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Abstract
Aim: The lung is the second most frequent site of metastatic dissemination. Early detection is key to improving 
survival. Given that the lung interfaces with the external environment, the collection of exhaled breath condensate 
(EBC) provides the opportunity to obtain biological material including exhaled miRNAs that originate from the lung.

Methods: In this proof-of-principal study, we used the highly metastatic MDA-MB-231 subline 3475 breast cancer 
cell line (LM-3475) to establish an orthotopic lung tumor-bearing mouse model and investigate non-invasive 
detection of lung tumors by analysis of exhaled miRNAs. We initially conducted miRNA NGS and qPCR validation 
analyses on condensates collected from unrestrained animals and identified significant miRNA expression 
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differences between the condensates of lung tumor-bearing and control mice. To focus our purification of EBC and 
evaluate the origin of these differentially expressed miRNAs, we developed a system to collect EBC directly from 
the nose and mouth of our mice.

Results: Using nanoparticle distribution analyses, TEM, and ONi super-resolution nanoimaging, we determined 
that human tumor EVs could be increasingly detected in mouse EBC during the progression of secondary lung 
tumors. Using our customizable EV-CATCHER assay, we purified human tumor EVs from mouse EBC and 
demonstrated that the bulk of differentially expressed exhaled miRNAs originate from lung tumors, which could be 
detected by qPCR within 1 to 2 weeks after tail vein injection of the metastatic cells.

Conclusion: This study is the first of its kind and demonstrates that lung tumor EVs are exhaled in mice and provide 
non-invasive biomarkers for detection of lung tumors.

Keywords: Extracellular vesicles, exhaled breath condensate, orthotopic lung tumor-bearing animal model, 
miRNAs

INTRODUCTION
Lung cancer is the second leading cause of cancer incidence (2.1 million cases per year) and mortality (1.8 
million deaths per year) globally[1,2]. However, the lung is also the second most frequent site of metastatic 
growth for extra-thoracic malignancies[3]. It is recognized that because of its role in blood circulation, the 
lung offers optimal conditions for the development of secondary cancers that arise from primary colorectal 
(~25.8%), head and neck (~19.4%), urologic (i.e., bladder, kidney, and testicular; ~14.7%), breast (~10.5%), 
melanoma (~6.5%), gynecological, blood, and other cancers (~6.1%)[4]. Currently, it is estimated that 
~5%-10% of patients with malignant cancer will at some point develop pulmonary metastatic lesions that 
are either synchronous (i.e., found at the time of primary cancer diagnosis) or metachronous (i.e., found as 
a recurrent lesion or after primary cancer diagnosis)[5,6]. The 5-year survival rate for patients who develop 
secondary lung metastases is very low; for example, it is estimated at ~21% for patients initially diagnosed 
with primary breast cancer and < 10% for those initially diagnosed with primary colorectal cancer[7,8]. 
Clinically, the early detection of micro-metastases developing within the lung tissue is extremely difficult as 
early invading cells are disseminated and their physical detection by chest x-rays or computed tomography 
(CT) of the chest[9]. Although late detection of secondary lung cancer has a very poor prognosis, early 
radiation therapy, chemotherapy, and metastasectomy have been shown to significantly increase patient 
survival[10,11]. Therefore, for the optimal sequence and timing of local interventions, it is imperative to 
improve early detection of metastatic disease.

In order to improve the clinical detection of secondary lung cancers and to complement current imaging 
strategies, recent research efforts have led to the development of robust non-symptom-driven molecular 
screening assays. These assays have been designed to detect circulating primary tumor bioproducts such as 
circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating RNA transcripts (i.e., circular 
RNAs, messenger RNAs (mRNA), microRNAs (miRNA) and long non-coding RNAs), and more recently 
circulating tumor extracellular vesicles (EVs)[12-18]. Although the detection of CTCs has been used 
prognostically, it is not foolproof and a significant subset of patients who develop metastatic disease are not 
identified using this approach[19-22]. Although there are known biomarkers for the detection of specific 
cancers (e.g., AFP+CEA+CA125 for primary breast cancer or PSA for prostate cancer), there are currently 
no blood-based biomarker assays that can predict the development of secondary lung cancer[23]. Even 
though direct airway collection strategies [i.e., nasal epithelial brushing, sputum, bronchial brushing, 
bronchioalveolar lavage (BAL), and exhaled breath condensate (EBC)] are being investigated for the 
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detection of primary lung cancer, they have not been evaluated for the detection of secondary lung 
cancer[24-32].

