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Abstract
Aim: Artificial intelligence (AI) is rapidly evolving in healthcare worldwide, especially in surgery. This article 
reviews important terms used in machine learning and the challenges of deep learning in surgery.

Methods: A review of the English literature was carried out focused on the terms “challenges of deep learning” and 
“surgery” using Medline and PubMed between 2018 and 2022.

Results: In total, 54 articles discussed the challenges of deep learning in general. We include 25 articles from 
various surgical specialties discussing challenges corresponding to their respective specialties.

Conclusion: The increased utilization of AI in surgery is faced with a wide variety of technical, ethical, clinical, and 
business-related challenges. The best way to expedite its expansion in surgery in the safest and most cost-efficient 
manner is by ensuring that as many surgeons as possible have a clear understanding of basic AI concepts and how 
they can be applied to the preoperative, intraoperative, postoperative, and long-term follow-up phases of the 
surgical patient care.
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INTRODUCTION
Nobel Prize Laureate and Professor Stephen Hawking stated in 2014 that AI could “spell the end of the 
human race, as once humans develop AI, it will take off on its own and redesign itself at an ever increasing rate 
and humans, who are limited by slow biological evolution, couldn't compete and would be superseded.”

These words of caution are shared by Tesla and SpaceX founder Elon Musk, history professor Yuval Noah 
Hariri, and Microsoft founder Bill Gates, all expressing serious concerns about the possibility of artificial 
intelligence (AI) spinning out of control from our incessant attempts for machines to acquire complete 
autonomy[1].

There are many significant and complex obstacles that must be overcome for AI to become autonomous 
and hyper-intelligent. This article reviews one of the main pillars of AI, machine learning (ML), and focuses 
on the challenges of achieving strong AI or full autonomy in surgery. ML includes algorithms such as 
classification and regression decision trees (CART) and support vector machines. Both models can analyze 
categorical (classification) or continuous (regression) variables.

Deep learning (DL) is an architecture of ML that was designed to mimic the neurological structure of the 
human brain and is currently the most promising method for us to get to more autonomous actions in 
surgery[1]. Thus far, narrow or “weak” AI is being utilized, but it is limited to algorithms that perform 
singular (unique) or extremely limited human tasks[2]. Artificial neural networks (ANNs) are architectures 
of DL. They require higher computational power and more annotated data. Data analysis is improved by 
way of enabling increased data input and simplifying data acquisition[3].

As mentioned above, ANNs are compared to a biological neural network, since training in an ANN is 
similar to learning in the brain[4,5]. Furthermore, ANNs are the most popular DL model. ANNs process an 
input (e.g., an image), passing it through many layers of interconnected nodes [called DNN (deep neural 
network)] that loosely resemble the structure of biological neurons. These neurons progressively detect 
features to finally provide an output[2], typically a classification (e.g., “dog” or “not a dog”).

The building block of the ANN is the node or perceptron. Each perceptron has multiple inputs (1 to a 
definite number), where inputs are weighted differently depending on their predictive value. Neurons fire 
when their input sums arrive at the neuron activation threshold (resulting in output production). A bias 
function can be introduced to change the likelihood of reaching this threshold by making it easier or harder 
to reach. Regarding input weight, it is randomly determined, and the model calculates the predictive error 
by comparing its prediction to the known outputs in the test data. Input weights are then iteratively 
adjusted to improve performance in a process called backpropagation.

“Iteration” is used to train DL networks, and it is the process of running and rerunning networks with 
continuous optimization of neuronal parameters to optimize performance and minimize errors. This 
improvement in output is the result of analyzing massive datasets, the development of better algorithms, 
and faster computational hardware[1].

https://youtu.be/olFxW7kdtP8
https://youtu.be/bfmFfD2RIcg
https://youtu.be/bfmFfD2RIcg
https://youtu.be/bfmFfD2RIcg
https://youtube.com/playlist?list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc
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In addition to ANNs, convolutional neural networks (CNNs) are increasingly being used in image 
processing as they are designed to process pixel data[6] and find efficacy in the field of computer vision (CV). 
Interestingly, CNNs structurally resemble the neural architecture used by the human visual cortex, which is 
situated in the occipital lobe[7].

