
Zhang et al. J Surveill Secur Saf 2024;5:213-33
DOI: 10.20517/jsss.2024.30

Journal of Surveillance,
Security and Safety

Research Article Open Access

Cloud-edge-end based keymanagement for decentral-
ized applications
Jie Zhang1, Futai Zhang2

1School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China.
2Fujian Provincial Key Laboratory of Network Security and Cryptology, College of Computer and Cyber Security, Fujian Normal
University, No.18 Middle Wulongjiang Avenue, Shangjie, Minhou, Fuzhou 350117, Fujian, China.

Correspondence to: Prof. Futai Zhang, Fujian Provincial Key Laboratory of Network Security and Cryptology, College of Computer
and Cyber Security, Fujian Normal University, No.18 Middle Wulongjiang Avenue, Shangjie, Minhou, Fuzhou 350117, Fujian, China.
E-mail: futai@fjnu.edu.cn

How to cite this article: Zhang J, Zhang F. Cloud-edge-end based key management for decentralized applications. J Surveill Secur
Saf 2024;5:213-33. http://dx.doi.org/10.20517/jsss.2024.30

Received: 15 Oct 2024 First Decision: 18 Nov 2024 Revised: 28 Nov 2024 Accepted: 4Dec 2024 Published: 17 Dec 2024

Academic Editor: Qiong Huang Copy Editor: Ting-Ting Hu Production Editor: Ting-Ting Hu

Abstract
How to securely manage and use private keys of digital signature schemes is a pivotal problem for blockchain-based
decentralized applications (DApps), as they determine the ownership of data contents and digital assets. A well-
recognized approach for key management is threshold cryptography which distributes private keys to different nodes
such that the whole system can tolerate a certain number of failures or corruptions. Motivated by the key manage-
ment need of DApps, threshold signature has attracted widespread attention, with a number of new constructions
being proposed in recent years. However, a practical one for DApps’ end users is still lacking, as existing schemes are
hard to deploy due to the high cost of communication and distributed features.

In this paper, we combine (2, 3)-threshold signature with the widely deployed cloud-edge-end (CEE) paradigm. We
first propose the CEE key management framework which involves an end node, an edge node and a cloud node main-
taining (2, 3) shares of end users’ private keys. Then, following the framework, we construct a (2, 3)-threshold elliptic
curve digital signature algorithm (ECDSA) scheme with provable security based on the ECDSA assumption. Com-
pared with representative constructions of generalized threshold ECDSA, the new scheme is easy to deploy in appli-
cations developed following the CEE framework. Additionally, it addresses share tampering and requires only three
messages for distributively issuing a signature, which is lower than the best practice of (2, 2)-threshold ECDSA (four
messages) that cannot tolerate tampering.

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.oaepublish.com/jsss

https://creativecommons.org/licenses/by/4.0/
www.oaepublish.com/jsss
OAE
图章

Page 214 Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30

Keywords: Key management, ECDSA, threshold digital signature, blockchain, secret sharing, DApps

1. INTRODUCTION
1.1. Background and problem statement
Advances of the blockchain technique promote the development of decentralized applications (DApps), which
replace the server of traditional applications with decentralized storage [1,2]. A remarkable feature of DApps is
that they return the ownership of data produced by end users to themselves, which is controlled by the server
in traditional applications. One of the key technologies behind this is digital signature. A user of a DApp
possesses a pair of public and private keys, where the public key is published and the private key is known
only by the user. The private key is used to issue a signature for every data produced by the user in the DApp
system, such that everyone can verify the signature via the public key. A well-known example of DApps is the
bitcoin [3], where owning the private key is equivalent to owning all the bitcoins under an address derived from
the corresponding public key.

Therefore, how to securely manage and use the private key of digital signature schemes is a pivotal problem for
DApps. To address this problem, a variety of software- and hardware-based approaches have been proposed,
such as crypto wallets installed in users’ terminals, online crypto exchanges managing private keys on behalf
of users, and so on [4]. Among various key management methods, a noteworthy technique is threshold cryp-
tography which distributes the private key into multiple distributed nodes in a way that a threshold of them
can collaboratively issue a signature or decrypt a ciphertext without recovering the private key. Threshold-
based key management systems can tolerate a certain number of failures and corruptions, leaving the system
sufficient time to recover from security instances and thereby reducing users’ losses caused by the leakage or
tampering of private keys.

1.2. Related work
Motivated by the key management need of DApps, threshold digital signature has attracted widespread at-
tention from both academic and industrial communities. As the most widely adopted signature scheme in
blockchain platforms and applications, threshold construction for elliptic curve digital signature algorithm
(ECDSA) signature has become a hot topic in recent years. Below we review some milestones and representa-
tive constructions.

To secure bitcoin wallets, in 2016, Gennaro et al. [5] proposed a threshold-optimal (EC)DSA signature scheme
that requires the participation of the threshold 𝑡 nodes to issue a signature. Before that, the best construc-
tion [6] requires 2𝑡 participants in the threshold signing phase. Instead of distributing the private key, Gennaro
et al. [5] encrypted the private key through an additively homomorphic encryption scheme, and distributed
the decryption key in (𝑡, 𝑛)-threshold manner. However, the threshold signing protocol involves six rounds
of interactions among at least 𝑡 nodes, and each round requires multiple broadcasting and peer-to-peer com-
munications. Besides, their scheme does not have a specific share renewal algorithm to update all shares after
a leaking or tampering attack.

The first series of efficient threshold ECDSA schemes were proposed concurrently by Lindell and Nof [7]

and Gennaro and Goldfeder [8] in 2018. The former uses ElGamal decryption ”in the exponent” to realize
multiplicative-to-additive (MtA) share conversion which is a major building block for threshold ECDSA. The
latter instantiates theMtA protocol using the additively homomorphic encryption scheme of Paillier. After the
two schemes, new constructions of threshold ECDSA have been continuously proposed every year in top jour-
nals and leading conferences in the field of information security and cryptography [9–12]. Till now, improving
the practicability of threshold ECDSA remains a hot topic.

http://dx.doi.org/10.20517/jsss.2024.30

Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30 Page 215

Compared to common (𝑡, 𝑛)-threshold schemes with large 𝑡 and 𝑛, two-party ECDSA is much more practical
for real-world deployment, because it only needs two participants for issuing a signature and is thereby easy
to implement. In 2017, Lindell [13] constructed an efficient (2, 2)-threshold ECDSA signature which involves
threemessages in an offline pre-signing phase before themessage arrives and onemessage in the online signing
phase. Although this scheme is much more practical than common (𝑡, 𝑛) ones, it can only address the leakage
problem of private key shares. Once one of the two shares is tampered with or broken, it will be unable to
issue a signature anymore. Doerner et al. [14] presented a (2, 𝑛)-threshold ECDSA from ECDSA assumption
in 2018. Their 2-out-of-𝑛 signing protocol is run with eight messages exchanged among two nodes. This
communication cost is too high for common end users of DApps. Tu et al. [15] proposed a fast two-party
signature based on the combinatorial ECDSA. However, the verification operation of their scheme is different
from the original ECDSA.

In summary, reducing communication rounds and improving practicability are the main challenges in the
area of threshold ECDSA. While (2, 2)-threshold ECDSA schemes have higher practicability compared to
(𝑡, 𝑛)-threshold ones, the best construction so far still needs eight messages. Besides, (2, 2)-threshold schemes
only address leakage problem of private key shares. Once one of the two shares is tampered with or broken, the
two-party ECDSA will be unable to issue a signature anymore. The minimum threshold setting for addressing
both leaking and tampering issues is (2, 3).

1.3. Our work
This paper addresses the key management problem for end users of DApps by combining (2, 3)-threshold sig-
nature with the cloud-edge-end (CEE) framework. The CEE framework originates from the Internet ofThings
(IoT), edge computing and cloud computing. It has eventually developed as a widely adopted framework for
online computing products and services. Specifically, we present the CEE keymanagement framework consist-
ing of three protocols: the initial splitting protocol which distributes the user’s private key via (2, 3)-threshold
secret sharing into three shares held by the end node, edge node and cloud respectively, the two-party signing
protocol which is run by the end and edge nodes to collaboratively generate a signature without recovering
the private key, and the update protocol which renews the three shares so that they are incompatible with all
previous ones.