The growing field of breath biopsy (i.e., the collection and analysis of exhaled breath) is showing great 
promise for the detection of lung tumors[32-34]. Indeed, the analysis of volatile organic compounds (VOCs) 
(i.e., ammonia, nitric oxide, hydrogen sulfide, acetone, aldehyde, methane, ethane, propane, and carbon 
dioxide)[35,36] and non-volatile organic compounds (non-VOCs) (e.g., urea, amino-acids, RNA, DNA, 
proteins, lipids, surfactants) has been shown to reflect the metabolic and biologic repercussions of lung 
tumors[37,38]. Ongoing studies on VOCs are aimed at identifying metabolic changes associated with disease, 
whereas non-VOC studies are aimed at identifying and measuring biological compounds originating from 
tumor cells[39,40]. The collection of VOCs requires air-tight equipment for instant electronic analysis of 
exhaled gasses, whereas non-VOCs can be collected by the condensation of exhaled vapors to provide an 
exhaled breath condensate (EBC) biofluid, which can be stored and subsequently analyzed using different 
types of molecular assays (i.e., NGS, qPCR, methylation assays, etc.)[41,42]. Studies that have been conducted 
on EBC have revealed that it contains miRNAs, including those deregulated and released by tumors, with 
unique expression ratios that may be quantifiable and, in turn, allow detection of lung tumors[43-47]. 
Interestingly, recent investigations have also revealed that EBC contains extracellular vesicles (EVs), whose 
stably packaged miRNA cargoes can be analyzed and that may also help improve the detection of lung 
diseases[48-50].

It is well documented that miRNAs are involved in the regulation of all biological processes[51,52], and a large 
body of research has demonstrated that the deregulation of miRNA expression is associated with the 
initiation, development, and metastatic dissemination of human tumor cells[53-58]. Recent studies have also 
shown that miRNA profiles of tumor cells can provide both diagnostic and prognostic information on 
tumor progression[59-62]. Importantly, tumor cells can exchange miRNAs with both neighboring and distant 
cells via EVs. The molecular cargoes of tumor EVs, particularly miRNAs, have been shown to play 
important roles in the transcriptomic reprogramming of target cells[63-65]. For example, tumor EV miRNAs 
of breast, lung, and other types of human tumors have been associated with the modulation of 
angiogenesis[60,65], cellular proliferation[66-68], immune response[69,70], and the establishment of distal pre-
metastatic niches[71-75].

EVs represent a large family of robust phospholipid bi-layered membrane-bound nanoparticles that are 
secreted by all human cells and can diffuse within tissues, circulate in the bloodstream, and be found in all 
biofluids[76,77]. EVs share common surface protein markers (i.e., CD9, CD81, CD83, Flotilin, etc.), as well as 
unique surface protein markers acquired from their cell of origin, which can be targeted by antibodies in 
molecular assays designed for their purification[78-83]. Studies of the miRNA content of circulating tumor 
EVs, specifically those purified from the circulation or those from other biofluids, have identified unique 
profiles, which can be associated with their tumor cells of origin[84]. Therefore, it is well perceived that the 
isolation of tumor EVs from biofluids, followed by the analysis of their miRNA cargos, has the potential to 
enable the development of non-invasive tumor detection assays for diagnostic and prognostic 
applications[85-91].

