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Abstract
Lung cancer is the deadliest cancer worldwide, primarily because of its metastatic spread. Extracellular vesicles 
(EVs) are small lipid-bilayer particles released by almost all types of cells. EVs play fundamental roles in cell-cell 
communication and cell-environment interactions by carrying proteins, nucleic acids such as DNA and RNA 
(mRNAs, lncRNAs, and miRNAs), and other bioactive molecules that are able to influence the behaviour of 
recipient cells. EVs have been described as key players in the modulation of tumour progression and the anticancer 
immune response. In this review, we highlight current knowledge on the role of non-coding RNAs in the modulation 
of the immune response, focusing on lung cancer. Since EVs are fundamental cell-to-cell mediators, we discuss the 
current knowledge on the immunomodulatory properties of tumour-derived EVs and, in particular, their ncRNA 
cargo during the different phases of lung cancer development and progression.
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LUNG CANCER
Lung cancer is the leading cause of tumour-related death worldwide for both men and women[1]. Generally, 
this disease is classified as non-small-cell lung cancer (NSCLC, 85%) and small-cell lung cancer (SCLC, 
15%)[2]. Histologically, NSCLC is subdivided into squamous cell carcinoma, large cell carcinoma, and 
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adenocarcinoma, which are the most prevalent types[3]. For NSCLC, the 5-year survival rate is estimated to 
be approximately 15% due to late diagnosis, the presence of tumour heterogeneity, and the limited 
understanding of lung cancer pathogenesis[4]. For early-stage NSCLC, surgical resection is the best 
therapeutic option and is applied alone or in combination with platinum-based chemotherapy, whereas 
chemotherapy and radiation represent the treatment of choice for advanced or metastatic lung cancer 
patients. The identification of driver mutations and genetic rearrangements in approximately 50%-60% of 
NSCLC cases has led to a change in the treatment of subgroups of lung cancer patients with a specific 
molecular profile[5,6]. Recently, improvements were achieved in the management of lung cancer as a result of 
the development of immune checkpoint inhibitors (ICIs) that block the PD-L1/PD1 axis or CTLA-4[7]. 
Currently, immunotherapy alone or in combination with standard chemotherapy represents a more 
promising therapeutic option for advanced-stage lung cancer than standard chemotherapy[8]. However, no 
reliable biomarkers are available to stratify patients who will benefit from this therapeutic approach, 
emphasizing the need to better understand the molecular processes underlying lung cancer development.

The cancer microenvironment has important impacts on the development and progression of lung 
tumours[9]. The tumour microenvironment (TME) includes endothelial cells, cancer-associated fibroblasts, 
and infiltrating immune cells[10,11]. Tumour cells are able to modulate the surrounding environment through 
the release of several elements, such as cytokines and extracellular vesicles (EVs)[12]. EVs can act as 
mediators of cellular communication through the delivery of their cargoes, such as proteins, lipids, and 
non-coding RNAs (ncRNAs)[13,14]. In this review, we first discuss the role of ncRNAs in the modulation of 
the immune response in the lung cancer microenvironment and then describe how EVs released from 
cancer cells modulate the phenotype of infiltrating immune cells to support tumour growth or eliminate 
tumour cells. Finally, we focus on the importance of ncRNAs carried by EVs from lung cancer cells and 
their immunoregulatory activity.