Based on the CEE key management framework, we construct a concrete (2, 3)-threshold ECDSA scheme
with provable security under the ECDSA assumption. To overcome the challenge of distributively computing
𝑠 = 𝑟−1 · (𝑒+𝑠𝑘 ·𝑟𝑥) mod 𝑞, where 𝑟 is a secure instance from 𝑍𝑞 , 𝑒 = 𝐻 (𝑚), and 𝑟𝑥 = 𝑥 mod 𝑞 is derived from
(𝑥, 𝑦) = 𝑟 · 𝑃, we adopt the following strategies. To generate 𝑟𝑥 in a distributed way, we run a key agreement
protocol among the end and edge nodes to generate (𝑥, 𝑦) = 𝑟−1 · 𝑃 = (𝑟1 · 𝑟2)−1 · 𝑃 by sampling 𝑟1 in the end
node and 𝑟2 in the edge node and then exchanging 𝑟−1

1 · 𝑃 and 𝑟−1
2 · 𝑃. To compute 𝑠 from partial signatures

𝑠1 = 𝑟1 · (𝑒 + 𝑠𝑘1 · 𝑟𝑥) and 𝑠2 = 𝑟2 · (𝑒 + 𝑠𝑘2 · 𝑟𝑥), we first convert 𝑟1 · 𝑟2 = 𝑟 into 𝛼1 +𝛼2 = 𝑟 via the MtA protocol,
and convert the (2, 3)-threshold shares 𝑠𝑘1 and 𝑠𝑘2 of 𝑠𝑘 into (2, 2)-additive shares ˆ𝑠𝑘1 and ˆ𝑠𝑘2 bymultiplying
them with the Lagrangian coefficients, so that each party can compute 𝑠𝑖 as 𝛼𝑖 · 𝑒 +𝛼𝑖 · 𝑠𝑘𝑖 · 𝑟𝑥 for 𝑖 = 1, 2. Then,
by running theMtA protocol again, we output 𝛽1 and 𝛾1 on the end node and 𝛽2 and 𝛾2 on the edge node such
that 𝛽1 + 𝛽2 = 𝛼1 · ˆ𝑠𝑘2 and 𝛾1 +𝛾2 = 𝛼2 · ˆ𝑠𝑘1. Finally, the end node computes 𝑠1 = 𝛼1 · 𝑒+ (𝛼1 · ˆ𝑠𝑘1 + 𝛽1 +𝛾1) · 𝑟𝑥 ,
and edge node computes 𝑠2 = 𝛼2 · 𝑒 + (𝛼2 · ˆ𝑠𝑘2 + 𝛽2 + 𝛾2) · 𝑟𝑥 , which are additive shares of 𝑠. Additionally, we
present an update protocol for the (2, 3)-threshold ECDSA, which is oftenmissing in related work of threshold
ECDSA. This protocol can renew all these three shares even if one of them is tampered with. To recover the
tampered share, we construct a share recovery protocol based on secure multi-party computation.

The main contributions of this paper are summarized as follows. First, the proposed CEE key management
framework provides a practical pattern for securely managing and using private keys in blockchain-based
applications. It addresses key management problems of DApp users and demonstrates a practical deployment

http://dx.doi.org/10.20517/jsss.2024.30

Page 216 Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30

Table 1. Notation

Symbol Meaning

𝐹𝑝 A finite field with prime order 𝑝

E An elliptic curve defined over 𝐹𝑝

𝐸 The elliptic curve group consists of all points on E plus the point O at infinity
𝐺 A subgroup of 𝐸 with a prime order 𝑞 and a generator 𝑃
𝑞 The order of 𝐺
𝑃 The generator of 𝐺
𝑍𝑞 The prime field with 𝑞 elements {0, · · · , 𝑞 − 1}
𝐻 A hash function {0, 1}∗ → 𝑍𝑞

𝑟 ← 𝑍𝑞 Generating a random value 𝑟 from finite field 𝑍𝑞

{𝑚}𝑝𝑘 The encryption of message 𝑚 under key 𝑝𝑘

𝑚
𝑠𝑘←−− {𝑚}𝑝𝑘 Recovering 𝑚 by decrypting {𝑚}𝑝𝑘 with 𝑠𝑘

and application pattern of threshold signature. Although we only illustrate its implementation in ECDSA key
management; it can be applied more easily for other signature schemes, given that constructing threshold
ECDSA is more challenging than other signature schemes such as Schnorr and Boneh-Lynn-Shacham (BLS)
signatures. Second, the constructed (2, 3)-threshold ECDSA has a much lower communication cost than
parallel schemes with a (2, 𝑛) threshold setting where 𝑛 ≥ 2, as it only requires three messages exchanged
between the end and edge node for issuing a signature, while the best result of (2, 2)-threshold ECDSA [13] is
four messages. Moreover, the (2, 3)-threshold setting can tolerate tampering on one of the private key shares,
which is not achieved by the (2, 2)-threshold one.

1.4. Organization
The remaining sections of this paper are organized as follows. Section 2 reviews the ECDSA signature scheme
and cryptographic tools used in our design. Section 3 presents the CEE key management framework and its
threat and security models. Sections 4, 5, and 6 construct the CEE-based (2, 3)-threshold ECDSA scheme,
prove its security, and evaluate its performance, respectively. Section 7 discusses the application prospect of
the CEE-based key management framework and illustrates a case of its use. Finally, Section 8 concludes this
paper and proposes future work.

2. PRELIMINARIES
This section reviews the ECDSA scheme and cryptographic tools for our design. Symbols used throughout
this paper are defined in Table 1.

2.1. ECDSA
2.1.1 ECDSA signature scheme
Let 𝐹𝑝 be a finite field with prime order 𝑝, E be an elliptic curve defined over 𝐹𝑝 , 𝐸 be the elliptic curve group
consisting of all points on E plus the point O at infinity, 𝐺 be an elliptic curve group of prime order 𝑞, 𝑃 be
a generator of 𝐺, 𝑍𝑞 = {0, · · · , 𝑞 − 1}, and 𝐻 : {0, 1}∗ → 𝑍𝑞 be a cryptographic secure hash function. The
ECDSA scheme (KeyGen,Sign,Verify) is reviewed as follows:

• KeyGen(1k): outputs a random private key 𝑠𝑘 ∈ 𝑍𝑞 and a public key 𝑝𝑘 = 𝑠𝑘 · 𝑃.
• Sign𝑠𝑘 (𝑚) where 𝑚 ∈ {0, 1}∗:

1. Compute 𝑒 = 𝐻 (𝑚)
2. Select a random integer 𝑟 ∈ 𝑍𝑞

3. Compute (𝑥, 𝑦) = 𝑟 · 𝐺
4. Compute 𝑟𝑥 = 𝑥 mod 𝑞

5. Compute 𝑠 = 𝑟−1 · (𝑒 + 𝑠𝑘 · 𝑟𝑥) mod 𝑞

6. Output 𝜎 = (𝑟𝑥 , 𝑠)
• Verify𝑝𝑘 (𝑚, 𝜎) where 𝑚 ∈ {0, 1}∗, 𝜎 = (𝑟𝑥 , 𝑠):

http://dx.doi.org/10.20517/jsss.2024.30

Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30 Page 217

1. Compute 𝑒 = 𝐻 (𝑚)
2. Compute 𝑤 = 𝑠−1

3. Compute 𝑣1 = 𝑒 · 𝑤 mod 𝑞

4. Compute 𝑣2 = 𝑟𝑥 · 𝑤 mod 𝑞

5. Compute (𝑥, 𝑦) = 𝑣1 · 𝑃 + 𝑣2 · 𝑝𝑘
6. Compute 𝑣𝑥 = 𝑥 mod 𝑞

7. Output 1 if 𝑣𝑥 = 𝑟𝑥 or 0 otherwise

2.1.2 Security of ECDSA
The existential unforgeability against chosen-message attacks (EU-CMA) is a widely used security model for
digital signature schemes. It models the security by the EU-CMA security experiment in which an attackerA
against a digital signature scheme playswith a challengerCwho intends to solve a difficult problem. Specifically,
the EU-CMA security experiment is executed as follows.

• Initialization. C initializes system public parameters and keys.
• Queries. A queries C signatures on messages chosen at will.
• Forgery. A returns a forged signature 𝜎∗ on some new message 𝑚∗.

A wins the experiment if 𝜎∗ is a valid signature on the message 𝑚∗ and a signature of 𝑚∗ has not been queried
in the query phase.

Definition 1 (EU-CMA Security) A digital signature scheme is existentially unforgeable under chosen-message
attacks if the advantage for any Probabilistic Polynomial Time (PPT) adversaryA winning the EU-CMA security
experiment is negligible.

TheEU-CMA security of ECDSA has been proved by Brown [16]. Wewill use it as an assumption in the security
proof of our (2, 3)-threshold ECDSA.

