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Water electrolysis for green hydrogen production enables the conversion of the renewable energy into clean 
fuel. Relative to the conventional alkaline water electrolyzers, proton exchange membrane (PEM) 
electrolyzers possess a more compact design and are capable of delivering a greater current density and 
higher voltage efficiency[1]. Regrettably, the sluggish kinetics of anodic oxygen evolution reaction (OER) and 
the degradation of catalysts in acidic and strongly oxidative environments largely hinder the upgrading of 
PEM[2]. Currently, Iridium oxides (IrO2), bearing an activity-stability compromise, are the primary catalysts 
for OER, yet the high cost and continuously growing demand urge us to find a feasible alternative[3]. In this 
context, Ru-based catalysts with the merits of approximately 100-fold greater abundance, 8-fold lower cost, 
and more appealing activity than IrO2 come into view[4]. Unfortunately, Ru-based catalysts, such as RuO2, 
tend to form soluble Ru>4+ species in the OER process, giving rise to a severe decay in catalytic performance. 
Notwithstanding the improvement in activity by some strategies, their lifespan remains limited to merely 
several hours at current densities higher than 10 mA·cm-2[5-7]. Challenges persist in the development of 
Ru-based catalysts that are both highly active and stable. In contrast to traditional experimental trial-and-
error methods or expensive and slow density function theory (DFT) approaches, high-throughput 
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theoretical calculation techniques combined with machine learning (ML) have significantly improved the 
efficiency of catalyst design[8], providing potential for accelerating the development of efficient Ru-based 
catalysts.

Now, in their article published in Journal of the American Chemical Society, Abed et al. rapidly figured out 
the suitable composition of desirable Ru-based catalysts with the assistance of a ML computational pipeline 
[Figure 1A][9]. Initially, the trained pipeline identified the Ru-Cr-Ti-Ox as a good candidate with enhanced 
durability. And experimentally, the Ru0.6Cr0.2Ti0.2O2 was synthesized successfully, delivering a current density 
of 100 mA·cm-2 at the overpotential of 267 mV and tiny decay in a 200-hour stability test. Compared to 
RuO2, this catalyst significantly extended lifespan and reduced overpotential. Evidenced by the theoretical 
calculations and in situ characterizations jointly, the Cr additives allow for the reduction in overpotential by 
decreasing reaction energy barriers and the Ti dopants slow down the mass dissolution of Ru by boosting 
metal-oxygen covalency, both of which endow the Ru0.6Cr0.2Ti0.2O2 catalyst with high activity and long-term 
stability.

To achieve this, firstly, a computational model employing a crystal graph convolutional neural network 
modified with a hyperbolic tangent activation function and dropout algorithm (CGCNN-HD) was trained, 
validated and tested using a data set of 36,465 metal oxide structures. The Pourbaix energy (ΔGpbx), referring 
to the energy of formation per atom, serves as a proxy to predict the electrochemical stability. All structures 
underwent a preprocessing and scaling procedure using the lattice scaling approach, with the predicted 
property shifted within a 95% confidence interval to minimize the errors caused by nonideal structures. 
With the trained model, a M-M2-O chemical space, which maintained the rutile oxide structure constant 
while substituting 46 elements, was explored to generate a dataset of 2,070 hypothetical compounds. A total 
of 195 rutile oxide structures were selected based on the energy above hull criteria [Figure 1B]. Focusing on 
the ΔGpbx of the Ru-containing structures, it was revealed that doping Ti, Sn, Ge and Cr improved the 
Pourbaix stability and resulted in the increase of the metal-oxygen covalency. Among these, Ti 
demonstrated the largest computational improvement and Cr exhibited enhancing activity in previous 
studies; thus, experimental validation was concentrated on the Ru-Cr-Ti-Ox family of catalysts.