Immune system and lung cancer
Currently, there is a consensus about the importance and clinical relevance of the immune system and 
cancer interactions during all phases of tumour progression[15]. Indeed, the acquisition of oncogenic 
mutations by non-malignant cells is not sufficient for the full transition to a malignant phenotype. In this 
regard, several other modifications within the microenvironment are required to fuel cancer cells with 
nutrients, impair cell death pathways, and, most importantly, help mutant cells escape the control of the 
immune system[16]. Indeed, both the innate and adaptive immune systems can recognize and eliminate 
cancer cells[17]. Normally, the innate immune system, composed of natural killer (NK) cells, 
polymorphonuclear (PMN) leukocytes, mast cells, and antigen-presenting cells (APCs) such as 
macrophages and dendritic cells (DCs), is faster than the adaptive immune system in recognizing and 
eliminating cancer cells through the production of inflammatory cytokines, including interferon-gamma 
(IFN-γ), and perforin[18]. Conversely, adaptive immunity (mainly mediated by T and B cells) takes longer to 
initiate a response, but it is active after the recognition of specific antigens displayed on the surface of cancer 
cells, which elicits a more robust and durable anticancer response. However, during cancer progression, 
cancer cells acquire the capability to avoid immune recognition by adopting different immune escape 
mechanisms, such as defective processing and MHC class I presentation of cancer-related antigens and the 
creation of an immunosuppressive microenvironment[19]. The latter condition is established through the 
recruitment of suppressive immune cells, the polarization of immune and stromal cells towards a pro-
tumoral phenotype, the production of immunosuppressive cytokines, or the tumour or stromal cell 
expression of inhibitory immune checkpoint molecules (e.g., CTLA-4 and PD-L1) that can negatively affect 
the proper functioning of tumour-infiltrating lymphocytes. Together, these alterations strongly impair the 
immune system, which becomes unable to recognize and eliminate tumour cells, resulting in tumour 
progression and outgrowth[20].
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In the context of the lung cancer microenvironment, two important studies investigated tumour-induced 
infiltrating lymphoid and myeloid cells and their reprogramming capacity[21,22]. Lavin et al. described the 
first innate immune cell atlas of early lung adenocarcinoma lesions, reporting the impaired balance between 
infiltrating effector CD8+ T cells and T regulatory cells (Tregs) at the tumour site, observed as a decline in T 
cells expressing granzyme B and IFN-γ coupled with an expansion of suppressor T cells[21]. While studying 
the innate immunity compartment, Durrans et al. noticed an increased number of bone marrow-derived 
cells in tumour samples compared to corresponding normal tissue samples[22]. In detail, increased 
production of pro-tumoral factors, mainly osteopontin and the chemokine CCL7, was detected within the 
tumour microenvironment (TME) and attributed specifically to myeloid cells (both immature monocytic 
myeloid cells and neutrophils)[22].

Similarly, Lavin et al. described several alterations within the TME: the paucity and dysfunction of NK cells, 
dendritic cells (DCs), and CD16+ monocytes, along with an increase in immunosuppressive 
macrophages[21]. In addition, single-cell RNA sequencing revealed that macrophages present within a 
tumour, which were mainly derived from monocytes with immunosuppressive activity, showed a 
significantly different transcriptional profile than normal tissue macrophages[23]. Interestingly, data from 
early lung adenocarcinoma showed that tumour-associated macrophages (TAMs) expressed the 
immunomodulatory transcription factor PPARγ, CD64, CD14, and CD11c and had reduced expression of 
CD86 and CD206[21].

ncRNAs and immune regulation in lung cancer
For a long time, proteins were believed to be the only products derived from genetic information having 
functional significance. For this reason, studying the specific regions of the genome that encode proteins is 
an appealing field of interest in medical research. Innovative sequencing tools, however, have revealed that 
the protein-coding region accounts for only 2% of the whole genome and that the remaining 98% encodes 
thousands of RNA molecules with essential biological and pathological roles as process regulators[24]. 
Historically, these RNAs, known as ncRNAs, were classified into two main categories based on their size: 
small ncRNAs and long ncRNAs (lncRNAs). Small RNAs are less than 50 nucleotides in length and include 
microRNAs (miRNAs), ribosomal RNA (rRNA), transfer RNA (tRNA), and piwi-interacting RNA 
(piRNA). On the other hand, lncRNA segments contain longer sequences, generally exceeding 200 
nucleotides, and include pseudogenes and circular RNAs (circRNAs)[25]. Among small ncRNAs, miRNAs 
are the most studied and described in cancer progression[26]. MiRNAs are a family of non-coding RNAs 
composed of 21-25 nucleotides, and their biogenesis is a multistep process that involves the processing of 
RNA transcripts. MiRNAs are involved in a huge number of functions varying from the transcriptional/
post-transcriptional level to the translational level, meaning that miRNAs can regulate a great number of 
messenger RNAs in a cell[27]. It has been proven that a single miRNA can usually modulate several genes and 
that one gene can be controlled by multiple miRNAs[28]. Indeed, this family of ncRNAs is implicated in the 
regulation of several gene networks through the modulation of oncogenes such as RAS, MYC, and EGFR 
and tumour suppressors such as TP53, PTEN, and BRCA1[29].