2.2. Cryptographic toolbox
Below we review cryptographic tools used in our scheme.

2.2.1. Additively homomorphic encryption
Additively homomorphic encryption provides an operation that produces the encryption of the sum of two
numbers, given only the encryptions of the numbers. Let M be the message space, E be the ciphertext space,
Z be the set of integers, and k be a security parameter. An additively homomorphic encryption scheme
consists of three algorithms (KeyGen,Enc,Dec). For any pair of (𝑝𝑘, 𝑠𝑘) ← KeyGen(1k), messages
𝑚1, 𝑚2, 𝑚 ∈ M, and integer 𝑧 ∈ Z, there exists two group operations ⊕ : E ×E → E and ⊙ : Z ×E → E
such that:

• 𝑚1 + 𝑚2 = Dec𝑠𝑘 (Enc𝑝𝑘 (𝑚1) ⊕ Enc𝑝𝑘 (𝑚2))
• 𝑧 · 𝑚 = Dec𝑠𝑘 (𝑧 ⊙ Enc𝑝𝑘 (𝑚))

The additively homomorphic encryption is used in the MtA technology (reviewed in Section 2.2.4). Existing
schemes such as Paillier [17] encryption, ElGamal encryption ”in-the-exponent” [7], and linear homomorphic
encryption schemes over a class group [18] are all compatible with the MtA protocol and the specific scheme
of this paper. Our specific scheme will use the elliptic curve ElGamal encryption ”in-the-exponent” [17] as an
instantiation of the additive homomorphic encryption. Below we briefly review the scheme:

• KeyGen(1k): generates a random private key 𝑠𝑘 ∈ 𝑍𝑞 and computes the public key 𝑝𝑘 = 𝑠𝑘 · 𝑃.
• Enc𝑝𝑘 (𝑚) where 𝑚 ∈ 𝑍𝑞 :

1. Generate random 𝑟 ∈ 𝑍𝑞

2. Compute 𝑐1 = 𝑟 · 𝑃 and 𝑐2 = 𝑟 · 𝑝𝑘 + 𝑚 · 𝑃
3. Output 𝑐 = (𝑐1, 𝑐2).

http://dx.doi.org/10.20517/jsss.2024.30

Page 218 Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30

• Dec𝑠𝑘 (𝑐) where 𝑐 = (𝑐1, 𝑐2):
1. Compute 𝑀 = 𝑐2 − 𝑠𝑘 · 𝑐1.
2. Recover 𝑚 from 𝑀 .

Note that as with other homomorphic encryption schemes, the ElGamal encryption ”in-the-exponent” also
has its limitations. The decryption can only be achieved if 𝑚 is relatively small, given that solving the discrete
logarithm is hard. However, since our work focuses on key management of digital signatures, we simply use
ElGamal encryption ”in-the-exponent” as an instantiation of additively homomorphic encryption.

2.2.2. Threshold secret sharing
A (𝑡, 𝑛)-threshold secret sharing scheme (Dis,Rec) distributes a secret 𝑎0 into 𝑛 shares in a way that 𝑎0 can
be reconstructed from any 𝑡 shares, and no information about 𝑎0 can be leaked from up to 𝑡 − 1 shares. We
review Shamir’s secret sharing scheme over prime field (𝑍𝑞 , +, ·) [19] as follows:

• Dis(𝑎0, 𝑡, 𝑛): take a secret 𝑎0 ∈ 𝑍𝑞 and a threshold setting (𝑡, 𝑛) as inputs, the dealer D:
1. Generate 𝑎1, · · · , 𝑎𝑡−1 ∈ 𝑍𝑞 and construct a distribution polynomial

𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑡−1𝑥
𝑡−1 mod 𝑞 (1)

2. For 𝑖 = 1, · · · , 𝑛, compute

𝑦𝑖 = 𝑓 (𝑖) mod 𝑞 (2)

and distribute 𝑦𝑖 to participant P𝑖 securely.
Rigorously, 𝑦𝑖 = 𝑓 (𝑥𝑖) for some 𝑥𝑖 . Here, we use 𝑥𝑖 = 𝑖 for conciseness as many leading papers do.

• Rec(𝑄) where 𝑄 represents a set of at least 𝑡 shares: without losing generality, let 𝑄 = {𝑦1, · · · , 𝑦𝑡}, and
this algorithm reconstructs 𝑎0 as

𝑎0 =
𝑡∑

𝑖=1
𝜆𝑖𝑦𝑖 mod 𝑞 (3)

where

𝜆𝑖 =
𝑡∏

𝑗=1, 𝑗≠𝑖

𝑗

𝑗 − 𝑖 (4)

2.2.3. Share renewal
The share renewal protocol after the distribution of a secret updates its shares so that all previous shares are
incompatible with the new ones. A representative approach is to update each share by adding a share of 0 to it.
Here, we briefly review the basic share renewal protocol of Herzberg et al [20]. Suppose after the Dis(𝑎0, 𝑡, 𝑛),
each participant P𝑖 (𝑖 = 1, · · · , 𝑛) possesses a share 𝑦𝑖 . They cooperatively update their shares without the
participation of a dealer as follows:

1. For 𝑖 = 1, · · · , 𝑛, each P𝑖
(1) Generate 𝑏𝑖1, · · · , 𝑏𝑖,𝑡−1 ∈ 𝑍𝑞 and construct a distribution polynomial for 0:

𝑔𝑖 (𝑥) = 𝑏𝑖1𝑥 + · · · + 𝑏𝑖,𝑡−1𝑥
𝑡−1 mod 𝑞 (5)

(2) For 𝑗 = 1, · · · , 𝑛, compute

𝑢𝑖 𝑗 = 𝑔𝑖 (𝑗) mod 𝑞 (6)

and secretly send 𝑢𝑖 𝑗 to P 𝑗 (𝑗 ≠ 𝑖).
2. For 𝑖 = 1, · · · , 𝑛, every P𝑖 updates its share 𝑦𝑖 into

𝑦𝑖 +
𝑛∑
𝑗=1

𝑢 𝑗𝑖 mod 𝑞 (7)

http://dx.doi.org/10.20517/jsss.2024.30

Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30 Page 219

Figure 1. The CEE key management system and its interaction with Blockchain applications. The terminal for splitting 𝑠𝑘 and for holding 𝑠𝑘1

can be the same one. CEE: cloud-edge-end.

2.2.4. Multiplicative to additive share conversion
TheMtA protocol [10,21] converts multiplicative shares into additive ones. It is used as a building block in com-
mon constructions of threshold ECDSA. Suppose party P𝑖 possesses 𝑎 and P 𝑗 possesses 𝑏, the MtA protocol
outputs 𝛼 for P𝑖 and 𝛽 for P 𝑗 such that 𝛼 + 𝛽 = 𝑎 · 𝑏, without leaking 𝑎 to P 𝑗 and 𝑏 to P𝑖 . Below we briefly
review the MtA protocol realized via additively homomorphic encryption:

1. P𝑖 encrypts 𝑎 under its public key 𝑝𝑘𝑖 :

𝐶𝑎 = Enc𝑝𝑘𝑖 (𝑎) (8)

and sends 𝐶𝑎 to P 𝑗 .
2. P 𝑗 generates a random integer 𝛽, encrypts −𝛽 under 𝑝𝑘𝑖 :

𝐶′𝛽 = Enc𝑝𝑘𝑖 (−𝛽) (9)

computes the encryption of 𝛼 under 𝑝𝑘𝑖 as

𝐶𝛼 = (𝑏 ⊙ 𝐶𝑎) ⊕ 𝐶′𝛽 (10)

and sends 𝐶𝛼 to P𝑖 .
3. P𝑖 decrypts and outputs 𝛼 as

𝛼 = Dec𝑠𝑘𝑖 (𝐶𝛼) (11)

3. THE CEE KEY MANAGEMENT FRAMEWORK
This section presents the framework of the CEE key management system and its threat and security models.

3.1. System overview
As shown in Figure 1, the CEE key management system involves three kinds of nodes: the cloud, edge, and
end nodes. Their responsibilities in application scenarios are introduced as follows:

• Cloud node maintains a (2, 3) share of user’s private key. It is responsible for recovery or update of the
private key in case of security incidents threatening one of the other two shares in the edge and end nodes.

http://dx.doi.org/10.20517/jsss.2024.30

Page 220 Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30

In real-world applications, the cloud node can be a semi-trusted service provider that provides private key
safeguarding services.

• Edge node also maintains a (2, 3) share of user’s private key. It participates in the signing protocol collabo-
ratively with the end node. In the real world, the edge node can be the edge server or gateway of an institute
such as a company, a university, etc. Another example is the smart home scenario where the edge node
can be a router that connects end devices in the home to the internet. In these cases, the edge node can be
regarded as a trusted user-side device.

