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Abstract
Healthcare applications of artificial intelligence (AI) and machine learning (ML) are currently in a stage of
exponential growth; however, their adoption into clinical practice across clinical specialties remains uneven. In
spine surgery, the presence of challenging clinical problems, advanced intraoperative technologies, and large multi-
center datasets positions the field well for the integration of these technologies into the clinic and operating room 
(OR). Here, we review recent advances in AI/ML applications in several key domains of spine surgery, 
identify methodological challenges shared by many approaches, and suggest solutions that may lead to these 
approaches becoming validated, commercialized tools that can reach clinical practice. Ultimately, we aim for 
this narrative review to help catalyze further progress in the development and commercialization of AI/ML to 
benefit future spine patients.
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INTRODUCTION
The past decades have seen spine surgery at the forefront of healthcare innovation, with countless 
advancements in surgical techniques, robotics, and medical devices positively impacting patient care[1-3]. In 
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parallel, recent advances in artificial intelligence (AI) and machine learning (ML) have already touched
nearly every facet of modern life, from industry and transportation to the arts and music. AI and ML rely on
large datasets to recognize patterns in data and, when properly deployed, can perform specialized tasks
more quickly and accurately than humans. Due to these promises, spine surgeons are looking to AI/ML to
usher in the next generation of technical advancements for their patients.

We are currently at an inflection point for the impact of AI/ML in spine surgery. The number of studies on
healthcare AI applications continues to grow exponentially[4], a trend that is reflected in spine surgery as
well[5]. Furthermore, national funding agencies have established priorities in healthcare AI[6], and the Food
and Drug Administration has gained experience in regulating these tools[7]. Simultaneously, private venture
funding has grown substantially in healthcare AI[8], but rates of progress have not been equal across
applications[4]. In particular, AI diagnostic tools in radiology and pathology have grown faster than other
areas of medicine[4], such as the surgical specialties. A better understanding of the landscape of AI/ML in
spine surgery could help bridge the gap between research and commercialization of such tools.

Currently, disorders of the spine are among the major contributors to both healthcare costs and disability
both in the United States and worldwide[9,10]. Spine surgery is a major contributor to healthcare
spending[11,12], and while safety has improved significantly year over year[13], when complications do occur,
they cause a substantial impact on patient quality of life and healthcare spending[14]. Due to the wide range
of variables that influence patient selection, preoperative planning, intraoperative technique and decision
making, opportunities for the potential impact of AI and the possible challenges are high. AI-based tools
that could reliably make advances in efficiency, technical proficiency, or complication minimization would
have immense clinical and economic impact.

This article provides a targeted primer on AI/ML algorithms and critically reviews select applications of AI/
ML to spine surgery. We highlight those that aim to assist in pre-surgical planning, intraoperative
assistance, and prediction of postoperative course. These tools span a spectrum of development and
commercial deployment, employ a variety of data sources, and interface with clinicians and patients in a
number of ways. Through this narrative review, we identify a set of shared challenges facing the field,
namely the substantial heterogeneity in patients with spinal disorders, the uncertainty and subjectivity in
outcome measures, and the quality and quantity of data available for algorithm development. Finally, we
propose solutions to these challenges, which we hope can forecast a path toward incorporating robust AI/
ML tools in spine clinics and operating rooms (ORs), thereby achieving the best outcomes for future patients.

AN AI/ML PRIMER FOR SPINE SURGEONS
AI is a group of computational approaches that aim to provide human-level expertise and decision making 
and predominantly rely on ML, a class of powerful statistical models that recapitulate in silico different 
facets of human sensory processing and cognition, ranging from vision and language to estimation and 
prediction tasks[15,16]. While the technical aspects of AI and ML are beyond the scope of this review, we 
discuss several key concepts that all spine surgeons should familiarize themselves with, as these technologies 
continue to play an increasing role in our field.