NcRNAs have also been implicated in the regulation of immune cell signalling in lung cancer. The most 
relevant works describing how ncRNAs modulate immune cell recruitment and functions are summarized 
in Table 1. A study on NSCLC detected PD-L1 as a downstream target of miR-200/ZEB1, and this targeting 
contributed to immunosuppression in primary tumour tissue by increasing T-cell exhaustion[30]. Moreover, 
another work by Fujita et al. demonstrated the correlation between miR-197 expression and the down-
regulation of CKS1B, a key regulator of PD-L1 synthesis[31]. On the other hand, miR-3127 was shown to 
promote PD-L1 overexpression and immune escape in lung adenocarcinoma through STAT3 
phosphorylation[32].
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Table 1. Role of ncRNAs in the regulation of immune response in lung cancer

References ncRNA Target Function

Chen et al.[30] miR-200 ZEB1 and PD-L1 T cell exhaustion

Fujita et al.[31] miR-197 Cyclin-dependent kinase subunit 1 (CKS1B) Induce tumour progression 

Tang et al.[32] miR-3127 STAT3/PD-L1 Sustain immune escape

Sun et al.[34] lnCRNA XIST IL-10 and CD163 down-modulation Conversion to M2-like macrophages

Li et al.[35] GNAS-AS1 mir-4319 Promote NSCLC cell growth and metastasis

Tian et al.[36] lncRNA HOTAIRM1 HOXA Increase CD8+ cytotoxic T lymphocyte cells

Wu et al.[37] circ_0020714 miR-30a-5p/SOX4 Immune evasion and anti-PD-1 resistance 

Yang et al.[38] CHST1 miR-155 and miR-194 Promote immune escape of lung cancer

ncRNAs: Non-coding RNA s; lncRNAs: long non-coding RNAs; XIST: X-inactive specific transcript; NSCLC: non-small cell lung cancer; PD-1: 
programmed cell death protein 1, ZEB1: Zinc finger E-box Binding homeobox 1; PD-L1: programmed cell death-ligand 1; STAT3: signal transducer 
and activator of transcription 3; HOXA1: homeobox A1; SOX4: SRY-box transcription factor 4; IL-10: interleukin 10; XIST: X-inactive specific 
transcript; HOTAIRM1: HOX antisense intergenic RNA myeloid 1; GNAS-AS1: GNAS antisense RNA 1.

Along with miRNAs, lncRNAs have been shown to play a role in the anti-tumour immune response in lung 
cancer. In a recent article, Sage et al. combined single-cell RNA-sequencing data and flow-sorted healthy 
peripheral blood mononuclear cell (PBMC) data to identify immune-related lncRNAs with the potential to 
identify infiltrated immune cell populations within tumours[33]. Furthermore, considering the role of 
lncRNAs in the regulation of the expression of oncogenic genes, this information could be correlated with 
the deregulation of several gene pathways in cancer[33]. Sun et al. reported that lung cancer cells induced the 
up-regulation of the lncRNA XIST on macrophages and that this mechanism promoted conversion to an 
M2-like macrophage phenotype[34]. Furthermore, this conversion was characterized by the down-regulation 
of specific markers such as IL-10 and CD163, which subsequently promoted invasion and migration by lung 
cancer cells. In this study, the authors proved that the conditioned medium of lung cancer cells induced 
XIST and promoted the expression of M2-related genes in macrophages[34].