• End node takes the original private key as input and distributes it into three shares. It also maintains a (2, 3)
share of the private key to issue signatures collaboratively with the edge node. It is the user-side terminal
interacting with the user and, thereby, is trusted.

The number of each type of node depends on the needs and restrictions of real-world application environments.
Each user may have one or more pairs of private and public keys, which again depends on the application
scenario. For a pair of private and public keys (𝑠𝑘, 𝑝𝑘), a cloud node, an edge node, and an end node will be
involved to securely manage the private key. Specifically, there are three protocols for the key management
framework:

• Initial Splitting. On input of a private key 𝑠𝑘 in the end node, this protocol uses (2, 3)-threshold secret
sharing to split 𝑠𝑘 into three shares 𝑠𝑘1, 𝑠𝑘2, and 𝑠𝑘3 which will be securely stored in the end node, the
edge node, and the cloud, respectively.

• Two-Party Signing. To issue a signature, the end node initiates the two-party signing protocol with the
edge node. Specifically, each node will use its private key share to generate a partial signature, and the two
partial signatures will be used to construct the signature of 𝑠𝑘 .

• Update. The update protocol can be run periodically or after a recovery from security incidents. Theoret-
ically, it can be run with any two shares, even if the third one is leaked or tampered with. Here we focus
on a situation in which the cloud is not compromised, and one of the user-side devices, i.e., the edge node
or end node, is compromised. The cloud is normally more powerful in terms of computing and storing
capabilities than the edge and end nodes. Moreover, it is maintained by service providers with professional
security managers and technicians. Therefore, it is less likely to be compromised by security incidents in
practice.

3.2. Threat model and security model
3.2.1. Threat model
We assume the cloud in the remote is semi-trusted, meaning it honestly follows the protocol specification but
seeks to learn as much information as possible. We also assume that user-side devices, i.e., the edge and end
nodes in the local area, are trusted. The cloud, edge, and end nodes may be compromised by security incidents,
but they are not compromised simultaneously. Specifically, we assume at most one of them is compromised
before an instance of the update protocol renews all shares. The threshold setting leaves the system sufficient
time to identify and stop security incidents happening in one device before a second one is compromised.

Additionally, we assume the initial splitting protocol is run in a secure environment, where security channels
exist among the three nodes, and none of them is compromised. This assumption is reasonable and easy
to realize as this protocol is only executed once. During the other time, security incidents may occur and
compromise one of the three nodes at a time.

3.2.2. Security model
Based on the threat model above and the EU-CMA security model of digital signature, we present the security
model of (2, 3)-threshold signature under the CEE framework, denoted as (2, 3)-TEU-CMA.We first describe
the (2, 3)-TEU-CMA security experiment and then give the security definition.

http://dx.doi.org/10.20517/jsss.2024.30

Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30 Page 221

Figure 2. The initial splitting protocol. The secure channels can be established via public-key encryption or key agreement protocol.

LetA be an attacker against a (2, 3)-threshold signature scheme and C be the challenger who intends to solve
a difficult problem. The (2, 3)-TEU-CMA security experiment is executed byA and C as follows:

• Initialization. C initializes system public parameters, and generates a pair of public and private keys
(𝑝𝑘, 𝑠𝑘) and three (2, 3)-threshold shares 𝑠𝑘1, 𝑠𝑘2, and 𝑠𝑘3 of 𝑠𝑘 . The private key and its shares are kept
by C. The public key and public parameters are provided toA.

• Queries.
– Signature queries. A submits a message 𝑚 chosen at will to C and queries the signature 𝜎.
– Corruption queries. A submits an index number 𝑖 to C and queries 𝑠𝑘𝑖 and other secret parameters

related to 𝑠𝑘𝑖 .
• Forgery. A returns a forged signature 𝜎∗ on some new message 𝑚∗ that has never been submitted in the
query phase.

The signature query is inherited from the EU-CMA security experiment. A canmake the signature queries for
many times. The corruption query is introduced to formulate the adversary’s ability to corrupt a participant in
the (2, 3)-threshold setting. A can make this type of query many times, but at most one such query for each
batch of shares output by the initial splitting protocol or update protocol.

Definition 2 ((2,3)-TEU-CMA Security) A (2, 3)-threshold digital signature scheme is existentially unforgeable
under chosen-message attacks if the advantage for any PPT adversary A winning the (2, 3)-TEU-CMA security
experiment is negligible.

4. CEE-BASED (2, 3)-THRESHOLD ECDSA
Assume the user already has a pair of private and public keys (𝑠𝑘, 𝑝𝑘) which are generated via the KeyGen
algorithm of ECDSA. Therefore, 𝑠𝑘 ∈ 𝑍𝑞 and 𝑝𝑘 = 𝑠𝑘 · 𝑃. The public key is published to the distributed
applications (DApps) in the blockchain ecosystem. Below we will show how to realize secure management
for the private key via the CEE key management framework. Specifically, we will present a concrete (2, 3)-
threshold ECDSA scheme that involves only the end node and the edge node for the two-party signing protocol.

http://dx.doi.org/10.20517/jsss.2024.30

Page 222 Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30

4.1. Initial splitting
The initial splitting protocol is illustrated in Figure 2. Assume secure channels have been established among
the end node, the edge node and the cloud. The user inputs 𝑠𝑘 in the end device and starts the initial splitting
protocol which outputs three shares of 𝑠𝑘 and a pair of public and private keys for an additively homomorphic
encryption scheme as follows:

1. Split 𝑠𝑘 into 𝑠𝑘1, 𝑠𝑘2, and 𝑠𝑘3 via the Dis(𝑠𝑘, 2, 3) algorithm of Shamir’s threshold secret sharing.
2. Generate a pair of private and public keys (ℎ𝑠𝑘, ℎ𝑝𝑘) via theKeyGen(1k) of an additively homomorphic

encryption scheme and publish ℎ𝑝𝑘

3. Securely send 𝑠𝑘2 to the edge node and 𝑠𝑘3 to the cloud.
3. Keep 𝑠𝑘1, ℎ𝑠𝑘 in the end node and erase 𝑠𝑘 , 𝑠𝑘2, 𝑠𝑘3.

In addition to the three private key shares, the above protocol also outputs and publishes a pair of keys
(ℎ𝑠𝑘, ℎ𝑝𝑘) which will be used for implementing additively homomorphic encryption in the MtA procedure
of the two-party signing protocol. Although it is possible to reuse 𝑠𝑘1 and 𝑝𝑘1 = 𝑠𝑘1 · 𝑃 for the homomorphic
encryption, here we have two reasons for generating dedicated key pairs. First, the additively homomorphic
encryption scheme can be one established on a different mathematical problem rather than the discrete log-
arithm problem over elliptic curve groups of ECDSA, which means that (𝑠𝑘1, 𝑝𝑘1) is not a pair of keys for
the homomorphic encryption scheme. Secondly, publishing 𝑝𝑘1 in the system will reduce the security of the
(2, 3)-threshold ECDSA scheme. We will explain this point in detail in Section 5.2 after proving the unforge-
ability of the scheme.

4.2. Two-party signing
The two-party signing protocol is run jointly by the end and edge nodes to output a signature 𝜎 = (𝑟𝑥 , 𝑠) for
a message 𝑚, where 𝑟𝑥 is derived from the 𝑥 coordinate of 𝑅 = 𝑟 · 𝑃 for some randomly generated 𝑟 ∈ 𝑍𝑞 , and
𝑠 = 𝑟−1 · (𝑒 + 𝑠𝑘 · 𝑟𝑥). In our scheme, 𝑅 is established as 𝑟−1

1 · 𝑟−1
2 · 𝑃, where 𝑟1 and 𝑟2 are securely generated

by the end and edge nodes. Therefore, the end and edge nodes can compute partial signatures as

𝑠𝑖 = 𝑟𝑖 · 𝑒 + 𝑟𝑖 · 𝑠𝑘𝑖 · 𝑟𝑥 , 𝑖 = 1, 2 (12)

where 𝑟1 and 𝑟2 are (2, 2)-multiplicative shares of 𝑟−1, and 𝑠𝑘1 and 𝑠𝑘2 are (2, 3)-Shamir shares of 𝑠𝑘 . However,
we still cannot compute 𝑠 from 𝑠1 and 𝑠2 as they are neither (2, 2)-multiplicative shares nor (2, 3)-Shamir
shares of 𝑠. To construct 𝑠 from 𝑠1 and 𝑠2, we need to convert 𝑠1 and 𝑠2 into additive shares of 𝑠. Specifically,
we address the following three objectives in an offline pre-signing procedure before the input of 𝑚:

• Converting the multiplicative shares 𝑟1 and 𝑟2 of 𝑟−1 into additive shares 𝛼1 and 𝛼2, that is, outputting 𝛼1
on the end node and 𝛼2 on the edge node such that 𝛼1 + 𝛼2 = 𝑟1 · 𝑟2 = 𝑟−1. This is addressed via the MtA
protocol.