Traditional ML algorithms adapt structured formulas to relate input and output variables and generate 
future predictions. Common types of these algorithms include logistic regression, decision trees and 
random forest, and support vector machines[15]. They differ based on the types of input and output variables 
they can handle, as well as their ability to process noisy and non-linear data, which are prevalent in 
healthcare applications. The other major class of models is known as ‘deep learning’, which accounts for the 
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many recent groundbreaking applications of AI. These models leverage artificial neural networks, which can 
learn complex relationships between their complex input data and generate a wide variety of potential 
outputs, including text, images, and audio[16]. Compared to traditional ML, deep learning is more powerful 
but requires massively more data and is specialized for data-intensive tasks such as vision and language 
processing. On the other hand, traditional ML has straightforward ways for users to understand what 
variables are most important in making predictions, which is particularly true for the more simple 
methods[15]. Efforts to understand how deep learning makes predictions and how it weighs input data 
present an evolving challenge[16].

Another key division among AI/ML algorithms is between supervised and unsupervised approaches. 
Supervised models require training between inputs and desired outputs using labeled data. The process of 
annotating and curating such datasets can be cumbersome and is particularly challenging in surgical 
specialties where patient numbers are low and factors such as patient privacy are essential. Unsupervised 
models such as k-means clustering instead can find patterns inherent in unstructured data; however, they 
cannot directly make predictions in the same way that supervised algorithms can[15]. While AI algorithms 
are advancing at a staggering pace, developing a general framework that outlines both the capabilities and 
limitations of these models will be critical for spine surgeons in the coming decades.

RECENT AI/ML APPLICATIONS IN SPINE SURGERY
Preoperative planning
Spine surgeons face various clinical and radiographic factors in preoperative planning, which they must 
parse to make often difficult and subjective decisions about patient selection and surgical approach. AI 
could augment the ability of clinicians to understand patient disease states, weigh factors such as symptoms 
and disability, and assess anatomic and pathologic parameters from multimodal imaging.

A number of recent studies have used ML to assist in understanding clinical variability and phenotype in 
patients undergoing spine surgery. Unsupervised clustering of the clinical metadata of patients with 
degenerative spondylolisthesis revealed distinct phenotypes of disease severity, which had different levels of 
postoperative improvement, pain, and satisfaction despite sharing the preoperative severity on imaging[17]. 
Clustering has also been shown to disentangle the interactions between patient characteristics and surgical 
procedures in adult spinal deformity. By inputting a variety of variables including clinical, disability, and 
spinopelvic parameters, the initial clustering algorithm grouped patients based on age and prior surgery, 
followed by a second clustering step based on the type of surgery performed, yielding distinct groups that 
vary in terms of the risk/benefit of surgery[18]. In spinal deformity, preoperatively oriented algorithms can 
also forecast fine-grained aspects of postoperative responses to a standardized scoliosis questionnaire[19]. 
Together, these studies reveal how AI can uncover patterns in clinical data that could guide preoperative 
patient counseling or patient selection and maximize quality and value.

Patient imaging is central to preoperative planning in spine surgery and its analysis is one of the most 
promising applications of AI [Figure 1]. Radiographic analysis includes image segmentation, which refers to 
the accurate identification and delineation of anatomical structures. Previous work has leveraged deep 
learning to segment spinal cord structures in a fully automated manner[20,21], performing better than previous 
state-of-the-art techniques that did not leverage ML[22]. Further studies incorporating data from patients 
with SCI improved on these initial advances. They can capture and identify lesions that correlate with 
motor scores at admission[23] and predict thoracolumbar injury classification scores from CT alone, which 
typically require MR imaging to assess ligamentous integrity[24]. Other algorithms can accurately segment 
other relevant anatomic structures, including vertebral bodies and discs[25,26], as well as paraspinal 
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Figure 1. (A) Example of preoperative planning software. Yellow boxes highlight automated spinopelvic parameters and Cobb angle 
measurements performed by the software. Purple boxes indicate AI-recommended surgical plans and predicted postoperative 
spinopelvic parameters. The green box demonstrates the predicted postoperative sagittal standing X-ray with the recommended 
surgical plan; (B) Postoperative standing sagittal and coronal long-cassette radiographs. AI: Artificial intelligence.

musculature[27]. The extent of osteoporosis[28] and associated fractures[29] can also be diagnosed by AI.

