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BACKGROUND

Nicotinic acetylcholine receptors (nAChRs) and beta-
adrenergic receptors (β-ARs) are cell membrane 
receptors expressed in most mammalian cells 
where they function as the recipients of signals 
from the autonomic nervous system that maintains 
physiological homeostasis in the mammalian organism 
and regulates cell and organ responses to endogenous 
and exogenous signals. The neurotransmitter of the 
parasympathetic branch of the autonomic nervous 
system, acetylcholine, binds as an agonist to all 
members of the nAChR family, thus opening the 
ligand-gated ion channel of the receptors. The 
resulting depolarization of the cell membrane opens 
voltage-gated Ca2+-channels (VOCs), allowing influx 
of additional Ca2+ that triggers the release of cell 
type-specific intracellular products via exocytosis.[1] 
Influx of Ca2+ is particularly high in response to 
agonist binding to the homomeric (comprised of alpha 
subunits only) α7nAChR due to the selectivity of its 
ion channel for Ca2+ whereas heteromeric (comprised 
of alpha and non-alpha subunits) nAChRs have non-
selective ion channels. The mechanisms of nAChR-

mediated neurotransmitter release by the central 
and peripheral nervous system, their role in memory, 
cognition and stress responses and the nAChR-
mediated mechanisms of nicotine addiction have been 
extensively studied.[1,2]

Beta-adrenergic receptors are coupled to the 
stimulatory G-protein Gs that activates the enzyme 
adenylyl cyclase (AC) upon binding of an agonist to the 
receptor, leading to the formation of intracellular cyclic 
adenosine monophosphate (cAMP) that activates 
protein kinase A (PKA) and numerous PKA-dependent 
and independent intracellular signaling cascades in a 
cell type-specific manner.[3] In addition, β1 and β2-ARs 
can increase intracellular Ca2+ levels by a variety of 
mechanisms [Figure 1], including the PKA-induced 
upregulation of L-type Ca2+-channels[4] and release of 
Ca2+ from intracellular stores that can also be induced 
by the cAMP binding protein exchange factor directly 
activated by cAMP (Epac).[5] Of particular importance 
for the regulation of cancer cells is the fact that activated 
PKA and/or cAMP stimulate the release of epidermal 
growth factor (EGF),[6] arachidonic acid (AA),[7,8] 
interleukins and vascular endothelial growth factor 
(VEGF),[9] which jointly stimulate the development, 
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progression and metastasis of numerous cancers. 
The neurotransmitters of the sympathetic branch of 
the autonomic nervous system, epinephrine (Epi) and 
norepinephrine (Nor) are the physiological agonists for 
β-ARs. Epi and Nor are additionally synthesized and 
released by the adrenal medulla and are often referred 
to as “stress neurotransmitters” because psychological 
stress triggers their simultaneous release from the 
sympathetic nervous system and adrenal gland.[10,11] 
The release of stress neurotransmitters from the 
sympathetic nervous system and adrenal gland is 
regulated by nAChRs via Ca2+ influx that triggers their 
exocytosis.[12,13] The biology of β-ARs as it relates 
to cardio-vascular disease has been extensively 
studied and beta-adrenergic receptor antagonists 
(beta-blockers) and VOC blockers are widely used as 
therapeutics for this disease complex.[14-17]

Discoveries that nicotine induced the proliferation 
of human small cell lung cancer cells in vitro[18] while 
inhibiting apoptosis,[19] effects triggered by the nAChR-
mediated release and re-uptake of the neurotransmitter 
5-hydroxytryptamine (5-HT, serotonin),[20] first pointed 
to nAChRs as important regulators of a subset of 
cancers. Reports that β-AR agonists stimulated the 
proliferation of lung adenocarcinoma cells in vitro and 
that this response was inhibited by β-blockers first 
implicated β-ARs in the regulation of another subset 
of cancers.[21,22] The identification of the tobacco 
carcinogen nicotine-derived nitrosamine ketone (NNK) 
as a high affinity agonist for nAChRs[23,24] as well as 
β-ARs[7] subsequently provided a direct mechanistic link 
between the high carcinogenic potential of this agent 
and its interaction with neurotransmitter receptors. 
These studies also showed that NNK-induced β-AR 
signaling in lung adenocarcinoma cells and pancreatic 
ductal adenocarcinoma cells triggered the release of 
AA, resulting in the formation of cancer-stimulating 
AA metabolites while additionally trans-activating 
the epidermal growth factor receptor pathway.[7,8,25] 
Collectively, these early findings represented the 
starting point for a new domain in cancer research: 
the role of neurotransmitters and their receptors in 
the initiation, progression and drug resistance of 
cancer and the development of novel therapeutic 
and preventive strategies that target this regulatory 
network.[26-30]