In this proof-of-principle study, we sought to explore the potential of utilizing exhaled miRNAs for non-
invasive detection of secondary lung cancer in orthotopic animal models. For these analyses, we chose to 
inoculate a highly metastatic breast cancer cell line that has been well documented to rapidly establish 
significant pathological lung tumor burden in athymic nude mice, which provided an adequate model to 
test the collection and analysis of exhaled breath condensates[92-95].
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MATERIALS AND METHODS
Cell culture
MDA-MB-231 subline 3475 triple-negative breast cancer cells were selected because of their aggressive and 
targeted lung tumor growth. MDA-MB-231 subline 3475 cells expressing both TdTomato-Luc and CD63-
GFP were cultured in a standard growth media comprised of Dulbecco’s Modified Eagles Medium (DMEM) 
supplemented with 10% EV depleted fetal bovine serum (FBS) and 1% Penicillin Streptomycin. Cells were 
maintained at an atmosphere of 37 °C and a humidity of 5% CO2 and regularly subcultured once 
confluency of 70%-80% was reached. Upon reaching 80% confluency, cells were split with fresh media and 
allowed to undergo two rounds of passaging after cracking vials.

Animals
All animal husbandry and procedures involving mice in this study were conducted under the Center for 
Discovery and Innovation IACUC approved protocol (#288.00) in an Association for Assessment and 
Accreditation of Laboratory Animal Care International (AAALAC) accredited research animal facility in 
accordance with all NIH guidelines for the use and care of experimental animals.

Tumor inoculations for lung metastasis
On the day of tumor inoculations, TdTomato-Luc+/CD63-GFP + MDA-MB-231 subline 3475 cells were 
trypsinized and counted prior to being resuspended in warm 1x sterile PBS at a concentration of 1 × 106 cells 
per 200 μL. Immediately after cell preparations, a heating pad was placed under one side of the cage to “pre-
warm” and dilate veins of athymic BALB/C mice, animals were restrained, and the lateral tail vein was 
located. The needle was inserted parallel into the vein and cells slowly injected. Any bleeding at the injection 
site was stopped by applying gentle compression and animals were returned to their cage and monitored.

In vivo bioluminescence imaging
Animals were anesthetized by isoflurane inhalation prior to receiving an intraperitoneal (I.P.) injection of 
D-luciferin (150 mg/kg). 15 min after D-luciferin administration, animals were placed onto the warming 
pad in the imaging box of an IVIS instrument, oriented so that tumors located in the lungs were well within 
the imaging area. Anterior images were acquired using the auto-exposure feature. Animals were imaged 
once a week for the duration of the study to: (i) determine the site of cancer cell growth; and (ii) monitor 
tumor burden.

Animal condensate collection using the RC3 dual mouse chamber
Animal condensate collection was achieved by placing two mice together into a sterile glass RC3 
respirometer chamber (Sable Systems International) attached to a SS4 flow pump/meter set to a rate of 
~2.0 mL/min. The flow pump/meter sets the rate of inlet air into the chamber, with the ~2.0 mL/min setting 
being the recommended flow rate needed to allow for enough air flow into the chamber to prevent mice 
from suffocating during the collection period. The RC3 respiratory chamber is large enough to easily allow 
two mice to be placed in the chamber and does not lead to significant restraint (length = 10 and 
diameter = 3), as mice still have freedom to move around with normal postural movement (i.e., walk and 
turn around freely). Mice were kept in the chamber for one h to allow for adequate volumes of condensate 
to be collected. EBC collection was performed every week for the duration of this 16-week study.

Exhaled breath condensate collection using a single mouse nose-mouth device
To collect exhaled breath condensate (EBC) from single mice without the risk of contamination from urine, 
skin and feces, we modified the design and setup of the single breath collection device described by Liu et al. 
in 2019[96]. For this method of EBC collection, single mice were placed into the modified mouse restrainer 
designed to expose only the nose-mouth of mice, enabling uncontaminated collection of EBC. The design of 
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our single-mouse EBC collection device involves placing the mice into a restrainer that does not allow the 
mice to turn around so that maximum EBC volumes can be obtained. Since the use of full body restraint of 
animals can lead to enhanced stress, we designed the restraint in such a way that the head and torso of the 
animals were held within a dark chamber, allowing for animals to be within a dark enclosed space to reduce 
anxiety throughout the collection time-period (IACUC approved). Our single-mouse EBC collection device 
utilizes the same flow pump/meter described above for the collection of EBC from a dual mouse chamber, 
and the rate of inlet air into the chamber will be set to ~2.0 mL/min. Additionally, in order to ensure one-
way air flow, a second flow meter will be attached to the other end of our collection (condensation) 
chamber and will be set to a flow rate of ~0.2 mL/min. Since our single collection device was smaller in size 
to ensure the collection of EBC only from the nose-mouse of animals, these collections provided smaller 
volumes of EBC and were performed for 2 h three times a week. The IACUC committee identified the 
duration and frequency of our collection acceptable to prevent animal stress throughout the duration of this 
study (24 weeks).