• Converting the (2, 3)-threshold shares 𝑠𝑘1 and 𝑠𝑘2 of 𝑠𝑘 into additive shares ˆ𝑠𝑘1 and ˆ𝑠𝑘2, that is, outputting
ˆ𝑠𝑘1 on the end node and ˆ𝑠𝑘2 on the edge node such that ˆ𝑠𝑘1 + ˆ𝑠𝑘2 = 𝑠𝑘 . This is addressed by multiplying

𝑠𝑘𝑖 with the Lagrange coefficient 𝜆𝑖 .
• Converting 𝛼1 · ˆ𝑠𝑘2 into 𝛽1 + 𝛽2 and 𝛼2 · ˆ𝑠𝑘1 into 𝛾1 + 𝛾2, where 𝛽1 and 𝛾1 are output on the end node, and

𝛽2 and 𝛾2 on the edge node. This is again realized via the MtA protocol.

By addressing the three objectives above, the end node will be able to compute 𝑠1 = 𝛼1 ·𝑒+(𝛼1 · ˆ𝑠𝑘1+𝛽1+𝛾1) ·𝑟𝑥
mod 𝑞, and the edge node can compute 𝑠2 = 𝛼2 · 𝑒+ (𝛼2 · ˆ𝑠𝑘2 + 𝛽2 +𝛾2) · 𝑟𝑥 mod 𝑞. Now, 𝑠1 and 𝑠2 are additive

http://dx.doi.org/10.20517/jsss.2024.30

Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30 Page 223

Figure 3. The two-party signing protocol.

shares of 𝑠, since

𝑠1 + 𝑠2 = 𝛼1 · 𝑒 + (𝛼1 · ˆ𝑠𝑘1 + 𝛽1 + 𝛾1) · 𝑟𝑥 + 𝛼2 · 𝑒 + (𝛼2 · ˆ𝑠𝑘2 + 𝛽2 + 𝛾2) · 𝑟𝑥
= (𝛼1 + 𝛼2) · 𝑒 + (𝛼1 · ˆ𝑠𝑘1 + 𝛽1 + 𝛾1 + 𝛼2 · ˆ𝑠𝑘2 + 𝛽2 + 𝛾2) · 𝑟𝑥
= 𝑟−1 · 𝑒 + (𝛼1 · ˆ𝑠𝑘1 + 𝛼2 · ˆ𝑠𝑘2 + 𝛼1 · ˆ𝑠𝑘2 + 𝛼2 · ˆ𝑠𝑘1) · 𝑟𝑥
= 𝑟−1 · 𝑒 + (𝛼1 + 𝛼2) · (ˆ𝑠𝑘1 + ˆ𝑠𝑘2) · 𝑟𝑥
= 𝑟−1 · 𝑒 + 𝑟−1 · 𝑠𝑘 · 𝑟𝑥
= 𝑠

(13)

The above method requires running a key agreement instance to output 𝑅 and three MtA instances to output
(𝛼1, 𝛼2), (𝛽1, 𝛽2) and (𝛾1, 𝛾2) among the end and edge nodes. This involves eight messages. To reduce the
round of interactions, we integrate them together in the pre-signing protocol and reduce the total number of
messages to three.

The two-party singing protocol is illustrated in Figure 3. It consists of an offline pre-signing protocol and an
online singing protocol. Below we introduce the two protocols in detail.

4.2.1. Pre-signing protocol

1. The end node:
(1) Generate a random value 𝑟1 ← 𝑍𝑞 and compute

𝑅1 = 𝑟1 · 𝑃 (14)

http://dx.doi.org/10.20517/jsss.2024.30

Page 224 Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30

(2) Convert 𝑠𝑘1 into
ˆ𝑠𝑘1 = 𝜆1 · 𝑠𝑘1 mod 𝑞

=
2

2 − 1
· 3

3 − 1
· 𝑠𝑘1 mod 𝑞

= 3 · 𝑠𝑘1 mod 𝑞

(15)

(3) Encrypt 𝑟1 and ˆ𝑠𝑘1 under ℎ𝑝𝑘

𝐶𝑟1 = Encℎ𝑝𝑘 (𝑟1) (16)

𝐶 ˆ𝑠𝑘1
= Encℎ𝑝𝑘 (ˆ𝑠𝑘1) (17)

(4) Send (𝑅1, 𝐶𝑟1 , 𝐶 ˆ𝑠𝑘1
) to the edge node via public channel.

2. The edge node:
(1) Generate random numbers 𝑟2, 𝛼2, 𝛽2, 𝛾2 ← 𝑍𝑞 and compute

𝑅2 = 𝑟2 · 𝑃 (18)

(2) Convert 𝑠𝑘2 into
ˆ𝑠𝑘2 = 𝜆2 · 𝑠𝑘2 mod 𝑞

=
1

1 − 2
· 3

3 − 2
· 𝑠𝑘2 mod 𝑞

= −3 · 𝑠𝑘2 mod 𝑞

(19)

(3) Compute the shared instance as follows:

𝑅 = 𝑟2 · 𝑅1 = (𝑥, 𝑦) (20)

𝑟𝑥 = 𝑥 mod 𝑞 (21)

(4) Compute the ciphertext of 𝛼1 = 𝑟1 · 𝑟2 − 𝛼2 under ℎ𝑝𝑘 as

𝐶𝛼′2
= Encℎ𝑝𝑘 (−𝛼2) (22)

𝐶𝛼1 = (𝑟2 ⊙ 𝐶𝑟1) ⊕ 𝐶𝛼′2
(23)

(5) Compute the ciphertext of 𝛽1 = 𝛼1 · ˆ𝑠𝑘2 − 𝛽2 under ℎ𝑝𝑘 as

𝐶𝛽′2
= Encℎ𝑝𝑘 (−𝛽2) (24)

𝐶𝛽1 = (ˆ𝑠𝑘2 ⊙ 𝐶𝛼1) ⊕ 𝐶𝛽′2
(25)

(6) Compute the ciphertext of 𝛾1 = 𝛼2 · ˆ𝑠𝑘1 − 𝛾2 under ℎ𝑝𝑘 as

𝐶𝛾′2
= Encℎ𝑝𝑘 (−𝛾2) (26)

𝐶𝛾1 = (𝛼2 ⊙ 𝐶 ˆ𝑠𝑘1
) ⊕ 𝐶𝛾′2

(27)

(7) Send (𝑅2, 𝐶𝛼1 , 𝐶𝛽1 , 𝐶𝛾1) to the end node via public channel.
3. The end node:

http://dx.doi.org/10.20517/jsss.2024.30

Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30 Page 225

(1) Compute the shared instance as follows:

𝑅 = 𝑟1 · 𝑅2 = (𝑥, 𝑦) (28)

𝑟𝑥 = 𝑥 mod 𝑞 (29)

(2) Decrypt the ciphertexts 𝐶𝛼1 , 𝐶𝛽1 , 𝐶𝛾1 using ℎ𝑠𝑘 :

𝛼1 = Decℎ𝑠𝑘 (𝐶𝛼1) (30)

𝛽1 = Decℎ𝑠𝑘 (𝐶𝛽1) (31)

𝛾1 = Decℎ𝑠𝑘 (𝐶𝛾1) (32)

4.2.2. Online signing protocol

1. On input a message 𝑚 ∈ {0, 1}∗, the end node computes

𝑒 = 𝐻 (𝑚) (33)

𝑠1 = 𝛼1 · 𝑒 + (𝛼1 · ˆ𝑠𝑘1 + 𝛽1 + 𝛾1) · 𝑟𝑥 (34)

and sends 𝑠1, 𝑚 to the edge node via the public channel.
2. The edge node computes

𝑒 = 𝐻 (𝑚) (35)

𝑠2 = 𝛼2 · 𝑒 + (𝛼2 · ˆ𝑠𝑘2 + 𝛽2 + 𝛾2) · 𝑟𝑥 (36)

𝑠 = 𝑠1 + 𝑠2 (37)

and outputs the signature as 𝜎 = (𝑟𝑥 , 𝑠).

In the above online signing protocol, the signature is output by the edge node. The reason is that in the
real-world environment, especially the IoT scenario, usually the edge node is networking equipment such as
a gateway that connects the local end nodes to remote servers by forwarding traffic between them. Even if
the signature is output by the end node, the end node has to send it through the edge node to the intended
application server.