It was initially thought that nAChRs and β-ARs 
expressed in non-neuronal cells and cancers 
derived from them were exclusively stimulated by the 
autonomic nervous system or by exposure to tobacco 
products. However, more recent studies have shown 
that numerous non-neuronal cells and the cancers 
derived from them synthesize and release their own 

acetylcholine[31] and are also able to synthesize and 
release Nor and Epi in response to acetylcholine 
self-stimulation or exposure to exogenous nAChR 
agonists.[32-36] In addition, it has been shown that 
polymorphisms in genes CHRNA3 (encodes the 
α3 nAChR subunit) and CHRNA5 (encodes the α5 
nAChR subunit) as well as a copy number variation 
that duplicates the α7nAChR gene CHRNA7 are 
associated with an increased risk for lung cancer[37-39] 
and that single nucleotide polymorphisms in the β2-AR 
gene are associated with adverse clinical outcomes of 
pancreatic cancer.[40]

An important aspect of cancer regulation by 
neurotransmitters and their receptors is the significant 
influence of the mood on this regulatory network 
[Figure 1]. Preclinical investigations have thus 
shown that experimentally induced psychological 
stress or treatment with stress neurotransmitters 
have strong promoting effects on the majority of the 
most common human cancers via direct activation 
of cAMP-dependent intracellular signaling pathways 
by stress neurotransmitters downstream of β1 and 
β2-ARs[29,32,41-45] and the simultaneous suppression 
of the tumor suppressor gene p53 by beta-arrestin-1 
signaling downstream of β2-ARs.[46] Moreover, chronic 
experimental stress suppressed the synthesis and 
release of the inhibitory neurotransmitter γ-aminobutyric 
acid (GABA).[41,42] These findings are in accord with the 
reported suppression of the GABA system by chronic 
psychological stress[47] and in anxiety disorders such 
as posttraumatic stress syndrome.[48,49] GABA is the 
main inhibitory neurotransmitter in the mammalian 
body and inhibits the AC-dependent formation of 
cAMP as well as the activation of voltage-gated Ca2+-

channels[50] under physiological conditions by activating 
inhibitory G-protein (Gi) signaling downstream of Gi-
coupled GABA-B-receptors. In light of findings that 
the GABA-B receptor has tumor suppressor function 
in pancreatic[42,51-53] and non small-cell lung cancer 
(NSCLC)[35,41,54,55] while GABA also inhibits the in 
vitro growth of breast cancer and colon cancer,[47,56] 
suppression of GABA by psychological stress has 
significant tumor promoting effects on these cancers.

Similar to chronic stress, smoking also increases the 
levels of cancer stimulating stress neurotransmitters[57] 
while suppressing cancer inhibiting GABA,[2] effects 
caused by the neuroadaptation of nAChRs to chronic 
nicotine, NNK and N’-nitrosonornicotine (NNN). In 
conjunction with the mutational activities of NNK and 
NNN at the K-ras and p53 genes,[58] the resulting 
prevalence of cancer stimulating beta-adrenergic 
receptor signaling contributes significantly to the 
increased cancer risk of smokers.
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NOVEL FINDINGS