Lung tissue collection and H&E staining
At the end of the study period, mice were sacrificed and lungs were perfused and inflated for tumor 
histological examination by inserting a 3 mL syringe with a 22 g needle attached into the trachea and slowly 
inflating the lungs with 10% formalin at a rate of approximately 200 μL/sec until the lungs have fully 
inflated. Following inflation, the trachea was severed, and the lungs removed from the respiratory cavity and 
placed into a tube containing 10% buffered formalin and were fixed for 24 h. Following fixation, lungs were 
processed by histological sectioning and H&E staining at the Histology & Comparative Pathology core 
facility at the Albert Einstein College of Medicine, Bronx, NY.

Spectradyne microfluidic resistive pulse sensing
Particle size distribution of exhaled EVs isolated from mouse EBC was performed using microfluidic 
resistive pulse sensing (MRPS) measurements on a nCS1 instrument (Spectradyne LLC, Signal Hill, CA). 
Initially, the microfluidic system was primed using a solution of 0.2 µm filtered PBS containing 1% Tween 
20 (v/v). For each purified exhaled EV sample, 2 μL was loaded onto a C-400 cartridge (i.e., analysis of 
particles between 65 and 400 nm), and the instrument pressure and voltage parameters were automatically 
determined using the instrument software. Acquisition of data from > 6,000 particle detection events was 
collected for each sample, and all data were combined into a single stats file and using the nCS1 Data 
Viewer software, peak filters and background subtraction were applied, according to the manufacturer’s 
recommendations. Peak filters set were (i) transit time < 60 μs; (ii) diameter > 65 nm, and signal-to-noise 
ratio (S/N) > 10. Additionally, combined stats files were analyzed for size distribution and particle 
concentration and peak-filtered CSD graphs were generated.

