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Abstract
In recent years, air pollution exposure assessment models have experienced significant advancements, particularly 
in integrating advanced technologies. However, the intrinsic deficiency of the geostatistical model in existing 
studies restricted further development of the air pollution exposure model. In this perspective, we summarized 
several emerging technologies that can overcome the limitations and estimate air pollution exposures with high 
spatial and temporal resolutions. As these technologies evolve, they are expected to play an increasingly significant 
role in improving public health and managing environmental challenges.
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INTRODUCTION OF AIR POLLUTION EXPOSURE MODEL
Air pollution is a complex environmental issue influenced by various factors such as natural and 
anthropogenic sources, meteorology, and topography. Traditional air quality monitoring typically relies on 
fixed monitoring stations, as seen in studies like the Harvard Six Cities Study[1]. However, this approach has 
limitations[2,3]. First, the number of monitoring stations is limited, and populations residing far from these 
stations are excluded from the study. Second, populations near adjacent stations are assigned the same 
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pollution concentration despite the highly uneven spatial distribution of air pollutants, with significant 
concentration differences even between points in close proximity[4]. Third, in specific contexts, the spatial 
differences within a city can be as substantial as those between different cities. Epidemiological research has 
shown that the disparities in particulate matter air pollution within cities often exceed those observed 
between cities[5].

As a result, exposure modeling has become a primary method for prediction in large-scale studies[6,7]. High 
spatiotemporal exposure models, through dynamic data collection and analysis, offer more detailed and 
accurate information on air pollution exposure[8]. These models can capture the temporal and spatial 
variations in pollutant concentrations, revealing their distribution characteristics under specific 
environmental conditions. This is crucial for understanding the health impacts of air pollution, as health 
outcomes are closely linked to the surrounding air quality. In epidemiological studies, estimating 
individual-level exposure to air pollution is essential for assessing the relationship between pollution and 
participants’ health outcomes. This provides new perspectives for scientific research and supports the 
development of public policy and public health protection. Over the past two decades, significant progress 
has been made in air pollution exposure modeling, evolving from simple spatial interpolation methods (e.g., 
kriging, inverse distance weighing) and exposure indicator variables (e.g., traffic intensity at the residential 
address or distance to a major road) to statistical techniques like land use regression[9-11] and advancing to 
machine learning approaches that integrate multiple data sources[12]. These advancements have created 
high-resolution spatiotemporal models at different scales, laying a solid data foundation for air pollution 
epidemiology research.

LIMITATIONS OF CURRENT SPATIAL MODELS OF AIR POLLUTION EXPOSURE
In air pollution exposure assessment, spatial analysis is a critical tool that leverages geographic information 
systems (GIS) and spatial statistical techniques to study pollutant distributions and population exposure. 
However, this approach faces several limitations.

First, the accuracy of spatial data represents a fundamental challenge. Spatial analysis relies on high-quality 
geographic data to pinpoint pollution sources and affected populations[5], but in practice, data resolution - 
such as satellite image granularity and the uneven distribution of monitoring stations - often affects the 
practical application of the model[11].

Second, temporal scale limitations are evident. Air pollution is a dynamic phenomenon influenced by 
seasonal variations, climatic conditions, and human activities[13,14]. However, spatial analysis typically 
provides static “snapshots”, making capturing temporal pollutant-level fluctuations difficult. This temporal 
mismatch can result in exposure assessments failing to reflect actual conditions, as they overlook variations 
in pollutant concentrations across different periods[11].

Third, the choice of spatial scale significantly impacts the analysis results. Different spatial scales can 
produce vastly different outcomes. At larger scales, local pollution hotspots may be overlooked, whereas, at 
finer scales, regional pollution trends may not be effectively captured. Thus, selecting an appropriate spatial 
scale is crucial for enhancing assessment accuracy[5].