Building upon algorithms that segment spinal imaging, others can interpret degrees of neural element
compression and estimate parameters of spinal deformity. In particular, these applications are promising as
they are tedious, time-consuming, and subject to error and variability when performed by humans. For
example, deep learning can estimate the degree of cervical central and foraminal stenosis[30] and can detect
lumbar spondylolisthesis[31] and other important aspects of degeneration, such as the degree of disc
degeneration and central canal stenosis with high accuracy[32]. For deformity parameter calculation, AI has
been applied to calculate coronal[33,34], sagittal[35,36], and combined coronal-sagittal parameters[37]. By
incorporating AI into deformity parameter calculation, clinicians can more accurately and efficiently
perform both large deformity surgeries and use deformity principles in more limited surgery to ensure
patients achieve the best anatomic and physiologic outcomes. These applications represent an ideal area for
the strengths of AI to address current challenges in preoperative spine surgical evaluation, and indeed, these
technologies have been among the first to reach clinical practice [Table 1].

Intraoperative tools
During surgery, a number of promising AI technologies may help clinicians optimize operative technique
and efficiency. Compared to tools designed for pre- or postoperative settings, bringing AI into the OR 
requires algorithms that can deploy in real time and run on equipment that can interface with the
patient, surgeon, and available intraoperative data streams.
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Table 1. Summary of studies discussed in the preoperative planning subsection, highlighting key advancements in ML applications 
for preoperative radiographic and clinical tools

Area of investigation Selected studies

Utilizing ML clustering methods to identify distinct phenotypes of spinal 
pathologies, presentation patterns, and radiographic parameters

Chan et al., 2021[17]; Ames et al., 2019[18]

Preoperative counseling based on patient specific factors Ames et al., 2019[19]

Automated segmentation of anatomical structures from patient radiographs 
and films

Spinal cord: Gros et al., 2019[20]; Jamaludin et al., 2017[21] 
Vertebral body and discs: Pang et al., 2022[25]; Pang et al., 
2021[26] 
Paraspinal musculature: Wesselink et al., 2022[27]

Building upon segmentation algorithms to identify clinical correlates (e.g., 
neurologic exam, osteoporosis, disc degeneration, spinal stenosis)

Neurologic motor scores: McCoy et al., 2019[23] 
Thoracolumbar injury classification: Doerr et al., 2022[24] 
Osteoporosis and fractures: Zhang et al., 2020[28]; Yabu et al., 
2021[29] 
Spinal and foraminal stenosis: Jardon et al., 2023[30]; Grob et al., 
2020[32] 
Lumbar spondylolisthesis: Trinh et al., 2022[31]

Automated spinopelvic parameter calculation Berlin et al., 2023[33]; Wu et al., 2018[34]; Weng et al., 2019[35]; 
Korez et al., 2020[36]; Galbusera et al., 2019[37]

ML: Machine learning.

Perhaps the main application of AI in the OR is to guide the next generation of surgical navigation, 
which currently relies on intraoperative radiography and the registration between pre- and
intraoperative images. Today’s approaches are limited by radiation exposure to the surgical team and
patient, delays in operative time caused by acquiring such images, differences in patient anatomy between
images acquired in prone and supine positions, and device failure causing navigational inaccuracy.

One promising technology dubbed the ParadigmTM system (Proprio, Seattle, WA) aims to lessen the need
for intraoperative CT by using an optical imaging device and computer vision algorithms to align the
intraoperative patient with their preoperative imaging, potentially unlocking radiation-free navigation and
calculation of spinal anatomic parameters, which could improve safety and speed[38]. Another competing
technology, Flash 7DTM (SeaSpine, Carlsbad, CA), also aims to leverage optical imaging-based navigation
powered by deep learning and computer vision. These technologies are being applied to instrumentation in
lumbar degenerative disease[39], pediatric deformity[40,41], and trauma[42,43], with potential safety benefits and
reduced need for fluoroscopy.