EV-CATCHER isolation of the extracellular vesicles
The isolation of LM-3475 EVs in vitro and exhaled EVs from EBC collected in vivo was performed using the 
EV-CATCHER isolation protocol described by Mitchell et al. in 2021, customized with either human-
specific CD63 or mouse-specific anti-CD63 capture antibodies[97]. Briefly, equimolar amounts of 5’-Azide 
modified and 3’-Biotin modified oligonucleotides (Integrated DNA Technologies) were annealed in 1x RNA 
annealing buffer, prior to separation on a 15% non-denaturing polyacrylamide (PAGE) gel. The double-
stranded (ds) DNA product was visualized using SYBR® Gold™ (ThermoFisher, cat#S11494), excised, 
crushed, resuspended in 400 mM NaCl and placed on a thermomixer set to 4 °C and 1,100 RPM overnight. 
The solution was filtered, and the dsDNA linker was purified using the QIAEX® II gel extraction kit 
(Qiagen, cat#20021) according to the manufacturer’s instructions. Capture antibodies (1 mg/mL) were 
activated using 5 µL of freshly prepared 4 mM DBCO-NHS ester (Lumiprobe, cat#94720) and incubated for 
30 min at room temperature (RT) in the dark; reactions were stopped by adding 2.5 µL of 1M Tris-Cl (pH 
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8.0) at RT for 5 min in the dark. DBCO-activated antibodies were desalted using Zeba desalting columns 
(ThermoFisher, cat#89882), and quantified on a Nanodrop 2000 instrument prior to the preparation of 
antibody-dsDNA (Ab-dsDNA) stock solutions. Ab-dsDNA conjugates were then bound to streptavidin-
coated 96-well plates (Pierce, cat#15120) and wells were washed three times with cold 1x PBS solution, prior 
to the addition of RNase-A (12.5 μg/mL) treated samples (100 μL). Plates were sealed using microAMP 
optical adhesive film (Applied Biosystems, cat#4311971) and placed on a shaker at 300 RPM at 4 °C, O/N. 
Samples were carefully removed, and wells were washed 3 times with cold 1 × PBS, and 100 μL of freshly 
prepared uracil glycosylase (UNG) enzyme (ThermoFisher, cat#EN0362) in 1 × PBS [1 × UNG buffer 
200 mM Tris-Cl (pH 8.0), 10 mM EDTA, and 100 mM NaCl], with 1 unit of enzyme, was added to each 
well. Plates were incubated at 37 °C for 2 h on a shaker at 300 RPM for UNG digestion of the dsDNA linker, 
and isolated EVs were collected for downstream analyses. For evaluation of the anti-human anti-CD63 EV-
CATCHER assay, we conducted in vitro EV uptake experiments using EVs produced by LM-3475 cells 
transduced with a pCT-CD63-GFP lentivirus. A total of 180 mL of media was ultracentrifuged and the 
pelleted EVs were quantified using a Spectradyne nCS1 instrument. Half of the isolated EVs were subjected 
to the anti-human anti-CD63 EV-CATCHER assay and both EV-CATCHER and ultracentrifugation 
isolated EVs were used for in vitro uptake analyses, where non-transduced LM-3475 cells were treated with 
1 × 1010 isolated EVs and confocal microscopy was performed to evaluate EV uptake, by measure of GFP 
fluorescence. All other EV-CATCHER purifications were conducted using mouse EBC collected in vivo 
using our EBC collection systems.

Transmission electron microscopy
Transmission electron microscopy (TEM) of exhaled EVs purified by ultracentrifugation and the EV-
CATCHER assay, obtained from 3 mL of mouse EBC (i.e., collected from six mice over a period of three 
weeks), was performed at the Analytical Imaging Facility at the Albert Einstein College of Medicine, Bronx, 
NY.

ONi super-resolution nanoimaging
Exhaled EVs purified from mouse EBC by ultracentrifugation of 1 ml of EBC collected with our v2.0 system 
from lung tumor-bearing female mice (weeks 19-22) and from 3 mL of EBC from control female mice 
(weeks 19-22), were processed for nanoimaging on the highly sensitive ONi super-resolution Nanoimager 
using the ONi human EV Profiler kit v2.0 customized for the capture and assessment of EVs immobilized 
using their proprietary S4 capture molecule which binds phosphatidylserine present on all EVs. Mouse EVs 
ultracentrifuged from control female mice were only tested as a negative control, as ONi does not 
manufacture a mouse EV profiler kit. Human EV capture and staining was performed according to 
manufacturer protocol, and image acquisition on the ONi super-resolution Nanoimager was performed in 
the NimOS Light program with a 640 dichroic split using the following parameters: 640 nm laser set to 
20%-30% laser power, the 560 nm laser at 35% laser power, and the 473/488 nm laser set to 70% laser power. 
Technical support from ONi provided information that during image acquisition, the fluorescent 
wavelength of TdTomato could not be excited and captured by either of the three pre-calibrated lasers and 
that the analysis of potential GFP signal was not detected in any of our raw data. The number of runs 
(frames) for all laser lines was set to 1,000 and all image analyses were performed using CODI software.