How does a machine learn?
Pioneering computer scientist Arthur Samuel, in 1959, defined ML as giving computers the ability to learn 
without being definitively programmed. In other words, ML is the potential for algorithms to make 
decisions and predictions by interpreting data on their own. ML utilizes learning tasks that include 
classification, regression, clustering, and dimensionality reduction[8]. Models carry out analysis and predict 
outcomes based on input features. The process of ML involves model selection, training, evaluation and 
optimization[8], data collection, feature engineering, and data preprocessing.

Data collection and preprocessing are key steps in ML. Additional aspects of ML code can lead to shortened 
computer times and improved accuracy by generating features that determine algorithm performance. After 
data extraction, new datasets are constructed and selected, which are divided into training sets and others 
used for testing of models that are then validated[8]. ML, and in particular DL, is ideal for processing big 
data, and its utilization has been rising dramatically over the last few years.

The emergence of surgical data science
The quality of the resulting algorithm depends largely on the data on which the model is trained. Poor 
quality datasets, which have duplicates, missing data, and inconsistencies, weaken the accuracy of 
algorithms even when large datasets are used.

The importance of data in ML, particularly in surgery, has led to the emergence of a new field called surgical 
data science (SDS)[9]. The first building block of SDS is perception, during which the relevant data are 
perceived by the system, whether by humans (surgeons, operating team, or medical staff), devices, robots, or 
sensors used to capture patient data. These data provide the basis for the next building block, interpretation, 
in which the perceived data are interpreted in a context-aware manner to provide real-time assistance, 
which is the third building block in SDS[9].

The interpretation comprises data annotation, which is a cornerstone of SDS, and data analytics. There are 
several classes of data analytics tools. These include descriptive analytic tools, which provide a 
comprehensive summary of data made available through simple reports. There are also diagnostic analytic 
tools, which clinicians use to assess the effectiveness of a treatment protocol. In addition, predictive analytic 
tools assist healthcare providers in making a decision, while prescriptive analytic tools help them arrive at a 
decision[9].

Clinical translation, which is occasionally referred to as “from bench to bedside” or “the valley of death”, 
provides real-time assistance ranging from surgical education to various clinical tasks such as early 
detection, diagnosis, and assistance with therapy. An example of this is a DL algorithm created to aid in the 
diagnosis of diabetic retinopathy[9].

Big data and its four attributes 
Big data describes very large volumes of structured and unstructured data and is defined by the following 
four attributes: volume, variety, velocity, and veracity. Concerning the healthcare industry, approximately 
80% of its data are unstructured[4].

https://youtu.be/AU_hBML2H1c
https://youtu.be/aAYfnllkkn8
https://www.sciencedirect.com/science/article/pii/S1361841521003510#fig0002
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Volume refers to large datasets that continue to expand from terabytes to petabytes and beyond. Variety 
refers to structured data such as patient laboratory data or demographic details in electronic health records 
(EHRs) or unstructured data such as radiological images from MRI scans. Velocity refers to the speed that 
data are generated and how quickly they move and are transmitted. Veracity refers to the accuracy, 
consistency, quality, and trustworthiness of data[4].

Types of machine learning
Supervised learning (SL), the commonest type of ML[10], is also referred to as predictive learning. In SL, the 
underlying truth is known and provided to the machine that then uses labeled data to learn a general 
prediction rule in the derivation of an algorithm[4,11]. Retinopathy screening algorithms are an example of 
supervised deep learning[12].

Unsupervised learning (UL), also referred to as descriptive learning, does not have a ground truth label, and 
the algorithm finds structure within the data even if there is no training dataset. Data are fed into the 
algorithm without an explanation of what to do. By comparing similarities within the dataset, a structure in 
the dataset consisting of unknown inputs can be ascertained[4].

Reinforcement (incremental) learning (RL) is where a program attempts to accomplish a task while learning 
from its own success and mistakes, essentially through trial and error[13]. It can be used in the customization 
of anti-retroviral and anti-epileptic drugs, sepsis management[4], and insulin administration in artificial 
pancreatic systems[13]. It is also used to develop autonomous actions in the interventional fields of surgery, 
interventional radiology, and endoscopy[14-17].