A series of Ru-Cr-Ti-Ox materials preserving the rutile oxide structure were synthesized by a sol-gel method 
starting by tuning the amount of Cr in the Ru-Cr-O2 and then optimizing the Ti proportion. The 
Ru0.75Cr0.25Ox and Ru0.6Cr0.2Ti0.2Ox possessing optimized overpotential and enhanced stability were attained. 
The results of morphological characterization show that they maintained a similar rutile structure, in which 
the doped elements are uniformly distributed in the particles with a crystallite size of 3.5-5.0 nm, smaller 
than that of commercial RuO2. Both could provide more than 400 A·gRu

-1 of a mass activity at 1.48 V vs. 
Reversible hydrogen electrode (RHE), being approximately four folds higher than that of RuOx (79 A·gRu

-1) 
[Figure 1C]. Intriguingly, the doping of Cr and Ti species each played a distinct role. Specifically, 
incorporating Cr remarkably increased the electrochemical active surface area and lowered the formation 
energy barrier of HOO*, the critical intermediate in the rate-determining step, thereby elevating the mass 
activity drastically. In the chronoamperometry test at the current density of 100 mA·cm-2, RuOx and 
Ru0.75Cr0.25Ox were completely deactivated in the initial 40 h [Figure 1D], indicating that the Cr species was 
not a key component in improving the stability of Ru-based materials. Meanwhile, the Ti-doped 
counterpart exhibited good stability within 200 h, benefiting from the extremely slow dissolution of Ru 
[Figure 1E]. Unveiled by the X-ray absorption near-edge structure (XANES) results of O K-edge and 
calculations, the Ti species apparently increased the metal-oxygen covalence in the rutile oxide structure 
from 85.20% of RuO2 to 93.62% in Ru0.6Cr0.2Ti0.2Ox [Figure 1F]. Moreover, in situ differential electrochemical 
mass spectroscopy measurements (DEMS) using the 18O isotope disclosed that the Ti incorporation in 
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Figure 1. ML-aided framework identifies Ru-based acidic water oxidation catalysts. (A) Schematic of the design process of Ru-based 
catalysts from the ML-aided calculation model to the real catalyst; (B) The model named CGCNN-HD’s heatmaps of Pourbaix 
electrochemical stability (ΔGpbx) for the subset; (C) Mass activity at 1.48 V vs. RHE for Ru0.6Cr0.2Ti0.2O x, Ru0.75Cr0.25O x, and RuOx; (D) 
Stability test at a constant current density of 100 mA·cmgeo

-2; (E) Accumulative total dissolved ions for RuOx and Ru0.6Cr0.2Ti0.2Ox; (F) O 
K-edge STXM spectroptychography XANES comparison between Ru0.75Cr0.25Ox and Ru0.6Cr0.2Ti0.2Ox; (G) DEMS signals of the reaction 
products using a H2

18O aqueous sulfuric acid electrolyte. This figure is quoted with permission from Abed et al.[9]. ML: Machine learning; 
CGCNN-HD: crystal graph convolutional neural network modified with a hyperbolic tangent activation function and dropout algorithm; 
RHE: reversible hydrogen electrode; STXM: scanning transmission X-ray microscopy; XANES: X-ray absorption near-edge structure; 
DEMS: differential electrochemical mass spectroscopy measurements.

Ru0.6Cr0.2Ti0.2Ox suppressed participation degree of lattice oxygen by ~66%, compared to Ru0.75Cr0.25Ox 
[Figure 1G], allowing for a more rigid metal-oxygen framework and higher kinetic barriers for oxide 
dissolution, making the Ru0.6Cr0.2Ti0.2Ox more stable. In short, Cr additives account for the boosted reaction 
activity and Ti dopants are responsible for the enhancement in stability of the Ru-M-O materials. The 
excellent OER performance in experiment is well in line with the screening results of ML.

In summary, Abed et al. presented an inspiring approach for exploiting multi-component catalysts[9]. The 
guidance of ML enables the devising of efficient and durable catalysts to become more targeted, reducing 
the workload and time-consuming processes largely. Notably, the efficacy of ML models depends largely on 
the quantity and quality of training data. Despite the exponential growth in published experimental 
electrocatalytic data annually, a limited amount is currently accessible for ML training. Closer collaboration 
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between experiments and ML simulations is needed. Besides, the selected descriptors require careful 
consideration, and the applicability of the ΔGpbx discussed in this work to other systems deserves to be 
verified. Although there remains considerable exploration ahead, the prospect for ML-assisted development 
of efficient catalysts is undoubtedly attractive.
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