Small-RNA extractions
Small-RNA extractions from exhaled EVs were performed using the miRNeasy Serum/Plasma kit (Qiagen, 
Cat#217184) according to the manufacturer’s instructions, with some modifications to improve total RNA 
yield. Briefly, QIAzol was added to 100 µL of purified exh-EVs, vortexed and incubated at RT for 3 min, 
after which chloroform was added to each sample. Samples were vortexed again and incubated at RT for 3 
min. Samples were then centrifuged at 12,000 × g, at 4 °C for 15 min, and the upper aqueous phase was 
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carefully removed and transferred into new siliconized 1.5 mL Eppendorf tubes, to which 100% ethanol and 
2 µL of miRNA-Seq 19 nt/24 nt (1.5 ng + 1.5 ng) size marker required for NGS library preparations was 
added to each sample. Samples were incubated on ice for 40 min prior to undergoing column purification, 
where each sample was passed twice through RNeasy MinElute columns, followed by a working solution of 
RPE wash buffer, and finally ice-cold 80% ethanol. Columns were spun to remove residual ethanol, and total 
RNA was eluted with 50 µL of RNase-free water and samples were speed-vacuumed to 9.5 µL prior to small-
RNA sequencing.

Small-RNA cDNA library preparations
Small-RNA sequencing from EVs purified from mouse exhaled breath condensate (EBC) was performed 
using the cDNA library preparation protocol described by Loudig et al.[98], with modifications for low input 
RNA from purified small EVs[97]. In brief, small-RNA cDNA libraries were prepared using total RNA 
recovered from condensates, whole EBC, or exhaled EVs purified with EV-CATCHER from EBC. 18 RNA 
samples underwent individual ligations using truncated K227Q T4 RNA Ligase 2 (New England Biolabs, 
cat#M0351L) for barcoding with 3’ adapters. The next day, ligations were heat inactivated at 90 °C for 
1 min, combined, precipitated on ice, and centrifuged for 1 h at 14,000 RPM, at 4 °C. The pellet was dried, 
resuspended, and ligated miRNAs were size-selected on a 15% Urea-PAGE gel, excised, and incubated in 
400 mM NaCl O/N at 4 °C, at 1,100 RPM on a thermomixer. The next day, the solution was filtered, 
precipitated, and a RNA pellet was obtained by centrifugation at 14,000 RPM for 1 h at 4 °C. The 5’ adapter 
was added to the resuspended pellet using T4 RNA Ligase 1 (New England Biolabs, cat#M0204L) for 1 h at 
37 °C. The ligated product was separated on a 12% Urea-PAGE gel, size-selected, and excised; the gel 
fragment was crushed, resuspended in 300 mM NaCl solution with 1 mL 100 M 3’ PCR primer, and 
incubated O/N on a thermomixer at 1,100 RPM at 4 °C. The next day, the solution was filtered, precipitated 
with 100% ethanol, incubated on ice for 1 h, and pelleted by centrifugation for 1 h at 4 °C. The RNA pellet 
was resuspended, and underwent reverse transcription using SuperScript® III Reverse Transcriptase 
(ThermoFisher, cat#18080-093) at 50 °C for 30 min. The reaction was deactivated at 95 °C for 1 min, and a 
pilot PCR reaction was set up to identify the ideal amplification cycle. Large-scale PCR reactions were set 
up, combined, precipitated, digested with PmeI for removal of size markers, and separated on a 2.5% gel. 
The 100 nucleotide PCR library product was excised, purified with QIAquick Gel Extraction Kit (Qiagen, 
cat#28704), and quantified. cDNA libraries were then sequenced (single-read 50 cycles) on a HiSeq2500 
Sequencing System, after which FASTQ files containing raw sequencing data were processed for adapter 
trimming and small-RNA alignment to the hg-19 genome.

miRNA data analysis
Raw FASTQ data files obtained on an Illumina HiSeq2500 sequencer were processed using the RNAworld 
server from the Tuschl Laboratory at the Rockefeller University, including adapter trimming and read 
alignments and annotation. MiRNA counts were exported to spreadsheets for data analysis. Statistical 
analyses of miRNA counts were performed using dedicated Bioconductor packages in the R platform, as 
detailed below. Heat maps were generated from transformed counts using the “NMF” package (aheatmap 
function). Differential expression was assessed using “DESeq2” and “edgeR”. Differential expression models 
included a batch variable (library) to reduce batch biases. To maximize the discrimination ability of miRNA, 
we computed a score for each sample (“miRNA score”[99]), assembled by summing the standardized levels 
(z-values) of all significantly upregulated miRNAs, and the negative of the z-values of all significantly 
downregulated miRNAs.