LncRNAs such as GNAS-AS1 were found to regulate the expression of mir-4319 in in vitro-differentiated 
THP-1 macrophages, thus increasing their number and consequently promoting NSCLC cell growth and 
metastasis[35]. In contrast, overexpression of the lncRNA HOTAIRM1 can reduce the immunosuppressive 
properties of MDSCs. In particular, this lncRNA, through the up-regulation of its target HOXA1, negatively 
affects the production of immunosuppressive molecules by MDSCs, thus reducing the immune suppression 
mediated by these pro-tumoral cells[36].

It has been demonstrated that many types of circular RNAs are involved in NSCLC immune evasion. 
Indeed, circ_0020714 was found to be up-regulated in NSCLC tissues compared with non-tumour adjacent 
tissues, where it acted as a sponge for mir-30a-5p, which in turn up-regulated the levels of the transcription 
factor SOX4[37]. Furthermore, the circRNA CHST15 has been described to act as an oncogene in lung cancer 
since its down-modulation correlates with reduced tumour growth. Moreover, CHST15, by sponging miR-
155 and miR-194, promotes the expression of PD-L1 on tumoral cells, thus contributing to immune escape 
during tumour progression[38].

EXTRACELLULAR VESICLES
“Extracellular vesicles” (EVs) are a generic term describing the lipid-bilayer particles released by almost all 
cells in the human body. However, these particles are highly heterogeneous, and their classification can 
differ based on the criteria utilized to differentiate them. EVs originate mainly via two cellular routes, one 
involving the endocytic cellular pathway and the other involving the plasma membrane. Exosomes, or small 
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EVs, are endosome-derived particles with a mean size of 50-150 nm. Their release relies on the formation of 
multivesicular bodies in the endosomal compartment and their subsequent fusion with the plasma 
membrane. In contrast, microvesicles, or ectosomes, have a larger mean size than exosomes (100-1,000 nm), 
and their formation depends on outwards budding from the plasma membrane[39]. Although this 
classification has been widely used, the cellular origin of these particles remains a challenging issue, as there 
is no consensus within the EV community on the markers utilized to discriminate different EVs subtypes 
based on their origin[40]. For these reasons, the guidelines of the International Society for Extracellular 
Vesicles (ISEV) suggest the use of “extracellular vesicles” to indicate isolated particles and the adoption of a 
classification system based on the physical characteristics of EVs, such as dimension, density, and 
biochemical properties[40].

Due to their intrinsic properties, EVs act as cellular messengers by carrying different bioactive molecules 
(proteins, nucleic acids, and metabolites) from one cell to another recipient cell, suggesting their pivotal role 
in cell-to-cell communication. EVs-related molecules can participate in many biological processes in 
different pathological conditions[41]. In cancer, EVs have been described as mediators in tumour 
progression-related mechanisms through the modulation of vascular permeability and neoangiogenesis, 
which allows and supports cell extravasation and metastatic outgrowth. EVs have also been reported to be 
involved in the modulation of the anticancer immune response[42,43].

Immunomodulatory functions of tumour-derived EVs
As described in the previous section, an important process in tumour progression is tumour escape: a state 
where tumour cells, via different mechanisms, prevent their recognition and consequent elimination by 
immune cells, resulting in tumour growth[19]. Among the different signals that can hamper the proper 
functioning of immune cells are interactions with tumour-derived EVs (tEVs)[44,45]. In particular, tEVs can 
have opposite effects: while they can suppress immune cell function, they can also express different tumour 
antigens with immunogenic properties on their surface[46] [Table 2].

A well-described process through which tEVs inhibit the functions of immune cells is the expression of 
immunoregulatory molecules, such as PD-L1, on their surface[47]. PD-L1 on melanoma-derived EVs was 
observed to inhibit the proliferation and cytotoxic activity of CD8+ T cells in vitro[48]. The suppression 
mediated by PD-L1-EVs required an interaction between ICAM-1, which is up-regulated together with PD-
L1 following IFN-γ stimulation, and LFA-1, which is expressed on activated T cells. Indeed, the blockade of 
ICAM-1 on EVs prevented the interaction of melanoma-EVs with CD8+ T cells and the consequent 
inhibition mediated by PD-L1[49]. Notably, the immunosuppressive properties of EVs expressing PD-L1 
were demonstrated in models involving EVs from tumour cell lines, which could differ from patient-
derived EVs and their real anti-immune activity.