Other types of emerging ML methods in surgery include semi-supervised learning, which is a type of ML 
that combines a small number of labeled data with a large number of unlabeled data during training. 
Learning from demonstration is a novel method in which robots acquire new skills by learning to imitate an 
expert. Federated learning is an ML method that enables models to get experience from different datasets 
located in different sites (e.g., a central server or local data centers) without sharing data. Finally, meta-
learning refers to learning algorithms that learn from other learning algorithms[18].

The performance of ML is ranked according to its level of discrimination (probability of predicting 
outcomes accurately) and calibration (the degree of over- or underestimating the predicted versus true 
outcome)[7].

METHODS
Search terms and ideas were discussed with the Editorial Team of Artificial Intelligence Surgery. The 
research was carried out on PubMed (https://pubmed.ncbi.nlm.nih.gov/), accessed on 20 January 2021, 
using the words “challenges in deep learning and surgery” for the years between 2018 and 2022. All studies 
discussing deep learning challenges in non-surgical specialties and non-English language articles were 
excluded. Four independent reviewers were involved in the process, and any disagreement was resolved by 
discussion.

This article reviews the systematic reviews and primary peer-reviewed articles published in the literature 
regarding the challenges of DL in surgery (PRISMA 2020 flow diagram, Figure 1). Secondary literature, 
consisting of narrative reviews, is also included. This review was submitted to PROSPERO, and it is 
currently awaiting approval. The PRISMA checklist was used for the manuscript design (PRISMA 2020 
checklist, Table 1) and drafting of the manuscript. An explanation of some of the basics of AI is presented in 

https://pubmed.ncbi.nlm.nih.gov/
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Table 1. PRISMA 2020 checklist[34]

Section and topic Item 
# Checklist item

Location 
where item is 
reported

TITLE

Title 1 Identify the report as a systematic review 1

ABSTRACT

Abstract 2 See the PRISMA 2020 for Abstracts checklist 1

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context of existing knowledge 2

Objectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses 2

METHODS

Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for 
the syntheses

6

Information sources 6 Specify all databases, registers, websites, organisations, reference lists and other sources 
searched or consulted to identify studies. Specify the date when each source was last 
searched or consulted

6

Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters 
and limits used

6-7

Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, 
including how many reviewers screened each record and each report retrieved, whether they 
worked independently, and if applicable, details of automation tools used in the process

6

Data collection 
process

9 Specify the methods used to collect data from reports, including how many reviewers 
collected data from each report, whether they worked independently, any processes for 
obtaining or confirming data from study investigators, and if applicable, details of automation 
tools used in the process

6-7

Data items 10a List and define all outcomes for which data were sought. Specify whether all results that were 
compatible with each outcome domain in each study were sought (e.g. for all measures, time 
points, analyses), and if not, the methods used to decide which results to collect

6

10b List and define all other variables for which data were sought (e.g. participant and intervention 
characteristics, funding sources). Describe any assumptions made about any missing or 
unclear information

6

Study risk of bias 
assessment

11 Specify the methods used to assess risk of bias in the included studies, including details of the 
tool(s) used, how many reviewers assessed each study and whether they worked 
independently, and if applicable, details of automation tools used in the process

6

Effect measures 12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the 
synthesis or presentation of results

6

Synthesis methods 13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. 
tabulating the study intervention characteristics and comparing against the planned groups 
for each synthesis (item #5)

6

13b Describe any methods required to prepare the data for presentation or synthesis, such as 
handling of missing summary statistics, or data conversions

6

13c Describe any methods used to tabulate or visually display results of individual studies and 
syntheses

6-7

13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If 
meta-analysis was performed, describe the model(s), method(s) to identify the presence and 
extent of statistical heterogeneity, and software package(s) used

-

13e Describe any methods used to explore possible causes of heterogeneity among study results 
(e.g. subgroup analysis, meta-regression)

-

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results -

Reporting bias 
assessment

14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising 
from reporting biases)

6

Certainty assessment 15 Describe any methods used to assess certainty (or confidence) in the body of evidence for an 
outcome

6

RESULTS 

Study selection 16a Describe the results of the search and selection process, from the number of records identified 
in the search to the number of studies included in the review, ideally using a flow diagram

7

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and 
explain why they were excluded

7
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Study characteristics 17 Cite each included study and present its characteristics 7

Risk of bias in studies 18 Present assessments of risk of bias for each included study -