Three publications[59-61] from the Research Institute 
of Pharmacological Sciences, College of Pharmacy, 
Seoul National University (Seoul, Republic of Korea) 
have recently revealed additional mechanisms of 
nAChR and β-AR-mediated lung cancer promotion that 
can potentially be exploited for the targeted prevention 
and therapy of lung cancer and numerous other 
cancers. These studies showed that NSCLC tissues 
from smokers expressed significantly higher levels of 
the phosphorylated insulin-like growth factor-1 receptor 
(IGF-1R) than NSCLCs from nonsmokers and that the 
nicotine-derived carcinogen NNK promoted NSCLC 
tumorigenesis in vitro and in a mouse model by inducing 
exocytosis of insulin-like growth factor 2 (IGF-2) that 
phosphorylated the IGF-1 receptor, effects inhibited 
by the neuronal nAChR antagonist mecamylamine, 
dyhydropyridine blockers of L-type VOCs as well as 
by antagonists for β1-and β2-ARs.[59] The investigators 
reported that the observed IGF-1R phosphorylation 
was caused by β-AR-mediated stimulation of IGF2 

transcription.[61] However, the molecular mechanisms 
of this effect have yet to be defined. Based on the 
inhibitory effects of mecamylamine and VOC blockers 
on EGF-1R phosphorylation, nAChRs were the 
upstream regulators of this β-adrenergic cascade by 
stimulating the release of Nor and Epi. In accord with 
established mechanisms of stress responses (nAChR-
mediated opening of VOCs causing release of stress 
neurotransmitters by exocytosis from the sympathetic 
nervous system and adrenal glands), experimental 
chronic stress had significant tumor promoting effects 
on urethane-induced mouse NSCLC and on the 
development of this cancer type in transgenic KrasG12D/+ 
mice via IGF-2-mediated activation of the IGF-1R 
signaling cascade.[60,61] In both animal models these 
effects were inhibited by the general beta-blocker 
propranolol or the dihydropyridine VOC blockers 
amlodipine or nifedipine. Propranolol also significantly 
prevented the development of NNK-induced lung 
tumors in A/J mice, an effect accompanied by 
suppression of phosphorylated IGF-1R.[61] The authors 
conclude that beta-blockers and VOC blockers should 
be further explored for the prevention of lung cancer, 
a concept that could rapidly move into clinical trials 
because these drugs are already widely used for the 
long-term management of cardiovascular disease.

CONCLUSIONS AND FUTURE DIRECTIONS

The reported activation of the IGF-1R signaling cascade 
in NSCLC and their normal epithelial precursor cells by 
the joint actions of nAChRs, VOCs and β-ARs adds a 
novel aspect to the mechanisms of cancer regulation 
by neurotransmitter receptors. While cancer research 
on the regulatory function of these receptors has 
mostly interpreted their modulation of intracellular 
signaling pathways as direct events downstream of the 
receptors,[20,24,30,45,62,63] the cited three publications[59-61] 
instead take into consideration the physiological role 
of nAChRs and β-ARs in the release of cell type-
specific products by exocytosis [Figure 1] in response 
to increased intracellular Ca2+. In addition to IGF-2, 
β-AR-I agonists also induced the release of AA, EGF, 
VEGF, interleukin-6 as well as several cancer stem cell 
markers.[36,64-66] In turn, these effects can be caused by 
elevated systemic levels of stress neurotransmitters 
in response to stress or tobacco exposure, by direct 
binding of NNK in tobacco products to β-ARs, or by 
medications that are beta-adrenergic agonists. In 
addition, epithelial cancer cells and their respective 
cancer stem cells synthesize and release their own 
Epi and Nor upon activation of nAChRs by nicotine or 
nicotine-derived nitrosamines.[33,36] The proposed re-
purposing of beta-blockers and Ca2+-channel blockers 
for lung cancer prevention would therefore inhibit 

Figure 1: Working model illustrating the mechanistic interactions 
of nicotinic acetylcholine receptors, Ca2+-channels, beta-adrenergic 
receptors and the IGF pathway in cancers associated with smoking 
and psychological stress. NNK: nicotine-derived nitrosamine 
ketone; nAChRs: nicotinic acetylcholine receptors; IGF-1R: insulin-
like growth factor-1 receptor; PLC: phospholipase C; AKT: protein 
kinase B; cAMP: cyclic adenosine monophosphate; PKA: protein 
kinase A
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differentiated cancer cells as well as cancer stem cells.