CD4+ Tregs represent important helper cells involved in tumour growth since they down-regulate the 
cytotoxic antitumour activity of CD8+ T cells, and their presence within a tumour correlates with a poor 
prognosis in different cancer types[50]. In melanoma-bearing mice, the internalization of tEVs by DCs was 
shown to stimulate IFN-β production via the endosomal TLR3 signalling pathway, resulting in an increased 
number of Tregs and tumour outgrowth[51]. Leukaemia-derived EVs (obtained from either human cell lines 
or patient plasma) that transport 4-1BBL/CD137L molecules were shown to induce activation and effector 
phenotypes in Tregs via the upregulation of CD39 and TNFR2 expression[52].

Impairment of immune function can be achieved by other mechanisms that involve several types of non-
coding RNA. In chronic lymphocytic leukaemia, the non-coding Y RNA hY4 enriched in tumour exosomes 
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Table 2. Immunomodulatory properties of tumour derived-EVs

References EVs origin Specimens Isolation method tEVs effective 
molecule Functional role

Pro-tumoral immune response

Chen et al.[48] Melanoma cell lines Ultracentrifugation PD-L1 Inhibition of T cells 
proliferation and functionality

Ohue et al.[50] Melanoma cell lines Capture beads Induction of TLR3-TRIF 
signaling in DCs with 
IFN-β production

Increased number of tumour-
infiltrating Treg and tumour 
outgrowth

Nakazawa et al.[51] Leukemia cell lines and 
plasma

Ultracentrifugation for cell 
lines and SEC for plasma 
samples

4-1BBL/CD137L 
molecules

Activation of Treg cells

Haderk et al.[53] B-chronic 
lymphocytic 
leukaemia

cell line Ultracentrifugation and 
sucrose density cushion

Non-coding Y RNA hY4 Induction of PD-L1 expression 
on monocytes

Vignard et al.[54] Melanoma cell lines Ultracentrifugation and 
ExoQuick®

miR-3187-3p, miR-498, 
miR-122, miR-149, and 
miR-181a/b

Reduced TCR signaling 
pathway and cytotoxic 
activity in CD8+ T cells

Shinohara et al.[55] Colorectal cancer cell lines Ultracentrifugation miR-145 M2-like polarization via 
histone deacetylase 11 down 
modulation

Xun et al.[56] Breast carcinoma cell lines Ultracentrifugation miRNA-138-5p M2-like polarization via 
H3K27 histone demethylase 
KDM6B inhibition

Zhang et al.[57] Glioblastoma and 
microglia

cell lines Ultracentrifugation circular RNA 
circ_0012381, miR-340-
5p

Increased secretion of CCL2 
by microglia cells that in turn 
promotes tumour growth

Antitumoral immune response

Menay et al.[58] T lymphoma mouse model Sucrose density cushion CD24 and Hsp90 Generation of specific 
humoral and cellular immune 
response

Daßler-Plenker 
et al.[59]

Melanoma cell lines Ultracentrifugation NKp-30 ligands  (BAG6, 
BAT3)

Activation of the cytotoxic 
activity of NK cells via NKp-
30 receptor

Ma et al.[60] Melanoma cell lines Ultracentrifugation TAAs Promotion of MHC class I: 
TAAs complex formation in 
DC

EVs: Extracellular vesicles; tEVs: tumour-derived EVs; PD-L1: programmed cell death-ligand 1; TLR3: toll-like receptor 3; DCs: dendritic cells; 
miRNAs: microRNAs; TAAs: tumour associated antigens; MHC: major histocompatibility complex; NK: natural killer; CCL2: chemokine C-C motif 
ligand 2; KDM6B: histone lysine demethylase 6B; TCR: T cell receptor.