4.3. Update
Theupdate protocol is initiated by the user via the end device, either periodically or after recovery from security
incidents. We consider the following two cases. If a share is leaked but not tampered with, then the three
parties can run the share renewal protocol in Section 2.2.3 to update all three shares. If a share 𝑠𝑘𝑘 (𝑘 ∈ {1, 2}
according to our system model) is tampered with, then before the share renewal protocol, the update protocol
needs to recover it via the other two shares 𝑠𝑘𝑖 and 𝑠𝑘 𝑗 as follows:

𝑠𝑘𝑘 = 𝑓 (𝑘) = 𝑘 − 𝑗

𝑖 − 𝑗
· 𝑠𝑘𝑖 +

𝑘 − 𝑖
𝑗 − 𝑖 · 𝑠𝑘 𝑗 (38)

where 𝑖, 𝑗 , 𝑘 ∈ {1, 2, 3} and 𝑖 ≠ 𝑗 ≠ 𝑘 for a (2, 3) setting.

Theoretically, the update protocol can securely update all three shares as long as at least two of them are not
tampered with and at most one of them is leaked. In our scenario, we assume the share 𝑠𝑘3 in the cloud is
secure. In the recover procedure, to guarantee that only the party P𝑘 can compute 𝑠𝑘𝑘 without knowing 𝑠𝑘𝑖
and 𝑠𝑘 𝑗 , we use secure multi-party computation as follows:

http://dx.doi.org/10.20517/jsss.2024.30

Page 226 Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30

Figure 4. The update protocol, assuming 𝑠𝑘1 in the end node is tampered with.

• [Optional] Share recovery:
1. P𝑖 generates a random 𝑛𝑖 , computes

𝐴𝑖 =
𝑘 − 𝑗

𝑖 − 𝑗
· 𝑠𝑘𝑖 − 𝑛𝑖 mod 𝑞 (39)

and sends 𝑛𝑖 to P 𝑗 via public channel.
2. P 𝑗 generates a random 𝑛 𝑗 , computes

𝐴 𝑗 =
𝑘 − 𝑖
𝑗 − 𝑖 · 𝑠𝑘 𝑗 − 𝑛 𝑗 mod 𝑞 (40)

and sends 𝐴 𝑗 to P 𝑗 via public channel.
3. P𝑖 computes

𝐴 = 𝐴𝑖 + 𝐴 𝑗 mod 𝑞 (41)

and send 𝐴 to P𝑘 via the secure channel.
4. P 𝑗 computes

𝐵 = 𝑛𝑖 + 𝑛 𝑗 mod 𝑞 (42)

and sends 𝐵 to P𝑘 via secure channel.
4. P𝑘 computes

𝑠𝑘𝑘 = 𝐴 + 𝐵 mod 𝑞 (43)

• Share renewal: The three participants run the share renewal protocol in Section 2.2.3 to refresh their private
key shares.

The update protocol is illustrated in Figure 4, which assumes that 𝑠𝑘1 in the end node is tampered with.

http://dx.doi.org/10.20517/jsss.2024.30

Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30 Page 227

5. SECURITY
5.1. Unforgeability
We first claim the unforgeability of our (2, 3)-threshold ECDSA in the following theorem and then prove it.

Theorem 1 The (2, 3)-threshold ECDSA in Section 4 is (𝜏, 𝑞𝑠, 𝑞𝑐, 𝜖)-secure in the (2, 3)-TEU-CMAmodel, given
that the standard ECDSA signature scheme is EU-CMA secure. Specifically, the advantage of any PPT adversary
A winning the (2, 3)-TEU-CMA experiment is

𝐴𝑑𝑣 (2,3)−𝑇𝐸𝑈−𝐶𝑀𝐴
(2,3)−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐸𝐶𝐷𝑆𝐴

(A) ≤ 𝐴𝑑𝑣𝐸𝑈−𝐶𝑀𝐴
𝐸𝐶𝐷𝑆𝐴 (B)

where 𝐴𝑑𝑣𝐸𝑈−𝐶𝑀𝐴
𝐸𝐶𝐷𝑆𝐴 (B) is the advantage of B winning the EU-CMA game.

Let A be an adversary against the (2, 3)-threshold ECDSA, and B be the challenger running the (2, 3)-TEU-
CMA experiments with A. Meanwhile, B, as an adversary, runs the EU-CMA experiment with an ECDSA
challenger C. Therefore, B works as a connector between the (2, 3)-TEU-CMA experiment and the EU-CMA
experiment. Below we illustrate how to embed the EU-CMA experiment into the (2, 3)-TEU-CMA experi-
ment and reduce the (2, 3)-TEU-CMA security of the (2, 3)-threshold ECDSA to the EU-CMA security of
ECDSA.

In the (2, 3)-TEU-CMA experiment, B initializes system public parameters and keys and interacts with A.
Meanwhile, in the EU-CMA experiment, B interacts with C who initializes the system parameters and keys
of ECDSA. Specifically,

• Initialization.
– Initialization of ECDSA. C initializes the system public parameters pp = {𝐺, 𝑃, 𝑞, 𝑍𝑞} and a pair of

public and private keys (𝑝𝑘, 𝑠𝑘) of ECDSA.The system public parameters pp and public key 𝑝𝑘 are
given to B.

– Initialization of (2, 3)-threshold ECDSA. B initializes the three shares of 𝑠𝑘 and keys of additively
homomorphic encryption scheme as follows:
1. Generate random 𝑠𝑘1, 𝑠𝑘2, 𝑠𝑘3 ∈ 𝑍𝑞 .
2. Generate (ℎ𝑠𝑘, ℎ𝑝𝑘) as specified in the initial splitting protocol.
3. Provide system public parameters and public keys (𝑝𝑘, ℎ𝑝𝑘) toA.

• Queries.
– Signature queries. A submits a message 𝑚 chosen at will to B and queries the signature. B queries
C the signature on 𝑚. C runs the Signing algorithm of ECDSA and returns the signature 𝜎 to B.
Finally, B forwards 𝜎 toA.

– Corruption queries. A submits an index 𝑖 ∈ {1, 2, 3} to B to make a corruption query. B replies
with (𝑠𝑘1, ℎ𝑠𝑘) if 𝑖 = 1 and 𝑠𝑘𝑖 otherwise. B also replies 𝑠𝑖 toA if 𝑖 ≠ 3.

• Forgery. A returns a forged signature 𝜎∗ on some new message 𝑚∗ that has never been queried in the
query phase. B returns 𝑚∗ and 𝜎∗ to C.

After 𝑞𝑠 signature queries and 𝑞𝑐 corruption queries, ifA wins the (2, 3)-TEU-CMA experiment, then 𝜎∗ is a
valid signature on 𝑚∗ and B wins the TEU-CMA security experiment. Therefore, the advantage ofA winning
the (2, 3)-TEU-CMA experiment no more than the advantage of B winning the EU-CMA experiment, that
is,

𝐴𝑑𝑣 (2,3)−𝑇𝐸𝑈−𝐶𝑀𝐴
(2,3)−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐸𝐶𝐷𝑆𝐴

(A) ≤ 𝐴𝑑𝑣𝐸𝑈−𝐶𝑀𝐴
𝐸𝐶𝐷𝑆𝐴 (B).

Since ECDSA is EU-CMA secure, 𝐴𝑑𝑣𝐸𝑈−𝐶𝑀𝐴
𝐸𝐶𝐷𝑆𝐴 (B) is negligible. Therefore, 𝐴𝑑𝑣 (2,3)−𝑇𝐸𝑈−𝐶𝑀𝐴

(2,3)−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐸𝐶𝐷𝑆𝐴
(A) is neg-

ligible. According to Definition 2, the (2, 3)-threshold ECDSA scheme is secure under the (2, 3)-TEU-CMA
model.

http://dx.doi.org/10.20517/jsss.2024.30

Page 228 Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30

Table 2. Evaluation of communication cost

Protocol Messages over spc Messages over ppc Messages over bc

Phase I: Initial splitting 2 0 1
Phase II-1: Offline pre-signing 0 2 0
Phase II-2: Online signing 0 1 0
Phase III-1: [Optional] Share recovery 2 2 0
Phase III-2: Share renewal 0 6 0

5.2. Discussion
The initial splitting protocol in Section 4.1 generates dedicated private and public keys for the additively homo-
morphic encryption, rather than reusing (𝑠𝑘1, 𝑝𝑘1). Now we explain why reusing (𝑠𝑘1, 𝑝𝑘1) can negatively
influence the security of the scheme.