There is an ongoing international discussion on the 
potential usefulness of beta-blockers for cancer 
intervention, with numerous preclinical studies 
reporting significant cancer inhibition whereas 
clinical investigations have generated controversial 
data with some even reporting cancer promoting 
effects.[28,29,64,67-71] The potential usefulness of 
beta-blockers for adjuvant cancer treatment has 
additionally been discussed in depth based by 
comprehensive reviews of published preclinical 
and clinical literature.[67,72,73] By contrast, the current 
review analyzes mechanistic aspects of Gs-coupled 
receptors and their physiological inhibitors and their 
modulating effects on cancer. The discrepancies 
between preclinical and clinical findings are thus not 
only triggered by the potential sensitization of β-ARs in 
response to long-term beta-blocker therapy (decades 
of treatment in people as opposed to a few weeks in 
experimental animals), but also by the potential impact 
of factors unrelated to β-ARs. Preclinical studies that 
have employed agonists of receptors coupled to the 
inhibitory G-protein Gi (GABA-B receptors, opioid 
peptide receptors) for the inhibition of β-AR-mediated 
progression of adenocarcinoma of the lungs and 
pancreas in vitro and in vivo have repeatedly 
shown that increases in intracellular cAMP and the 
associated activation of its downstream effectors 
are key molecular events that activate β-AR-driven 
development and progression of both cancers and can 
be successfully inhibited by agonists of Gi-coupled 
receptors that inhibit the formation of cAMP by blocking 
the activation of adenylyl cyclase.[41,42,51,54,55,66,74-76] A 
host of non-β-AR receptors coupled to the stimulatory 
G-protein Gs increase intracellular cAMP,[3,77] a 
reaction not inhibited by beta-blockers but effectively 
counteracted by agonist-induced signaling of Gi-
coupled receptors. There is also a host of non-beta-
adrenergic agents that increase intracellular cAMP 
directly. Among such agents are caffeine, theophylline 
and theobromine contained in numerous beverages, 
weight loss medications, sweets and candies. These 
naturally occurring phosphodiesterase inhibitors 
block the enzymatic breakdown of cAMP which 
then accumulates inside the cells. In addition, 
pharmacological phosphodiesterase inhibitors are 
widely used for the therapy of chronic obstructive 
pulmonary disease because of their anti-inflammatory 
and broncho-dilating properties. None of the clinical 
investigations on beta-blockers and cancer conducted 
to date have adjusted their data to exclude the cancer 
promoting effects of such non-beta-adrenergic 
agents.

Beta-blockers should not be used for the general 
prevention/therapy of cancer because they are 
selectively effective only in cancers that are stimulated 
by beta-adrenergic agonists. In fact, without prior 
testing of patients for increased stress neurotransmitter 
and cAMP levels, beta-blocker treatment is contra-
indicated because it can promote certain cancers due 
to the fact that cAMP functions as a tumor promoter 
in some cancers while acting as a tumor suppressor 
in others. It has thus been shown that cAMP inhibits 
the growth/progression of squamous cell carcinoma,[78] 
small cell lung carcinoma,[79,80] medulloblastoma and 
basal cell carcinoma.[81] The arbitrary use of Ca2+-
channel blockers for cancer prevention and therapy is 
equally ill advised. While preclinical investigations have 
identified cancer preventive effects of Ca2+-channel 
blockers in a large spectrum of cancers,[82-84] these 
agents not only suppress molecular targets studied 
in these cancers but additionally inhibit the release 
of Nor and Epi from sympathetic nerves,[85] thereby 
suppressing the beta-adrenergic receptor-mediated 
formation of cAMP. In turn, this effect can selectively 
promote the development and progression of cancers 
in which cAMP has tumor suppressor function.

In summary, successful cancer prevention and 
improved therapeutic outcomes can be achieved 
by strategies that aim to maintain/restore cAMP 
homeostasis. Too much cAMP will promote the 
development and progression of cAMP-driven cancers 
(e.g. adenocarcinoma of the lungs, pancreas, colon, 
stomach and prostate) while too low cAMP levels will 
increase the risk for development and progression of 
cancers in which cAMP has tumor suppressor function 
(e.g. small cell lung cancer, squamous cell carcinoma, 
medulloblastoma, basal cell carcinoma). In analogy 
to the long-term management of diabetes by insulin 
injections that are based on blood glucose testing, 
this approach requires routine testing of cAMP levels. 
Beta-blockers will only be beneficial if elevated levels 
of Nor/Epi indicate hyperactive β-AR signaling.
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