induces the expression of PD-L1 on monocytes via stimulation of endosomal TLR7 signalling, thus 
promoting tumour escape[53]. In contrast, the TCR and TNF-α signalling pathways in CD8+ T cells are 
disrupted by the activity of miR-3187-3p, miR-498, miR-122, miR-149, and miR-181a/b delivered by 
melanoma-derived EVs[54]. In addition, non-coding RNAs associated with tEVs also influence the 
polarization of tumour-infiltrated macrophages towards an M2 phenotype, which is fundamental for 
tumour progression. For instance, in colorectal cancer, this polarization occurs via the down-modulation of 
histone deacetylase 11 mediated by miR-145 within colorectal cancer cell-derived EVs[55]. In addition, miR-
138-5p, which has been observed in breast cancer-derived EVs, induces an M2-like phenotype in 
macrophages and promotes tumour growth by inhibiting the H3K27 histone demethylase KDM6B[56]. On 
the other hand, in brain malignancies, the uptake by microglia of EV-sorted Circular RNAs (circRNA) 
circ_0012381, which sponges with miR-340-5p, increases ARG1 expression, resulting in CCL2 secretion, 
which in turn promotes the growth of glioblastoma cells[57].
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On the one hand, tEVs are able to affect immune function negatively, as largely discussed above; on the 
other hand, the same tEVs can elicit a response against tumours by stimulating different immune 
populations. Indeed, tEVs obtained from the ascites of T-cell lymphoma-bearing mice expressed CD24 and 
Hsp90, malignant markers, on their surface and induced a competent immune response resulting in the 
rejection of a subsequent tumour challenge in syngeneic naïve mice[58]. Daßler-Plenker et al. showed that 
stimulation of the cytosolic immune sensor RIG-I in melanoma cells affected the protein surface expression 
of tEVs, promoting NK cell functionality[59]. tEVs can also positively affect the presentation of tumour 
associated antigens (TAAs) by DCs and thus have an intrinsic potential as a vaccine. For instance, the 
endocytosis of melanoma-derived microparticles efficiently promoted the formation of MHC class I-
tumour antigen complex together with the induction of the costimulatory molecules CD80 and CD86. The 
concomitant expression of these molecules with MHC complexes allowed a highly efficient tumour antigens 
presentation to CD8+ T cells[60].

EVs released by infiltrating Treg cells could prevent the proper functioning of other T-cell subtypes. 
Additionally, let-7d in exosomes is transferred to Th1 cells, contributing to immune cell suppression, which 
demonstrates that within the tumour microenvironment, tumour cells secrete EVs to influence the 
behaviour of immune cells[61].

Immune cell regulation by non-coding RNA in lung cancer-derived EVs
The EV field has widely expanded in recent years, but only a few studies have aimed to understand the role 
of EVs in immune regulation in the context of lung cancer. Hereafter, we report all the articles showing a 
link between EV-contained non-coding RNAs and immune regulation in lung cancer. Figure 1 highlights 
the key roles played by tEVs in affecting the behaviours of different cell populations within the TME and the 
many different ncRNAs involved in these processes.

MicroRNAs
Hypoxia is one of the most important drivers of lung cancer progression. Indeed, the hypoxic tumour 
microenvironment strongly affects the release of tEVs[62]. Furthermore, hypoxic tEVs enriched in TGF-β and 
miR-23a impair NK cell cytotoxic abilities by down-regulating two fundamental receptors of NK cell 
activation and degranulation (NKG2D and CD107a)[63].