Augmented or mixed reality, in which the surgeon wears goggles that permit them to view the operative
field with graphic overlays, also leverages devices with the capability of AI-assisted computer vision
[Figure 2]. These approaches are under development in spine surgery[44] and also promise to help visualize
underlying anatomy[45] to guide pedicle screw placement[46] and to help perform osteotomies. Early research
suggests augmented reality (AR)-assisted pedicle screw placement may compare favorably to freehand
techniques[47] in spinal deformity cases and is also being studied for screw placement in workhorse
approaches such as transforaminal lumbar interbody fusion[48]. Our desire to minimize invasiveness while
maximizing visualization of critical structures and accuracy of instrumentation necessitates intraoperative
AI to continue making progress [Table 2].

Postoperative prognostication
One of the most common and accessible applications of AI/ML in spine surgery is predicting postoperative
outcomes. National datasets from the NIH, American College of Surgeons, and NeuroPoint Alliance, which
capture clinical and demographic data, metrics of surgical success, patient-reported outcomes, and
complications, can allow clinicians to build models forecasting both perioperative and long-term outcomes
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Table 2. Summary of studies discussed in the intraoperative tools subsection

Area of investigation Selected studies

ML and computer vision tools for optical image-based 
intraoperative navigation (reduce radiation exposure)

General technique: Berven et al., 2023[38] 
Lumbar degenerative disease: Abdelrahman et al., 2022[39] 
Pediatric deformity: Comstock et al., 2023[40]; Lim et al., 2023[41] 
Trauma: Yeretsian et al., 2022[42]; Malacon et al., 2022[43]

Intraoperative AR, VR, and mixed reality tools Eliahu et al., 2022[44]; Auloge et al., 2020[45]; Burström et al., 2019[46]; Elmi-
Terander et al., 2020[47]; Charles et al., 2021[48]

ML: Machine learning; AR: augmented reality; VR: virtual reality.

Figure 2. Percutaneous lumbar pedicle screw placement assisted by AR headset (yellow arrow). The green box highlights the AR 
overlay, which displays the screw trajectory, allowing the surgeon to maintain focus on the operative field without needing to look at 
monitors. AR: Augmented reality.

at the patient level. These methods may help identify risk factors that lead to poor outcomes, allowing 
surgeons to better select patients and tailor appropriate surgical interventions and postoperative care.

A broad spectrum of ML studies have aimed to predict perioperative patient outcomes and complications 
and identify variables that most strongly drive these events. ML tends to identify common factors that 
correlate with perioperative outcome, such as age, functional and nutritional status, BMI, Medicaid status, 
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intraoperative blood loss, smoking, and preoperative medical comorbidities, but the exact predictors vary by 
study[49-53]. Some models tend to predict relatively common events such as postoperative delirium, hospital 
readmissions, and length of stay, whereas others aim to predict rarer and potentially more catastrophic 
events such as vascular injury during anterior lumbar surgery[51]. Across tools that aim to quantify adverse 
events, the approaches that are trained on large databases, receive external validation and testing, and 
release their tools as open source or commercialized software are most likely to gain the most traction.