Results of individual 
studies

19 For all outcomes, present, for each study: (a) summary statistics for each group (where 
appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), 
ideally using structured tables or plots

7

Results of syntheses 20a For each synthesis, briefly summarise the characteristics and risk of bias among contributing 
studies

-

20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for 
each the summary estimate and its precision (e.g. confidence/credible interval) and measures 
of statistical heterogeneity. If comparing groups, describe the direction of the effect

-

20c Present results of all investigations of possible causes of heterogeneity among study results -

20d Present results of all sensitivity analyses conducted to assess the robustness of the 
synthesized results

7

Reporting biases 21 Present assessments of risk of bias due to missing results (arising from reporting biases) for 
each synthesis assessed

-

Certainty of evidence 22 Present assessments of certainty (or confidence) in the body of evidence for each outcome 
assessed

-

DISCUSSION 

Discussion 23a Provide a general interpretation of the results in the context of other evidence 7

23b Discuss any limitations of the evidence included in the review 8-15

23c Discuss any limitations of the review processes used 15

23d Discuss implications of the results for practice, policy, and future research 14-15

OTHER INFORMATION

Registration and 
protocol

24a Provide registration information for the review, including register name and registration 
number, or state that the review was not registered

6

24b Indicate where the review protocol can be accessed, or state that a protocol was not prepared 6

24c Describe and explain any amendments to information provided at registration or in the 
protocol

6

Support 25 Describe sources of financial or non-financial support for the review, and the role of the 
funders or sponsors in the review

15

Competing interests 26 Declare any competing interests of review authors 15

Availability of data, 
code and other 
materials

27 Report which of the following are publicly available and where they can be found: template 
data collection forms; data extracted from included studies; data used for all analyses; analytic 
code; any other materials used in the review

6-7

the Introduction to better explain the analysis and delineate the outcomes of the studies.

RESULTS
When the search was done on PubMed using the words “challenges in deep learning” and “surgery” 
between 2018 and 2022, 54 manuscripts were identified (PRISMA 2020 flow diagram, Figure 1) and 25 
studies were included: 5 systematic reviews, 2 prospective studies, and 18 narrative reviews. Systematic 
reviews and prospective studies are considered primary sources, while narrative reviews are considered 
secondary sources.

The manuscripts focus on the challenges of deep learning in surgery, with 18 on general surgery, 3 on 
cardiothoracic specialty, 1 on orthopedic surgery, 3 on neurosurgery, and 1 on otolaryngology.

The seven systematic reviews focus on the most important ML and computer models to realize phase 
recognition in general surgery. Secondary aims include presenting commonly used concepts of AI and ML 
and discussions of data types and limitations of currently used model systems[3,4,7,10], variance analysis for 
predictive ability[8], and overall accuracy of those models[7,10].
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Figure 1. PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only[34]. 
*Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total 
number across all databases/registers). **If automation tools were used, indicate how many records were excluded by a human and 
how many were excluded by automation tools.

The most recently published systematic review is a comprehensive review on surgical data science, 
providing evidence[9] of progress in this field since 2004. It includes a list of publicly accessible surgical 
datasets and registered clinical trials relevant to the field, in addition to 51 expert opinions about open 
challenges in the field of surgical data science.

Two prospective studies were reviewed. The first focused on methods and challenges related to providing 
sufficient high-quality surgical video recordings for a machine to be trained in surgical context with 
sufficient fidelity. The second study evaluated the application of AI in simulation-based training of 
necessary psychomotor skills involved in neurosurgery.

The remaining narrative reviews the definitions and challenges of DL in the field of surgery.

DISCUSSION
Challenges of deep learning
Data perception 
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Data structure and storage 
There is, at times, limited technical infrastructure for data acquisition, storage, and access because not all 
acquired data are recorded and permanently stored. This is because of the high resolution of images and 
videos generated in surgical theaters, which are difficult to store (and retrieve) in healthcare information 
systems. Storing data in the cloud is becoming much more common, due to the expansion of data storage 
solutions within cloud environments including Amazon web services (AWS) and Microsoft Azure[9].