If (𝑠𝑘1, 𝑝𝑘1) is used for the additively homomorphic encryption scheme, then the adversary A will be given
𝑝𝑘1 in addition to 𝑝𝑘 in the (2, 3)-TEU-CMA security experiment. With 𝑝𝑘1 and 𝑝𝑘 ,A can derive the other
two public keys 𝑝𝑘2 = 𝑠𝑘2 · 𝑃 and 𝑝𝑘3 = 𝑠𝑘3 · 𝑃 as follows:

𝑝𝑘 𝑗 =
1
𝜆 𝑗
· (𝑝𝑘 − 𝜆1 · 𝑝𝑘1), for 𝑗 = 2, 3 (44)

as

𝑠𝑘 𝑗 =
1
𝜆 𝑗
· (𝑠𝑘 − 𝜆1 · 𝑠𝑘1) mod 𝑞, for 𝑗 = 2, 3 (45)

Note that B does not have 𝑠𝑘 and the discrete logarithms of 𝑝𝑘2 and 𝑝𝑘3. By submitting an index 2 or 3 in
the corruption query,A can distinguish the experiment from a real execution of the (2, 3)-threshold ECDSA,
which will result in failure of the (2, 3)-TEU-CMA security experiment.

6. EVALUATION
We first evaluate the communication cost of the (2, 3)-threshold ECDSA as it is the major concern when
deploying the scheme for DApps. Then we estimate the computing cost to provide a reference for real-world
deployment.

6.1. Communication cost
The communication cost is estimated by the number ofmessages transmitted among secure and public peer-to-
peer channels and broadcasting channels in each protocol. Let spc denote secure peer-to-peer channel, ppc
denote public peer-to-peer channel, and bc denote broadcasting channel. The estimated communication cost
is listed in Table 2.

The initial splitting protocol involves two messages over secure channels from the end node to the edge and
the cloud and one broadcasting channel to publish the homomorphic encryption key. Notably, the two-party
signing protocol uses merely two messages in an offline phase and one message in the online phase, and all are
over public channels among the end and edge nodes in the local area. This brings very light communication
costs for the application scenario. The update protocol involves two messages for an optional share recovery
phase and six for the share renewable phase, and all of them are over public peer-to-peer channels.

To study the reduction in communication complexity achieved by the proposed (2, 3)-threshold ECDSA

http://dx.doi.org/10.20517/jsss.2024.30

Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30 Page 229

Table 3. Comparison of communication complexity of threshold signing in (2, 3)-threshold setting

Scheme Offline Pre-signing Online Signing

Gennaro & Goldfeder 18 [8] - 8𝑡 bc + 4𝑡 (𝑡 − 1) spc
Wong et al. [11] 10 bc + 2 spc 2 bc
Gagol et al. [22] 12 bc + 2 spc 6 bc
Gennaro and Goldfeder 20 [23] - 12 bc + 4 spc
Castagnos et al. [12] - 14 bc + 2 spc
Our (2,3)-threshold ECDSA 2 ppc ppc

Table 4. Evaluation of computing cost

Protocol End node Edge node Cloud node

Phase I: Initial splitting 1 exp 0 0
Phase II-1: Pre-signing 11 exp 11 exp 0
Phase II-2: Online signing 0 0 0
Phase III-1: (Optional) Share recovery 0 0 0
Phase III-2: Share renewal 0 0 0

Table 5. Experimental environment

Device/Parameter Specification

End node Smartphone with 12 GB RAM, Octa-core Max 3.1 GHz CPU, Android 14 OS
Edge node Laptop with 16 GB RAM, Intel i7-1260P 2.10 GHz CPU, Windows 11 OS
ECC Curve FIPS approved standard curve P-256

scheme, the number of messages involved in the threshold issuance of an ECDSA signature was compared
with those of representative schemes, as shown in Table 3. The results indicate that this scheme significantly
reduces communication complexity.

6.2. Computing cost
The computing cost is evaluated via the number of exponentiation (i.e., scalar multiplication over elliptic curve
group 𝐺), and the key generation, encryption and decryption algorithms of additively homomorphic encryp-
tion scheme. The additively homomorphic encryption scheme is instantiated as the elliptic curve ElGamal
encryption “in-the-exponent”. The estimated computing cost is summarized in Table 4, where exp denotes
exponentiation.

In Table 4, the estimated computing cost for most cells is 0. This does not mean the corresponding protocols
bring no computing task to the node. There are still some lightweight operations such as integer addition,
integer multiplication, random number generation, etc. Their costs are ignored compared to time-consuming
operations such as exponentiation, encryption, etc.

Notably, in Table 4, most computing costs are from the pre-signing phase. In practice, this phase can be
executed offline before the application’s message is generated. Therefore, the scheme will not influence user
experience of DApps given that the online signing phase introduces very low computing costs.

To further estimate the computing cost for real-world applications, we test the running time of exponentiation
in common end and edge devices (a smartphone and a laptop). Details of the hardware and software environ-
ment are explained in Table 5. The average time for computing one exponentiation is 0.0273 seconds on the
smartphone and 0.0116 seconds on the laptop. Based on the results, we evaluate the running time for initial
splitting as 0.0273 seconds on the end node, and for pre-signing as 0.2998 seconds on the end node and 0.1280
seconds on the edge node. The results are acceptable for real-world applications.

http://dx.doi.org/10.20517/jsss.2024.30

Page 230 Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30

7. APPLICATION
The CEE key management demonstrates the integration of (2, 3)-threshold signature and the CEE comput-
ing paradigm. It has wide application prospects for the DApp market and beyond. Below we illustrate the
application of CEE key management in a promising blockchain-empowered sector, DePIN.

7.1. Background and key management challenges of DePIN
DePIN refers to decentralized physical infrastructure networks utilizing blockchain technology to return the
ownership and commercial rights of data back to the users, allowing everyone to benefit from their own digital
footprint. As a promising sector, DePIN has been attracting growing interest and investment recently. The
leading credit ratings agency, Moody’s Ratings, has highlighted the potential of DePIN to transform physical
infrastructure networks [24]. Individuals holding physical devices (e.g., mobile phones, personal computers,
smart cars, etc.) can participate in DePIN and get cryptocurrency rewards by providing data or services via
their devices, such as providing real-time noise pollution information through a smartphone, supporting nav-
igation services by uploading real-time traffic information through an intelligent vehicle while driving, etc. In
these cases, the ownership of data is enforced by signatures issued by the private key of the device. The rewards
are paid to an address derived from the corresponding public key.

Considering the scenario of real-time noise pollution monitoring for a residential community through DePIN.
To monitor noise pollution in the community, the related department can collect noise data via DePIN instead
of deploying physical equipment itself. An individual user can participate in the DePIN network by installing
some DApps for noise pollution monitoring and registering the public key to DePIN. Then, he or she can use
the sound recorder of his or her smartphone to collect noise data and submit them to the data requester (e.g.,
server of the noise pollution monitoring DApps). The noise data are signed by the private key of the user or
the smartphone, so that a reward can be paid to the cryptocurrency address derived from the corresponding
public key.

However, managing the private keys of physical devices is challenging for common users in DePIN. Existing
solutions store and use the private key in the physical device. If the physical device is lost, broken, or attacked,
the private key will be leaked or unavailable anymore, leading to two serious consequences:

• the reward under the cryptocurrency address will be lost, and
• a new pair of private and public keys need to be generated, and the user has to register the new public key
to DePIN.

7.2. Application of CEE key management in DePIN
Now we show how to use the proposed CEE key management to address the key management problem for
DePIN users.

As shown in Figure 5, the CEE key management service can be provided by a professional security company, a
smartphonemanufacturer, etc. To use this service, theDePINusers install client software on their smartphones.
By running the software of the CEE key management system in the smartphone, the private key is distributed
into three shares kept in the smartphone, the router in the home, and the cloud server of the service provider.
When uploading noise pollution data, the smartphone and router run the two-party signing protocol to issue
a signature and attach it to the data. The key management cloud is only involved in the key distribution and
update phase.

With the CEE key management service, when the physical device (e.g., the smartphone) is lost, broken, or
attacked, the private key share stored in it is leaked or unavailable anymore. However, the private key remains
secure and available as long as the other two shares in the router and cloud server are secure; therefore, the

http://dx.doi.org/10.20517/jsss.2024.30

Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30 Page 231

Figure 5. CEE key management for DePIN. CEE: cloud-edge-end.

first consequence in Section 7.1 will not happen. Further, by running the update protocol, the three shares are
refreshed while the public key remains unchanged, which means the second consequence will not occur.