Fourth, uncertainty is a critical issue. Incomplete data, measurement errors, and model assumptions 
contribute to uncertainty in assessment results[15]. Although advanced statistical models can address such 
uncertainties to some degree, they also increase model complexity and place higher demands on data 
quality.
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Finally, individual activity patterns play an essential role in exposure assessment. Personal exposure levels 
are closely linked to the time spent at different locations, individual behaviors, and pollutant concentrations 
at those locations[16]. However, spatial analysis often fails to account for variations in individual activity 
patterns, such as differences between weekdays and weekends or exposure variations due to different modes 
of transportation[17]. This limitation primarily stems from the difficulty of collecting data on individual 
activities across time and space, as well as pollutant concentrations in microenvironments.

Based on these limitations, this study highlights current technological advancements in exposure 
monitoring techniques that offer potential directions for the development of air pollution exposure models.

DEVELOPMENT OF AIR POLLUTION EXPOSURE MONITORING TECHNIQUES
Personal monitoring based on wearable devices
In the context of rapid technological advancement, wearable devices have increasingly become an integral 
part of daily life, particularly in the fields of personal health and environmental monitoring. These devices 
enable users to access real-time health data, track physical activity, and monitor environmental air quality, 
thereby improving quality of life and driving innovation in health management. The application of wearable 
devices in health monitoring is extensive. Smartwatches and fitness trackers, such as the Huawei Watch, 
Apple Watch, and Fitbit, offer features like heart rate monitoring, sleep analysis, and step counting to help 
users manage their health[18-20]. Additionally, these devices can track running distance, duration, and calorie 
expenditure, assisting athletes in planning their training scientifically and reducing the risk of injury[21].

As public awareness of air quality grows, some wearable devices have started to integrate environmental 
monitoring functions, allowing users to track the levels of air pollution, such as PM2.5 and carbon dioxide 
concentrations, in real time. This feature is precious for individuals living in highly polluted areas, as it 
provides timely alerts for preventive actions[22]. In addition, most people spend their time indoors, so their 
exposure is driven by the exposure in the home, office, school, etc. However, few models ever try to account 
for these drivers of exposure. The wearable devices would provide a good opportunity for model 
development.

However, wearable devices face data privacy and security challenges, as well as issues concerning their 
accuracy and reliability. Manufacturers need to enhance data protection measures, and users should 
exercise caution by consulting professional medical advice when using these devices.

Wearable devices have opened new avenues for personal health and environmental monitoring, 
contributing to smart and personalized health management. In the future, they are expected to play an even 
more significant role in addressing health and environmental challenges.

Human mobility
Applying population mobility big data in air pollution exposure assessment is increasingly becoming an 
important research direction in environmental science and public health[23]. This technology leverages data 
sources such as mobile devices[24-26] and location-based services[27,28] to track population activity patterns and 
locations in real time, providing precise information for assessing exposure to air pollution. By analyzing 
the movement trajectories of populations, researchers can gain insights into the amount of time individuals 
spend in different environments and the frequency of their activities, enabling the evaluation of how air 
quality in specific areas affects the population[29]. This approach is more flexible and efficient than 
traditional monitoring methods, offering timelier risk assessments.
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Furthermore, by integrating meteorological data and air quality monitoring networks, mobility data can 
facilitate the development of more complex models to predict exposure levels under different temporal and 
spatial conditions. By optimizing urban planning, traffic management, and health education measures, it is 
possible to reduce population exposure in high-pollution areas.

In summary, population mobility data provide new perspectives and methodologies for air pollution 
exposure assessment, fostering more profound research into environmental and health issues. As data 
collection and analysis technologies continue to advance, the potential applications in this field will expand, 
offering significant support for improving public health and enhancing quality of life.

Low-cost sensors
Emerging low-cost sensors have the potential to significantly alter how, where, and when air pollution 
monitoring is done[30]. Low-cost sensing technologies offer benefits in enhancing the spatial resolution of air 
pollution measurements and supplementing regulatory data at a significantly lower cost[31,32]. The advantages 
of low-cost sensor technologies have opened up new avenues for air pollutant exposure modeling. When 
deployed in dense arrays, these low-cost sensors can deliver near real-time data on air pollutants with a 
spatial resolution that reflects neighborhood dynamics. They can reveal the impact of local pollution sources 
over various temporal and spatial dimensions often overlooked by the typically sparse regulatory 
monitoring systems[33-35]. Consequently, the increasing availability of data from these sensor networks has 
spurred research on integrating continuous measurements from low-cost sensors with land use information 
to produce comprehensive air quality data across space and time[36].