However, not all data are digitized and stored in a structured manner, which makes data access and 
exchange (and interoperability)[9] a challenging process. Advances in healthcare information systems involve 
increasing the level of interoperability of their systems to enable data to be securely exchanged. The highest 
level of interoperability is system awareness of the underlying assumptions, models, and processes of the 
systems involved. Currently, most systems are operating at a low level of interoperability. Adoption of 
standardized data formats, for example, fast healthcare interoperability resources (FHIR), provides better 
aggregation of data and systematized nomenclature of medicine/clinical terms (SNOMED CT). However, 
despite improved interoperability, it does not necessarily fix the problem of inconsistent semantic 
(vocabulary) coding in EHR data[16].

Data capture and sensors
There are challenges unique to the practice of surgery within its preoperative, intraoperative, and 
postoperative phases. For example, variables such as patient diversity, symptom complexity, imaging 
modalities and resolution, etc. impact the intraoperative phase[9].

The intraoperative phase is further complicated by tissue deformation, challenges in visual resolution, and 
environmental factors. In fact, the dynamic nature of tissues presents safety challenges, especially during 
robotic surgery, where real-time 3D reconstruction of tissue at the highest resolution possible is a 
prerequisite for safe operative navigation.

A challenging task is projecting an overlay on markerless deformable organs[18]. Differences between medical 
and internal images can be significant and impede clinical applicability. Therefore, the models used and the 
resultant outcomes may not be easily interpreted by computers unless a human flags any important issues, 
such as a potential risk or uncertainty during surgery. As a result, figuring out different transfer techniques 
to reduce the differences between image modalities and developing more explainable AI algorithms could 
enhance the performance of intraoperative decision making[18].

Sensors and algorithms need to be advanced to overcome the challenge of tissue deformation and the very 
dynamic environment encountered intraoperatively. Sensors, in particular, will play an important role in 
overcoming challenges to the development and implementation of AI by allowing for more accurate 
perception and capturing of dynamic and complicated environments via the fusion of multimodal data. The 
placement of sensors at the tips of instruments creates many challenging issues, starting from size 
constraints to limitations including the need for repetitive sterilization[14].

Traditional SLAM (simultaneous localization and mapping) algorithms[18] are built on the assumption of a 
rigid environment, unlike in a typical surgical field where the deformation of soft tissue and organs is often 
continuous. This flawed assumption limits its direct application for surgical tasks. To overcome this 
problem, a stereo-endoscope has been used within SLAM algorithms. Stereo-endoscopy is when an 
endoscopic camera is fitted with a sensor unit made of two flat image sensors arranged symmetrically 
around the shaft’s central rotational axis, to help restore the sense of depth lost in Management Information 

https://www.sciencedirect.com/science/article/pii/S1361841521003510#sec0003


Page 152Taher et al. Art Int Surg 2022;2:144-58 https://dx.doi.org/10.20517/ais.2022.11

System (MIS) techniques and allow for the reconstruction of the anatomical structures within in vivo video 
recordings using well-established computer vision techniques.

Another approach to overcoming the challenges of a dynamic environment is the emerging field of 
biophotonics which uses spectral imaging to extract relevant information on tissue morphology, function, 
and pathology. The advantages of this approach are that it lacks ionizing radiation, has a low hardware 
complexity, and is easily integrated into the surgical workflow[9].

One of the challenges of sensor development is the special focus on haptics, where the detection of a 
surgeon’s hand tremors is the data input to intraoperative machine processing. However, there is currently a 
debate as to whether there is a need to invest in haptics since the procedure may ultimately be performed 
without the need for the clinician to sense and interpret haptic information[14]. This is because surgeons who 
presently use surgical systems can perform surgery without haptics and rely exclusively on visual cues[14]; 
this makes the development of more sophisticated image capturing sensors perhaps more relevant.

Rather than haptics, investigators are paying more attention to the noise developed by those instruments 
when in use and are developing sensors to capture these audio data. The upside of this type of sensor is that 
it could be placed on the proximal end of the guide wire and not the distal part inside the patient, avoiding 
issues of size and regulatory constraints[14].

Interpretation
Data annotation 
Datasets used in data annotation[9] must include reliable, accurate, efficient, scalable, and representative data 
of the correct specification. Surgical data such as videos can be distinguished by spatial, temporal, and 
spatiotemporal annotation. Spatial annotations include image-level classification, for example, what tissue, 
tools and semantic classification, which pixel belongs to which tissue, and tool and numerical regression 
such as for tissue oxygenation.