In addition to perioperative complications, ML is also well-suited to predict long-term outcomes. In cervical 
spondylotic myelopathy, previous studies have accurately predicted outcomes years after surgery from 
preoperative variables, with simple methods such as logistic regression performing well compared to more 
advanced methods[54,55]. By examining feature importance methods in ML algorithms, drivers of long-term 
outcomes can be better understood. For example, in patients who underwent lumbar fusion, higher leg pain 
and back pain preoperatively were predictive of improvements in leg and back pain, respectively[56]. In a 
separate study of both cervical and thoracolumbar fusion, preoperative axial pain and peripheral pain, 
nationality, the number of previous spine surgeries, age, type of intervention, preoperative quality-of-life, 
BMI, number of affected levels, and comorbidity were major predictors of outcome[57]. Similarly, using 
preoperative MRIs, one study used neural network-based models to predict postoperative proximal 
junctional kyphosis (PJK). Analysis of the model found that soft tissue features were the strongest drivers of 
the accuracy of PJK prediction[58]. A natural question is to ask: “How valuable are these models?” Indeed, 
they primarily identify obvious risk factors as drivers of short-term complications (age, sex, comorbidities), 
and those of long-term outcomes (how much patients stand to gain from their preoperative level of 
disability). We argue that the key to these models is to be able to quote and counsel patients about risks and 
outcomes in a patient-specific manner to improve informed consent and shared decision making [Table 3].

CHALLENGES AND OPPORTUNITIES
AI and ML tools throughout the spectrum of spine surgical care hold significant promise to improve patient 
outcomes; however, those at each point of care have sets of unique challenges. AI/ML focusing on 
preoperative planning may require prospective studies showing that it improves outcomes to gain traction 
from physicians and reimbursement from insurance companies. Intraoperative tools and robotics require 
significant hardware investment and may face regulatory challenges to reach clinical integration, and may 
encounter resistance from surgeons who fear inefficiencies and potential patient harm associated with early 
adoption of new technologies[59,60]. Models that predict postoperative complications and long-term outcomes 
face difficulty in standardizing outcome metrics and in generalizing across centers[61. However, common to 
all AI/ML tools in spine surgery are several critical challenges, which we detail below, along with our 
proposed solutions.

Challenge 1: patient and surgical heterogeneity
Our varied clinical and research efforts in spine surgery reflect the immense heterogeneity in the patients we 
treat. Patients may undergo the same operation for a wide variety of indications, at a wide variety of initial 
states of health, and similarly, outcomes are driven by a wide variety of physiologic and psychosocial factors. 
In addition, the same patient with the same pathology may be offered differing surgical plans based on their 
surgeon’s training and preference. A central challenge in ML is the tradeoff between variables and 
observations (i.e., patients)[15]. In spine surgery, where patient variability is high, this limitation means that 
for models to reach the expert level, they must incorporate both many variables and data from a large 
number of patients. However, as model complexity increases, the ability to understand such models 
decreases. To mitigate this tradeoff, it may be most expedient to focus AI development efforts on 
applications that are specifically tailored to quickly and accurately perform highly specific, otherwise time-
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Table 3. Summary of AI/ML studies discussed in the postoperative prognostication subsection

Area of investigation Selected studies

Perioperative complication prediction and risk 
stratification

General technique: Berven et al., 2023[38] 
Lumbar degenerative disease: Abdelrahman et al., 2022[39] 
Pediatric deformity: Comstock et al., 2023[40]; Lim et al., 2023[41] 
Trauma: Yeretsian et al., 2022[42]; Malacon et al., 2022[43]

Long-term outcome prognostication Eliahu et al., 2022[44]; Auloge et al., 2020[45]; Burström et al., 2019[46]; Elmi-Terander et al., 
2020[47]; Charles et al., 2021[48]

AI: Artificial intelligence; ML: machine learning.

consuming tasks (i.e., image segmentation of the spine or robotic navigation).

Challenge 2: subjective outcome measures
Despite the aforementioned challenges in developing a broad AI understanding of spine surgery arising 
from patient heterogeneity, one substantial barrier lies in challenges presented by current outcome 
measures. Many of the endpoints we follow are subjective or are influenced by a wide variety of factors that 
AI may not be able to accurately capture in an unbiased manner. For example, endpoints such as pain and 
functional status may be influenced by psychological factors. Endpoints such as the return to work may be 
influenced by socioeconomic status. Endpoints such as the need for revision surgery may be influenced by 
many factors, including preoperative comorbidities and postoperative access to care in addition to the 
surgery itself. Postoperative pain medication use is influenced by preoperative levels of tolerance and 
patterns of clinical prescription. It is critical that such models and their predictions do not lead clinicians to 
select patients or surgical approaches in a way that perpetuates present disparities. Solutions to this problem 
may be to focus on more immediate rather than long-term measures, on quantitative or radiographic 
endpoints that can be measured in a validated manner, and potentially to use AI and new technologies to 
develop novel outcome metrics that better capture the impact of spine surgery on patients’ lives.