Interestingly, the level of adipocyte-derived miR-27a-3p was observed to decrease as body mass index (BMI) 
increased, and this was inversely correlated with the level of the costimulatory gene ICOS, which is 
important in T-cell activation[64]. Although the link between miR-27a-3p and the ICOS gene was not directly 
demonstrated, in vitro experiments showed that EVs from adipocytes silenced for miR-27a-3p displayed 
higher levels of ICOS+ T cells and higher levels of IFN‐γ production. Similarly, Peng et al. observed a 
correlation between the up-regulation of EV-miR-125b-5p and T-cell dysfunction at baseline in 
nonresponsive NSCLC patients undergoing ICI therapy[65]. Moreover, they identified three miRNAs from 
the miR-320 family (miR-320d, miR-320c, and miR-320b) associated with a poor prognosis and response to 
ICIs, identifying these miRNAs as potential biomarkers for therapy response[65]. In addition, our group 
described circulating miR-320a shuttled by PMN-derived EVs in high-risk heavy smokers, defining its 
critical role in the induction of a pro-tumorigenic M2-like phenotype in macrophages via STAT4 
targeting[66].

An interesting study on T-cell modulation highlighted the role of the miR-200/ZEB1 axis in the modulation 
of the levels of PD-L1 on lung tumour cells and, consequently, in T-cell exhaustion[30]. A similar role was 
also attributed to miR-34 and miR-140, which both directly bind PD-L1 in NSCLC cells[67,68]. Furthermore, 
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Figure 1. Immune cells regulation of non-coding RNA inside lung cancer derived-EVs.

Treg cell expansion could also be mediated via the regulation of PTEN by miR-214 carried within 
microvesicles released by different types of cancer, highlighting a possible common mechanism to induce 
tumour progression[69].

Long non-coding RNAs
Similar to the members of the ncRNA family, lncRNAs have been observed to be deregulated in all stages of 
lung cancer development[70]. In 2016, Wang et al. first reported the involvement of EV-related lncRNAs in 
lung cancer by highlighting a new mechanism of interaction between lung tumour cells and their 
microenvironment[71]. Indeed, EVs produced by lung tumour cells were found to be responsible for a deep 
alteration in the lncRNA profile in mesenchymal cells. Even if a direct association with lncRNAs in tEVs 
was not provided, this study described for the first time the role of microenvironmental lncRNA 
perturbation in lung cancer[71].

Within the NSCLC microenvironment, TAMs are one of the main cellular components: they directly 
support cancer cell growth, survival, invasion, and metastasis and additionally provide protection to NSCLC 
cells via immune evasion strategies[72]. Recently, evidence suggesting EV-mediated crosstalk between lung 
tumour cells and macrophages was reported[73]. Indeed, in lung cancer, the lncRNA FGD5-AS1 detected in 
tEVs was found to be responsible for phenotypic alterations in macrophages, which resulted in the 
upregulation of genes involved in M2 polarization[74]. Interestingly, tEV-lncRNA-SOX2OT was detected in 
the blood of NSCLC patients and linked to the formation of pro-metastatic features by targeting the 
miRNA-194-5p/RAC1 signalling axis in osteoclasts[75]. Indeed, SOX2OT was detected inside EVs from 
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NSCLC cells and associated with the induction of an M2-like phenotype and concomitant M1 polarization 
inhibition through the miR-627-3p/SMAD signalling pathway, resulting in increased EGFR-TKI resistance.

Circular RNAs
Circular RNAs (CircRNAs) are an emerging field in cancer research, especially in NSCLC, as they were 
demonstrated to play pivotal roles in carcinogenesis, tumour formation, proliferation, migration, invasion, 
and sensitivity to therapy[76]. The first evidence of the presence of circRNA in cancer EVs was reported in 
2015 when Li et al., using RNA-seq methods, demonstrated the enrichment of circRNAs in tEVs compared 
to the cell of origin[77]. However, although many efforts have been made in recent years to understand the 
role of circRNAs in cancer progression, their impact on NSCLC has not been investigated as carefully as 
that of other types of non-coding RNAs. Most studies on EV-associated circRNAs in lung cancer aimed to 
comprehend their role in tumour cells better; thus, their involvement in the modulation of the immune 
landscape is still unknown[78].