Temporal annotation involves surgical workflow, for example, surgical phases, such as suturing and knot 
tying. Data labeling could be expensive, while gathering poorly labeled data will produce poor results and 
waste money[3,13,19]. It could also have a high inter-operator variability; for example, the total surface area of a 
burn injury could present a barrier to effective ML due to varying degrees of accuracy of labeled data[7].

Therefore, the major challenge[9] for data annotation for large-scale surgical applications is access to expert 
knowledge, where reducing annotation effort is the main target in annotation development. Active learning 
approaches that decide which unlabeled data would provide the most information and therefore reduce 
annotation efforts have been proposed, as have error detection methods and methods for annotating data 
directly during acquisition.

Other solutions are projects aimed at specifying the core ontology[9] of surgical processes, i.e., gathering 
basic vocabulary to describe surgical actions and instruments. The aim of such projects is to define 
standards for surgical video annotation from different working groups regarding temporal models, actions 
and tasks, tissue characterization, and general anatomy, as well as software and data structure.

Fortunately, there are open-source datasets[9] which already exist as examples of publicly accessible and 
annotated surgical data repositories, e.g., ChlecTriplet21 and HeiSurf for cholecystectomy and GLENDA for 
laparoscopic gynecology. The challenge is providing registries for less standardized operations such as 

https://www.sciencedirect.com/science/article/pii/S1361841521003510#sec0027
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hepatic-pancreatic and biliary or colorectal surgery, as this would require more sophisticated algorithms. 
The main obstacle is the paucity of videos for these procedures, which are significantly longer compared to 
cholecystectomy and restrictive bariatric surgery.

In SDS, images or videos are typically the main data sources that can be used to capture information at 
different granularities, ranging from theater room cameras to endoscopic cameras or microscopes. There is 
no gold standard framework enabling different image/annotation tools with AI-assisted annotation 
methods in the SDS field[9]. A new industry has emerged[9] offering online dataset annotation services 
through a large and organized human workforce. It is, however, unclear to what extent medical image data 
annotation can be outsourced to such companies, where important information could be lost. Furthermore, 
the high cost of such services may render the cost out of reach for many institutions.

Some technology companies gain access to patient information via their devices (da Vinci Surgical System, 
Intuitive Surgical, Sunnyvale, CA, USA) by keeping track of every intraoperative gesture carried out by their 
device[15]. This also raises the concern of advances in the SDS (software-defined storage) sector as 
commercial ventures (information is power) could enable near-monopolies of relevant SDS data and create 
tech giants, while surgery should be a public good and not just commercially exploited.

Another challenge faced in annotation is bias awareness, where confounding variables are crucial to the 
successful predictive model. Unrecognized cofounders or systemic bias in data can lead to flawed 
algorithms that may include racial biases or ersatz identifiers[19-21]. For instance, an algorithm might identify 
a pneumothorax because of the presence of a chest tube rather than the actual pathological finding on X-
ray. Another example is the diagnosis of skin-based melanoma because the algorithm was fed an image 
containing a ruler adjacent to the lesion. This is one of the most important short-term accuracy and 
reliability challenges and is occasionally referred to as distributional shift[7].

Data analytics
Computational challenges 
Algorithm training can be computationally expensive and depends on advances in computational powers 
provided by central processing unit (CPU) and graphics processing unit (GPU) resources[8,22]. The rate-
limiting step for increasing ANN applications is computational power, with increases in computational 
power and advances in CPUs and GPUs enabling theoretically limitless improvements[7,20].

Generalizability and external validity 
This indicates the degree to which an algorithm can be transferred (transfer means fine-tuning a convoluted 
neural network (CNN) that is pre-trained on a large dataset of natural images, instead of training a network 
from the start)[11] from the population being studied to a different setting, where algorithms do not need to 
be universally generalizable to be pertinent. AI trained to recognize a patient at risk of mortality in a UK 
NHS ICU might not perform well in another country with a population with different characteristics or 
intensive care protocols, but it could still be useful in the target population.

Algorithms trained on large datasets might have different levels of performance based on subgroups within 
the data[20].

Overfitting and underfitting 
Even after the model passes internal validation, it might not be generalizable to other populations of interest 
if the model is overfitted to idiosyncrasies or biases in the data using predictors which are not clinically 

https://youtu.be/yofjFQddwHE
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useful (high variance model), as in the weight of portable X-rays for chest tube examinations. Conversely, 
when a model performs poorly on internal validation, this can be described as underfitting or having high 
bias. This is caused by insufficient data or an overly simplistic model (e.g., linear relationship between 
variables when this is not true)[20].

Interpretability, i.e., “black box effect” 
As the complexities of models increase, it becomes difficult or impossible to identify the relationship 
between input and output (the black box conundrum)[23], which is unique to DL ANNs. This creates a 
challenging dilemma for those individuals responsible for a potential resulting medical error.

Understanding how models reach their predictions allows the researchers to evaluate whether their 
reasoning is justifiable or was subject to bias or error, such as using rulers to predict melanomas[20]. 
European legislation mandates that individuals have a right to an explanation of decisions made by 
automated systems[20]. Moreover, the features used to differentiate between data categories are not translated 
quickly into verbal or visual rules for any human to easily understand.

Insensitivity to impact 
There exists an ethical challenge in ML for the algorithm to be oblivious to the consequences of a false 
negative or false positive test (predictive tools that underestimate the outcome of a false positive or false 
negative outcome). While comparing ML systems and an expert dermatologist, both machines and humans 
found it difficult to discriminate between malignant melanocytic lesions and benign lesions; however, 
human experts “erred on the side of caution” because humans are aware of the dire impact of a false 
negative diagnosis on the patient. Herein, ML systems should be trained not only with the end result but 
also with the costs of both missed diagnosis and over-diagnosis.

Reward hacking 
A machine can learn unpredicted methods of achieving an outcome that cheats the system[7,24], necessitating 
meticulous validation through expert opinion and multicenter studies to evaluate the transferability of 
expertise to real-life scenarios. This is particularly important in surgical simulations when a loophole would 
enable the trainee to perform a surgical step successfully in the simulator that is inapplicable to a real-life 
operative scenario and should be identified by experts to retrain the system and validate it.

Catastrophic interference 
A main criticism of AI is catastrophic interference, i.e., forgetting where ANNs may no longer utilize 
previously learned information during the process of learning new information. It is due to overwriting of 
the original data memory by the next one. It is hoped that one day models will master the ability of 
gradually sustained accumulation of knowledge similar to humans. Incremental learning (IL) is the 
continual process of knowledge extraction from new data and preserving most of the previously obtained 
knowledge. This learning could overcome historical data occupying storage space. In addition, it fully 
utilizes all previous results, hence significantly saving time for new training. This learning applies mainly to 
big data and is particularly suitable to the medical field. Common methods of incremental learning or 
reinforced learning (RL) include feature extraction, fine-tuning, knowledge distillation, and joint training. 
Incremental learning has been widely employed in domains such as muscle activity and kinematics, non-
convulsive epileptic seizure, segmentation of anatomical structures, and atrial fibrillation[8].
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Clinical translation (real-time assistance)
Lack of outcome reporting and accountability 
Algorithms can show impressive results on internal validation but poor results when applied clinically 
(from bench to bedside). Hence, this is occasionally referred to as the “valley of death”[9], where there is a 
lack of external validation within randomized controlled trials.

A systematic review published in 2020 showed that 38% of studies discussed the need for prospective studies 
and 9% claimed algorithms could be integrated into clinical practice[1]. Despite this shortcoming, it is worth 
noting that not all questions that arise in the process of clinical translation of an algorithm need to be 
addressed by an RCT. For example, a diagnostic algorithm to diagnose diabetic retinopathy based on a 
pivotal prospective study was recently approved by the FDA[9].

Reporting guidelines implementation
With advances in AI and deep learning, healthcare could be able to emulate aviation as regards safety. Key 
safety-related domains in aviation involve checklists, training, crew resource management, investigating and 
reporting incidents, and organizational culture. Attempts to achieve a similar degree of standardization and 
automation of procedures with multiple backup systems and automatic availability of information are 
currently underway[25].

Since research into the role of AI in the healthcare sector, and specifically within the surgical domain, has 
exponentially increased over the past decade, there is a dire need to implement reporting guidelines.

In addition, other requirements need to be met, such as defining the role of AI within clinical care 
pathways, stress testing the AI in various clinical scenarios, and, just as importantly, the willingness to 
accept AI by patients and physicians. It is also fundamental to recall that AI systems will always need to 
update their parameters because of the natural history of diseases and the fact that populations change.

There is an ethical concern about who is responsible when an error occurs. Is it the machine, the physician, 
or the research group that trained, monitored, and evaluated the algorithm? Is it the technology company 
that developed the software or the data source? Could it be a combination of them all? As mentioned above, 
this is further complicated by the need to continuously update algorithms, which necessitates a continuous 
input of new patient information[20].

Other concerns
There are great concerns about the possible reduction in open surgical skills, particularly with the rise of 
autonomy in minimally invasive/robotic surgery. Surprisingly this is far from the reality because, despite 
advances in robotic surgery, surgery is far from high-level autonomy in the operating room[26]. Attanasio et 
al. defined and described six levels of autonomy for surgical robots, where level 0 is no autonomy and level 
5 is full autonomy. The vast majority of current surgeries utilizing machines reside at levels 0 and 1, with 
advances in technology affording gradual increases towards level 5[14,15,17,27].

Concerns related to a decrease in open surgical procedures and their related value to surgical training may 
not be well founded. A highly informative and exhaustive Lancet publication reports that nearly five billion 
people do not have access to appropriate surgical care, especially within communities represented by the 
medically underserved and economically disadvantaged[28]. With increased advocacy about patient 
confidentiality, there are rising concerns about data security[29] and cybercrime due to the ever-expanding 
digitization of patient health information and an overreliance on the digital system[23]. Moving away from 
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fee-for-service models towards models rewarding cost efficiency and prioritizing the treatment of low acuity 
patient populations may indirectly alienate certain patients from accessing care, particularly when you take 
into account ethnic or socioeconomic backgrounds and associated co-morbidities and risk factors[10].

Biggest challenge: acceptance
Should we accept AI into our lives and view it as a support for our progress and not as a threat to our 
existence? Should we view it as a means to understand ourselves and the world around us?

To understand how a certain behavior is generated, scientists can build the neural pathway of this 
behavior[30] and observe the biological robot in action in their laboratories. They can mimic natural 
pathways that link optical and acoustic sensors - i.e., eyes and ears - to motors, which can then act as 
surrogate muscles. This was previously used to simulate a cricket called Khepera. It is an easy creature for 
which to build the pathway needed for a female Khepera to locate a male mate utilizing only a few neurons 
and, hence, a small cluster of mathematical processors or nodes (10 nodes) designed to act as nerve cells. 
The process is called phonotaxis, which proved that there are not only two systems involved in the process, 
i.e., one to recognize the male’s call and the other to locate it, but also a third system that recognizes and 
moves towards the sound.

With complex creatures rising up to the ant kingdom (Cataglyphis), scientists could take the “black box” 
approach in building neural networks. Here, they did not simulate the actual firing of the neurons as in 
Khepera; they only wanted to reproduce the same inputs and outputs to and from the neural network, and it 
worked and behaved as living ants. The model also helped them understand why the Cataglyphis have three 
polarized light (POL) neurons despite the model showing that one is enough to sense light.

Finally, building CNNs that structurally resemble the neural architecture used by the human visual cortex 
situated in the occipital lobe might help us understand more about ourselves and how our brains function 
and possibly revolutionize certain treatments.

Deep learning could help us understand life processes by recreating them, providing a great opportunity to 
learn not only about the world around us but also about ourselves.

In conclusion, thanks to advances in deep learning, AI will play a bigger role in surgical specialties and 
instruments and move us closer to more autonomous actions in surgery. However, to achieve this 
autonomy and broader application of AI, we need to overcome certain challenges, as highlighted in the 
reviewed articles. Computational power and technology seem to be the most manageable components, 
while acquiring high-quality data that accurately represent the target population[31-33] is challenging. High-
quality representative data are important during the entire machine training process. In addition to the 
technical and training challenges described above, all relevant healthcare personnel need to be included in 
these processes and recognize the valuable role they play within the entire healthcare delivery landscape as it 
migrates to utilizing all things AI.
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