Challenge 3: tradeoffs in data quality and quantity
One of the central principles of ML is that capabilities and performance increase with ever-larger 
datasets[15]. In particular, cutting-edge approaches such as deep learning and large language models (the 
types of models underlying self-driving cars and ChatGPT, respectively) rely on immense amounts of data 
to tune hundreds of billions of parameters, from which their intelligence emerges[62]. In spine surgery, large 
registries such as the Quality Outcomes Database (QOD), British Spine Registry, and International Spine 
Study Group (ISSG) have aggregated patient data across numerous centers, and the largest ML studies may 
incorporate thousands of patients. However, these numbers are likely sufficient for certain tasks requiring 
only simple categorical and numerical variables as inputs rather than complex data such as cross-sectional 
images, text, and video that require immense amounts of data. Still, healthcare databases often encounter 
quality issues such as missing or incomplete data and variable practices across the sites where the data were 
collected. Furthermore, as the number of variables per patient in the database increases, the difficulty of 
expanding the dataset grows, limiting the number of patients incorporated and increasing the 
administrative burden on centers that participate.

Due to limitations in data quantity, many studies are validated using withheld patients or cross-validation 
from the same single-center datasets, which may result in model overfitting and limited clinical utility. 
Validation using independently collected external datasets will allow for improved assessments of model 
accuracy and generalizability. Even findings from multi-center studies may be affected by this problem, as 
the datasets are not completely independent of one another. In addition, some studies used large national 
datasets that may have limited granularity of clinically relevant variables, potentially limiting their models’ 
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performances. We propose that the standards for multi-center validation and held-out validation and test
sets for quantifying performance - standards commonly applied across AI applications - be rigorously
applied in AI tools for spine surgery to ensure that published models have the best chance for successful
clinical translation.

Future directions
While challenges remain in further integrating AI and ML technologies into spine surgery practice, these
technologies have already made an impact on clinical care, operative planning, and procedures in the
OR. For AI technologies to continue to develop, the field of spine surgery must make a concerted 
effort to collect high-quality data in the form of de-identified or HIPAA-compliant large multi-center 
databases and registries, as these data can be used to fine-tune existing and develop new AI
technologies. Future surgical planning and prognostication models should leverage a wide variety of data
sources for model training, ranging from demographic and clinical data to patient radiographs and free text
from medical records. In addition, surgeons should work closely with industry and academic partners to
create robotic and augmented/mixed reality tools. As with all new technology, these efforts will require
careful oversight, fine-tuning, and comparison to existing best practices. Should spine surgery as a field
successfully apply AI models and tools, our patients stand to benefit the most through patient-specific, data-
driven surgical planning tools, increased surgical efficiency, and more accurate short and long-term
prognostication.

CONCLUSION
This narrative review highlights a selection of current developments in AI for spine surgery. Despite the 
challenges discussed in the previous section, AI is already beginning to change how we practice spine 
surgery. By understanding the current landscape of AI/ML tools across stages of development and clinical 
scenarios ranging from pre- to intra- and postoperative contexts, we may target our efforts toward 
incorporating the methods most pertinent to the challenges in our practice. One can easily imagine a near 
future where AI assists in planning surgical approaches and counseling patients, integrates into 
intraoperative imaging and navigation systems to enhance anatomical recognition and guide 
instrumentation, and helps avoid and manage postoperative complications. By highlighting the path 
forward, we identify strategies that innovation-minded spine surgeons can adopt to expedite the 
development and clinical translation of these models for the benefit of our patients.
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