Interestingly, a multifaceted role for the circ-CPA4/let-7 miRNA/PD-L1 axis in NSCLC was described by 
Hong et al., showing how circ-CPA4 promoted the production of tumoral-PD-L1+-EVs, which interacted 
with T cells to establish CD8+ T-cell inactivation, tumour immune escape and resistance to 
chemotherapy[79]. Similar results were obtained by Wang et al., who demonstrated the presence of high 
levels of circRNA-002178 in tumour samples and lung cancer cell lines and showed that enhancing PD-L1 
expression led to T-cell exhaustion[80]. Importantly, the authors showed that circRNA-002178 was also 
present in the plasma-EVs of NSCLC patients and that its delivery into CD8+ T cells induced PD1 
expression. Regarding the interplay between circRNA-EVs and innate immunity in lung cancer, only a few 
studies have described the involvement of circRNA-EVs in modulating macrophage polarization. 
Interestingly, circPTK2 was observed to be highly expressed in lung cancer patient serum EVs and 
correlated with the cancer stage. Most importantly, macrophages enriched in circPTK2 were found to be 
relatively pro-tumoral (M2 polarization), suggesting a possible role for circPTK2 in the EV-mediated 
crosstalk between cancer cells and the stroma[81]. Another circRNA linked to macrophage polarization is 
circPVT1, which was observed in EVs from lung cancer patients (blood) and cell lines. Indeed, the delivery 
of circPVT1 to macrophages via EVs was shown to cause M2-like polarization by sponging miR-124 and 
consequently increasing EZH2 expression. Moreover, the authors showed that co-incubation with EV-
treated macrophages prompted lung cancer cell proliferation, migration, and invasion[82]. Taken together, 
these studies suggest a potential role for EV-circRNA in the modulation of the immune microenvironment. 
There is still much work to be done to better elucidate the involvement of circRNA-EVs and immune 
modulation in lung cancer.

CONCLUSION
Extracellular vesicles as modulators of the immune response are still an expanding area of research. Here, 
we described several studies showing significant roles for these particles as diagnostic or prognostic 
biomarkers in cancer. However, to reach clinical implementation, several challenges still need to be 
addressed.

A consensus still needs to be reached among researchers regarding the term “extracellular vesicles” and their 
utilization, although the ISEV stated its agreement for the use of the term when indicating lipid-bilayer 
particles released by cells. The inappropriate use of “exosomes” and “microvesicles” creates confusion and 
misunderstanding among readers[40]. Another issue to address is EV characterization: the majority of the 
studies investigating the role of EVs in cancers are poorly characterized, as illustrated by the minimal 
information for studies of extracellular vesicles (MISEV) guidelines[40]. Lack of adherence to these guidelines 
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affects the quality of published findings and the reproducibility of results.

Notably, the immunoregulatory function of tumour-derived EVs has mostly been demonstrated using EVs 
separated from the conditioned media of tumour cell lines. This approach is completely different from 
using circulating patient-derived EVs obtained from blood, which are mainly derived from other types of 
cells. Indeed, all results should be confirmed using cancer patient samples, in which tEVs are present along 
with EVs of different cellular origins. This would allow us to comprehend whether the role of EVs is strictly 
correlated to the tumour microenvironment or at the systemic level and, therefore, relevant to immune 
regulation.

In the last twenty years, non-coding RNAs have emerged as reliable candidates for predictive and 
prognostic biomarkers and therapeutic targets in cancer. However, implementation of these small molecules 
in the clinical setting has yet to be ready due to several methodological issues that need to be addressed. In 
this regard, standardized procedures for ncRNA isolation and detection should be established among 
researchers to avoid inconsistencies and lack of reproducibility among different studies. Nonetheless, a 
better comprehension of the origin and mechanisms of release of these molecules is necessary before they 
are implemented in the clinical setting. Despite these challenges, EVs and their non-coding RNA cargo 
could represent an interesting tool for cancer treatment management.

To date, research has unveiled pivotal functional EV-related ncRNAs involved in modulating the tumour-
immune relationship and suggested their potential value involvement in monitoring and predicting 
treatment responses in lung cancer patients.
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