8. CONCLUSION
The CEE paradigm has been widely adopted in many online computing products and services, such as smart
homes, intelligent transportation, e-health, etc. Combining (2, 3)-threshold key management with CEE pro-
vides a very convenient way for implementing key management for online products and services, where the
end and edge nodes near the end users are responsible for daily uses of the private key, and the cloud serves in
updating the storage of private key shares. The CEE key management framework is anticipated to have wide
application in various digital signature and public-key encryption schemes. The proposed (2, 3)-threshold
ECDSA demonstrates the application of the CEE key management framework in the widely used ECDSA sig-
nature. It also advances the theory of threshold ECDSA by further reducing the communication cost compared
to the best practice of parallel schemes.

DECLARATIONS
Authors’ contributions
Made substantial contributions to conception and design of the study: Zhang J, Zhang F
Performed security proof and evaluation: Zhang J
Provided administrative and technical support: Zhang F

Availability of data and materials
The supporting data for this article is available upon request directly from the authors.

Financial support and sponsorship
This work was partially supported by the National Natural Science Foundation of China under Grant No.
62172096; the XJTLU Research Development Fund under Grant No. RDF-21-02-014; the XJTLU Teaching
Development Fund under Grant No. TDF2223-R25-207; and the Suzhou Municipal Key Laboratory for Intel-

http://dx.doi.org/10.20517/jsss.2024.30

Page 232 Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30

ligent Virtual Engineering (SZS2022004).

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
©The Author(s) 2024.

REFERENCES
1. Yue K, Zhang Y, Chen Y, et al. A survey of decentralizing applications via blockchain: the 5G and beyond perspective. IEEE Commun

Surv Tutorials 2021;23:2191–217. DOI
2. Zheng P, Jiang Z, Wu J, Zheng Z. Blockchain-based decentralized application: A survey. IEEE Open J Comput Soc 2023;4:121–33. DOI
3. Nakamoto S. Bitcoin: a peer-to-peer electronic cash system. Satoshi Nakamoto 2008. Available from: https://bitcoin.org/bitcoin.pdf.

[Last accessed on 12 Dec 2024]
4. Houy S, Schmid P, Bartel A. Security aspects of cryptocurrency wallets—a systematic literature review. ACMComput Surv 2023;56:1–31.

DOI
5. Gennaro R, Goldfeder S, Narayanan A. Threshold-optimal DSA/ECDSA signatures and an application to bitcoin wallet security. In:

Applied Cryptography and Network Security: 14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings
14. Springer; 2016. pp. 156–74. DOI

6. Gennaro R, Jarecki S, Krawczyk H, Rabin T. Robust threshold DSS signatures. In: Advances in Cryptology—EUROCRYPT’96: In-
ternational Conference on the Theory and Application of Cryptographic Techniques Saragossa, Spain, May 12–16, 1996 Proceedings 15.
Springer; 1996. pp. 354–71. DOI

7. Lindell Y, Nof A. Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security; 2018. pp. 1837–54. DOI

8. Gennaro R, Goldfeder S. Fast multiparty threshold ECDSA with fast trustless setup. In: Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security; 2018. pp. 1179–94. DOI

9. Zhang H, Xie G, Zou X, et al. Asynchronous threshold ECDSA with batch processing. IEEE Trans Comput Soc Syst 2023;11:566–75.
DOI

10. Xue H, Au MH, Liu M, et al. Efficient multiplicative-to-additive function from Joye-Libert cryptosystem and its application to threshold
ECDSA. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security; 2023. pp. 2974–88. DOI

11. Wong HW, Ma JP, Yin HH, Chow SS. Real threshold ECDSA. In: NDSS; 2023. DOI
12. Castagnos G, CatalanoD, Laguillaumie F, Savasta F, Tucker I. Bandwidth-efficient threshold EC-DSA. In: IACR International Conference

on Public-Key Cryptography. Springer; 2020. pp. 266–96. DOI
13. Lindell Y. Fast secure two-party ECDSA signing. In: Advances in Cryptology–CRYPTO 2017: 37th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 20–24, 2017, Proceedings, Part II 37. Springer; 2017. pp. 613–44. DOI
14. Doerner J, Kondi Y, Lee E, Shelat A. Secure two-party threshold ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on

Security and Privacy (SP). IEEE; 2018. pp. 980–97. DOI
15. Tu B, Chen Y, Cui H, Wang X. Fast two-party signature for upgrading ECDSA to two-party scenario easily. Theor Comput Sci

2024;986:114325. DOI
16. Brown DR. Generic groups, collision resistance, and ECDSA. Des Codes Cryptogr 2005;35:119–52. DOI
17. Paillier P. Public-key cryptosystems based on composite degree residuosity classes. In: International conference on the theory and

applications of cryptographic techniques. Springer; 1999. pp. 223–38. DOI
18. Castagnos G, Laguillaumie F, Tucker I. Practical fully secure unrestricted inner product functional encryption modulo p. In: International

Conference on the Theory and Application of Cryptology and Information Security. Springer; 2018. pp. 733–64. DOI
19. Shamir A. How to share a secret. Commun ACM 1979;22:612–13. DOI
20. Herzberg A, Jarecki S, Krawczyk H, Yung M. Proactive secret sharing or: How to cope with perpetual leakage. In: Advances in

Cryptology—CRYPT0’95: 15th Annual International Cryptology Conference Santa Barbara, California, USA, August 27–31, 1995 Pro-
ceedings 15. Springer; 1995. pp. 339–52. DOI

21. Aumasson JP, Hamelink A, Shlomovits O. A survey of ECDSA threshold signing. Cryptology ePrint Arch 2020. Available from:
https://eprint.iacr.org/2020/1390. [Last accessed on 12 Dec 2024]

http://dx.doi.org/10.20517/jsss.2024.30
http://dx.doi.org/10.1109/COMST.2021.3115797
http://dx.doi.org/10.1109/OJCS.2023.3251854
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1145/3596906
http://dx.doi.org/10.1007/978-3-319-39555-5_9
http://dx.doi.org/10.1007/3-540-68339-9_31
http://dx.doi.org/10.1145/3243734.3243788
http://dx.doi.org/10.1145/3243734.3243859
http://dx.doi.org/10.1109/TCSS.2022.3230903
http://dx.doi.org/10.1145/3576915.3616595
http://dx.doi.org/10.14722/ndss.2023.24817
http://dx.doi.org/10.1007/978-3-030-45388-6_10
http://dx.doi.org/10.1007/978-3-319-63715-0_21
http://dx.doi.org/10.1109/SP.2018.00036
http://dx.doi.org/10.1016/j.tcs.2023.114325
http://dx.doi.org/10.1007/s10623-003-6154-z
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-030-03329-3_25
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1007/3-540-44750-4_27
https://eprint.iacr.org/2020/1390

Zhang et al. J Surveill Secur Saf 2024;5:213-33 I http://dx.doi.org/10.20517/jsss.2024.30 Page 233

22. Gągol A, Kula J, Straszak D, Świętek M. Threshold ECDSA for decentralized asset custody. Cryptology ePrint Arch 2020. Available
from: https://ia.cr/2020/498. [Last accessed on 12 Dec 2024]

23. Gennaro R, Goldfeder S. One round threshold ECDSA with identifiable abort. Cryptology ePrint Arch 2020. Available from: https:
//ia.cr/2020/540. [Last accessed on 12 Dec 2024]

24. Ratings M. How DePINs could build the future of physical infrastructure one token at a time. 2024. Available from: https://www.mood
ys.com. [Last accessed on 12 Dec 2024]

http://dx.doi.org/10.20517/jsss.2024.30
https://ia.cr/2020/498
https://ia.cr/2020/540
https://ia.cr/2020/540
https://www.moodys.com
https://www.moodys.com

	1. Introduction
	1.1. Background and problem statement
	1.2. Related work
	1.3. Our work
	1.4. Organization

	2. Preliminaries
	2.1. ECDSA
	2.1.1 ECDSA signature scheme
	2.1.2 Security of ECDSA

	2.2. Cryptographic toolbox
	2.2.1. Additively homomorphic encryption
	2.2.2. Threshold secret sharing
	2.2.3. Share renewal
	2.2.4. Multiplicative to additive share conversion

	3. The CEE Key Management Framework
	3.1. System overview
	3.2. Threat model and security model
	3.2.1. Threat model
	3.2.2. Security model

	4. CEE-based (2,3)-Threshold ECDSA
	4.1. Initial splitting
	4.2. Two-party signing
	4.2.1. Pre-signing protocol
	4.2.2. Online signing protocol

	4.3. Update

	5. Security
	5.1. Unforgeability
	5.2. Discussion

	6. Evaluation
	6.1. Communication cost
	6.2. Computing cost

	7. Application
	7.1. Background and key management challenges of DePIN
	7.2. Application of CEE key management in DePIN

	8. Conclusion
	Declarations
	Authors’ contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright

