Peripheral vein 1 × 106 cells/kg Liver cirrhosis

Suk et al.[117] BM Hepatic artery 5 × 107 cells Liver cirrhosis

El-Ansary et al.[27] BM Intrasplenic and peripheral vein 1 × 106 cells Chronic liver failure

Mohamadnejad et al.[124] BM Peripheral vein 1.95 × 108 cells Decompensated liver cirrhosis

Yu et al.[125] UC Peripheral vein 5 × 107-10 × 107 cells/kg HBV - decompensated liver cirrhosis

Sakai et al.[126] Adipose Hepatic artery 3.3 × 105-6.6 × 105 cell/kg Liver cirrhosis

MSC: Mesenchymal stem cell; ESLD: end-stage liver disease; BM: bone marrow; UC: umbilical cord; HBV: hepatitis B virus.

convenience; however, animal models have demonstrated that 60% of the injected MSCs accumulated in the 
lungs and never reached the liver[135]. Similar results were seen with intravenously injected green fluorescent 
protein (GFP)-labeled MSCs in mice models. The GFP-labeled MSCs were found in high concentrations in 
the lung, but not the liver[136]. Interestingly, studies of miniature pigs with acute liver failure demonstrated 
restoration of hepatic function following intraportal injection of MSCs, but this effect was not seen in 
peripheral vein administration[137,138]. In a study comparing the administration of BM-derived MSCs through 
portal vein and intrasplenic injection for liver failure, results showed portal vein administration was more 
effective in improving model for end-stage liver disease (MELD) score compared to intrasplenic 
injection[120]. However, this difference was not seen after the first month of treatment. Based on these results, 
intraportal injection appears to be the best method; however, further research on the long-term recovery of 
hepatic function and occurrence of complications such as infection or venous thrombosis could help 
optimize the administration of MSC-based liver therapy.

The most effective dosing and frequency for MSC-based treatment of liver disease are unclear. Most clinical 
trials used a body-weight based dosing within the range (0.5 × 106 -3 × 106 cells/kg) for a single dose, while 
some studies used total MSC quantity (1 × 107-20 × 107 cells)[128]. Studies have shown significant 
improvement of liver fibrosis with doses as low as 1 × 107 MSCs[139], and other studies demonstrated no 
improvement of liver fibrosis at a substantially higher dose of 2 × 108 MSCs[124]. Most studies administered 
one-time doses, but in a study comparing a single dose to two doses a month apart, there was no significant 
difference in improvement of liver cirrhosis[117]. Further studies comparing a wider range of doses and 
frequencies are critical to generating an effective therapeutic dose.

MSC PRIMING
When MSCs are introduced to damaged liver, they can express various immune regulatory factors that can 
promote liver regeneration; examples of these include NO, PGE2, IDO, IL-6, IL-10, and HLA-G. However, 
depending on the concentration of inflammatory cytokines such as IFN-γ, TNF-α, and IL-1β, MSCs may 
lead to increased myofibroblast activity and worsen hepatic fibrosis[140,141]. In vitro MSC priming is one way 
to enhance the therapeutic effects, while limiting the unwanted pro-fibrotic properties. IFN-γ primed MSCs 
induce IDO expression to inhibit the activation of T and NK cells[142]. The anti-inflammatory effect was 
increased when MSCs were primed with both IFN-γ and TNF-α[143]. These cells were less susceptible to NK 
cell-mediated killing and had enhanced immunosuppression[144]. Additionally, MSC-based therapy has low 
efficiency partly due to poor cell survival following transplantation and priming can increase cell 
survival[145]. Zeaxanthin dipalmitate (ZD) is a molecule that has been demonstrated to enhance the 
survivability of MSCs[146]. Pretreatment with ZD dramatically improved cell survival by suppressing 
apoptosis, inflammation, and ROS production in adipose-derived MSCs[146]. Further investigation is needed 
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to determine whether the beneficial effects of priming MSCs prior to transplantation are maintained long-
term after MSC differentiation.

MSC-BASED CELL-FREE THERAPY
MSCs secrete small extracellular vesicles, also known as exosomes, which contain proteins and factors that 
can exert specific actions on local and distant targets. MSC-derived EVs have been shown to reduce injury 
following myocardial ischemia, acute kidney injury, and acute liver failure but its mechanism of 
hepatoprotective effects is unclear[73]. In CCl4 mice models, the administration of MSC-derived exosomes 
led to inhibition of collagen production, which reduced hepatic inflammation and fibrosis[73]. MSC-derived 
exosomes have shown therapeutic effects in setting of acute liver injury in various mouse models. 
Specifically they have been demonstrated to increase hepatocyte proliferation, upregulate liver regenerative 
genes, and increase production of proliferative proteins such as cyclin D1, Bcl-xL, and signal transducer and 
activator of transcription (STAT)-3[72]. Intra-tumor administration of MSC-derived exosomes in vivo has 
been shown to significantly reduce tumor growth[147].

Direct transplantation of MSCs has associated risks including tumorigenesis and fibrogenic potential that 
can raise concerns with MSC cell-based therapy. Given that multiple studies have suggested the therapeutic 
effects of MSCs are exerted through MSC-derived exosomes, an acellular approach may provide similar 
benefits of cell-based therapy with fewer risks. MSC-derived exosomes also have great potential to be an 
intracellular drug delivery vehicle. MSC exosome-shuttle therapy has been used in regenerative medicine 
following ischemic cardiac injury[42]. MSC-derived exosomes have also been used to deliver cytokines such 
as IFN-β, IFN-α2b, tumor necrosis factor-related apoptosis inducing ligand (TRAIL), and IL-12 for liver 
cancer therapy[148,149,150,151-153]. CXCR4-enriched exosomes have shown beneficial effects due to upregulation of 
protein kinase B (Akt) signaling pathway that promotes cell survival and angiogenesis[154,155]. Currently, 
studies involving MSC-derived exosome-based therapy for liver disease are limited in number. Additional 
research on the potential application of MSC-derived exosomes could provide a novel approach for 
treatment of cirrhosis, hepatocellular carcinoma, and hepatitis.

GENETIC MODIFICATION OF MSCS
MSC-based therapy for liver disease is limited by several factors such as low rates of cell survival, poor 
engraftment, and inefficient homing mechanisms. Fortunately, these limitations can be overcome through 
genetic modifications. A variety of pro-survival genes have been inserted into MSCs to prolong their 
survival in target organs. For example, overexpression of genes for heat shock protein (HSP)-20, (Akt), 
SDF-1β, hypoxia-inducible factor (HIF)-1α, FGF-2, all increased cellular survival by providing protection 
from oxidative stress, ischemia, hypoxia, and apoptosis[156-160]. Additionally, SDF-1 and CXCR4 engineered 
MSCs exhibited efficient homing and engraftment leading to greater regeneration of multiple organs 
including the liver[50,161,162]. Decorin (DCN), an important component in ECM, has demonstrated anti-
fibrotic effects in liver by facilitating ECM degradation. DCN-modified MSCs exerted strong protective 
effects against hepatic fibrosis by suppressing TGF-β/Smad signaling[163]. Transplantation of urokinase-type 
plasminogen activator (uPA) in the MSC gene showed lower expression of α-SMA, TGF-β1, and collagen 
types I/III with increased expression of MMP-2, -3, -3, HGF, and proliferating cell nuclear antigen. The 
overall effect was suppression of hepatic fibrosis and improvement in liver function[164]. High levels of IL-10 
secretion from MSCs were associated with improved liver regeneration. IL-10 gene transfer into MSCs used 
as novel treatment in rat liver fibrosis models demonstrated suppressed HSCs, improved liver 
histopathology, and increased liver function[165]. These studies suggest that genetic modification of MSCs has 
the potential to improve survival, targeting, and pro-regenerative capacities of MSCs. However, the 
potential tumorigenic effects of MSCs should be considered and safety of treatment should be evaluated 
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before genetic modifications are implemented in treating liver disease.

MSC-BASED TISSUE ENGINEERING
A recently developed strategy to improve liver regeneration is through tissue engineering of 3D scaffolds. 
MSCs exhibit improved cell proliferation and hepatic differentiation into characteristic mature hepatocytes 
when cultured in 3D biomatrix scaffold compared to in 2D substrates[166]. In vitro synthesis of liver scaffold 
can be generated from natural[167] and synthetic[168] materials, fluid flow[169], 3D culture[168,169], or 3D 
bioprinting[170-172]. 3D spheroid MSC cultures have been shown to improve the differentiation efficiency of 
MSCs and to enhance therapeutic potential[173,174]. Spheroid cultures of MSCs increased the expression of 
antifibrotic factors and had greater hepatoprotective effects when compared to 2D cultured MSCs. 
Uygun et al.[175] demonstrated that a 3D architecture of decellularized liver could be re-cellularized in vitro 
by MSCs and maintain viability after transplantation. This implies a transplantable liver can be synthesized 
in vitro. Similar success was seen with hepatobiliary organoids that could survive in vivo while maintaining 
functionality of hepatic and biliary structures[176,177]. Several additional studies have had success with in vitro 
generation of liver organoid and subsequent transplantation with good functionality in vivo. These studies 
suggest that transplantation of liver organoids in the setting of acute liver failure may prolong survival[178,179]. 
More research would be required to directly compare the benefits of liver organoid therapy vs. MSC-based 
cell therapy [Figure 2].

RISKS OF MSC THERAPY
Despite several clinical trials that have demonstrated the safety and efficacy of MSCs in liver diseases, it is 
important to note MSC therapy is not without risks. As discussed previously, MSCs have the ability to 
migrate to the liver and promote regeneration through immunosuppression, antifibrotic, and antioxidant 
effects. However, there are circumstances in which MSC may cause harm due to their fibrogenic potential. 
MSCs have fibrogenic potential when cultured in hepatogenic differentiation medium containing HGF, 
FGF-4, and OsM. When these MSCs were transplanted into the liver of NOD/SCID mice undergoing 
partial hepatectomy, they expressed α-SMA, a marker for myofibroblast differentiation[140]. Additionally, 
transplanted MSCs in normal and acutely injured NOD/SCID mice models showed lower engraftment rates 
compared to chronically injured mice and greater number of MSCs in the acute liver injury models 
exhibited a myofibroblast-like morphology[141]. These results highlight the need for further evaluation of the 
potential contraindications of MSC therapy in the treatment of hepatic fibrosis.

The potential of MSCs for anti-tumor therapy stems from their ability to migrate and incorporate into 
tumor stroma[180]. There is conflicting evidence as to whether MSCs suppress tumor growth or contribute to 
tumor growth, through promotion of tumor-associated fibrosis, immunosuppression, angiogenesis, and 
metastasis[181]. Certainly, this poses a risk in MSC-based therapy for liver disease. Tumor cells secrete 
transforming growth factor (TGF)-β, which induce MSCs to preferentially differentiate into pro-fibrotic 
cells expressing α-SMA, tenascin C, and fibroblast surface protein[181]. Additionally, the tumor 
microenvironment increases the secretion of growth-stimulating factors such as CCL5/RANTES and 
stromal cell-derived factor-1 (SDF-1)[180]. MSCs can promote proliferation of tumor cells by differentiation 
into carcinoma-associated fibroblasts or tumor-associated fibroblasts, which express α-SMA, induce 
neovascularization and express tumor-stimulating factors[182,183]. Furthermore, MSCs exert antiapoptotic 
effects through factors including VEGF, FGF-2, HGF, BDNF, SDF-1α, IGF-1, and TGF-β that can support 
tumor growth. This effect is compounded by hypoxia in the tumor microenvironment which stimulates 
increased production of pro-survival factors[184-187]. Genetic modification and pretreatment of MSCs may be 
effective in decreasing the fibrogenic and tumorigenic potential of MSCs and increasing the safety profile of 
MSC-based therapy.
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Figure 2. Treatment of liver disease with MSC-based therapy. MSCs: Mesenchymal stem cells.

CONCLUSION
Currently, liver transplantation is the only definitive treatment for end-stage liver disease. Although the 
global organ transplantation is expanding and transplantation outcomes are improving through 
advancements in immunosuppressive drugs and surgical techniques, there is still significant room for 
progress. MSC-based therapy may offer a chance for more patients to receive a potentially curative 
treatment. MSCs can migrate to damaged liver tissue, differentiate into hepatocyte-like cells, reduce 
inflammation, decrease fibrosis, and have antioxidant effects. Multiple clinical trials have verified the safety 
and efficacy of MSC therapy for severe liver diseases of various etiologies including cirrhosis, liver failure, 
and post-transplant complications. Further studies with larger samples and blinded trials need to be 
conducted before MSCs can become an accepted alternative to liver transplant. Additionally, more clinical 
trials are necessary for optimizing MSC injection routes, dosing, frequency, and mechanism of delivery. 
Future studies on MSC priming, homing mechanism, MSC derived exosome therapy, genetic modifications, 
and tissue engineering could greatly improve MSC therapy and may create novel approaches to treating 
end-stage liver disease.
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