Mobile monitoring technologies
Vehicle-based mobile observation technology has made innovative progress in air pollution research in 
recent years[37,38]. Compared to fixed monitoring stations, this technology offers higher spatial coverage and 
flexibility, allowing for a more detailed capture of pollution variations across urban streets. By equipping 
vehicles with air quality monitoring devices, air pollution data can be collected in real time at different times 
and locations, including concentrations of harmful gases such as particulate matter, nitrogen oxides, and 
ozone, as well as some unregulated pollutants (ultrafine particles, black carbon, volatile organic 
compounds)[39,40]. Onboard monitoring provides real-time data and covers areas difficult for traditional 
monitoring stations to reach, such as street canyons, busy intersections, and commercial and residential 
districts. These high-resolution data offer new perspectives for understanding the complexity and dynamic 
changes in urban air quality[40,41].

When constructing air pollution exposure models, the data obtained from mobile observation technologies 
reveal the spatiotemporal distribution characteristics of pollutants, which is critical for accurately assessing 
population exposure levels. The high temporal resolution data collected by vehicle-based monitoring can 
highlight the sharp fluctuations in pollutant concentrations during peak traffic hours, helping researchers 
identify hotspots at specific times and locations. This information is crucial for developing targeted 
intervention measures and policies, effectively guiding resource allocation, and implementing pollution 
control strategies.

Artificial intelligenc and machine learning
Applying machine learning and artificial intelligence (AI) technologies has significantly enhanced the 
understanding and performance of air pollution exposure models[42]. These technologies help researchers 
and policymakers accurately assess the impact of air pollution on human health and ecosystems by 
processing and analyzing large volumes of environmental data. Machine learning algorithms can learn 
patterns from historical air quality data, identifying the sources and trends of pollutants. Machine learning 



Page 5 of Han et al. J. Environ. Expo. Assess. 2025, 4, 6 https://dx.doi.org/10.20517/jeea.2024.56 7

models can construct complex air pollution prediction models using diverse data sources, such as 
meteorological data, traffic flow, industrial emissions, and satellite remote sensing.

More advanced AI techniques also show significant potential in exposure models[43,44]. These technologies 
can automatically extract features from unlabeled, complex data, helping to identify and classify pollution 
sources, thereby improving the accuracy of air pollution source apportionment. AI technologies can offer 
more precise pollution predictions and spatial distribution analyses by integrating various data sources, 
such as real-time sensor data, social media information, and traffic data.

CONCLUSION
The rapid advancement of cutting-edge monitoring technologies, coupled with the exponential growth of 
high-resolution environmental data, has revolutionized the field of air pollution exposure assessment. These 
developments have enabled unprecedented precision in characterizing ambient air pollutant exposure, 
offering transformative opportunities for public health research and policy interventions. However, the 
integration of traditional exposure models with emerging technologies remains a critical challenge, 
requiring innovative approaches to bridge the gap between conventional methodologies and modern data-
driven paradigms. Future research must prioritize the development of sophisticated model fusion 
frameworks that effectively combine the strengths of mechanistic models with machine learning algorithms 
and AI capabilities. This integration should be complemented by advancements in big data processing, 
including edge computing for real-time analysis and federated learning for secure data sharing. 
Furthermore, the construction of next-generation exposure models should incorporate multi-omics data, 
personal exposure monitoring, and socio-economic factors to create a comprehensive exposure assessment 
ecosystem. Such advanced models will not only enhance our understanding of the complex interactions 
between air pollution and human health but also enable predictive capabilities for early warning systems 
and personalized exposure mitigation strategies. Ultimately, these technological advancements promise to 
support more informed decision making and evidence-based policy formulation, potentially leading to 
transformative changes in urban planning, transportation systems, and public health interventions to 
mitigate the global burden of air pollution.
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