Proteomic data analysis
We conducted proteomic analyses on EBC samples collected with our v1.0 system and separately combined 
from the EBC of 6 control mice (i.e., 3 males and 3 females) and the EBC of 6 lung tumor-bearing mice (i.e., 
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3 males and 3 females). We estimated the total protein content of each of these two EBC samples (i.e., 
control and lung tumor-bearing samples) to be 53 ng and 76 ng, respectively. We also conducted proteomic 
analyses on EBC samples collected with our v2.0 system and separately combined EBC from 3 female 
control mice and from 3 female lung tumor-bearing mice and estimated the total protein content to be 
29 ng and 38 ng, respectively. Proteins present in mouse EBC were analyzed by a workflow integrating 
suspension trapping (S-Trap)-based sample processing and data-independent acquisition mass 
spectrometry (DIA-MS) was recently described for the analysis of low input EV proteins[100]. In brief, 
proteins were extracted with 5% SDS, reduced with DTT, alkylated with iodoacetamide, and then digested 
on a S-Trap column (ProtiFi, LLC) with sequencing-grade trypsin/Lys-C (Promega). The resulting peptides 
were analyzed with a nanoAcquity UPLC system (Waters) coupling with an Orbitrap Fusion Lumos mass 
spectrometer (Thermo Fisher) in DIA mode, with parameters similar to those described previously[100]. The 
DIA data files were processed by Spectronaut (Biognosys) with default settings, and the peptides identified 
were aligned against mouse and human protein databases. For proteins identified from EBC collected with 
our v1.0 system, we identified a total of 448 proteins and a total of 333 proteins from EBC collected with our 
v2.0 system. Differential expression analyses [i.e., Ratio of lung tumor-bearing protein reads/control protein 
reads from condensates (v1.0 system) and EBC (v2.0 system)] of proteins commonly detected between lung 
tumor-bearing and control mouse biofluids [i.e., condensates (v1.0 system) and EBC (v2.0 system)] are 
displayed as heat maps.

RESULTS
Orthotopic tumor-bearing mouse model of secondary lung cancer
The goal of our proof-of-principle study was to determine whether secondary lung cancer can be detected 
non-invasively at an early stage through the analysis of exhaled breath condensates. Thus, we selected an 
aggressive human metastatic breast cancer cell line (MDA-MB-231 subline 3475), which was developed by 
the group of Dr. Massagué, that, when delivered via tail vein injection, migrates and colonizes the lungs, 
rapidly forming expanding lung tumor foci within 15 weeks[101]. In previous studies, we demonstrated that 
these cells preferentially colonized the lungs of athymic BALB/C mice and led to a heavy tumor burden 
within 16 weeks[102,103]. Prior to conducting our in vivo analyses, we stably transduced these cells with the 
pUltraChili-Luc construct (TdTomato-Luc; 9947bp) [Supplementary Figure 1], as its luciferase production 
enables reduction of D-luciferin that is injected intraperitoneally (150 mg/kg) in anesthetized animals for 
release of bioluminescence and in vivo imaging of tumor growth. We also transduced these cells with the 
pCT-CD63-GFP Cyto-Tracer lentivirus (i.e., SBI, cat# CYTO120-VA-1, detailed in Supplementary Figure 1) 
to evaluate the purification and uptake of their extracellular vesicles in vitro [Supplementary Figure 2]. We 
used fluorescent activated cell sorting (FACS) to select for double-positive cells expressing both TdTomato-
Luc [i.e., Supplementary Figure 1A] and CD63-GFP [i.e., Supplementary Figure 1B]. Single-cell expansion 
of double-positive LM-3475 clonal cells (i.e., high co-expression levels) was confirmed by confocal imaging 
in Figure 1A, using DAPI nuclei staining (blue; first panel), TdTomato-Luc (red protein, second panel) and 
CD63-GFP (green fluorescent protein; third panel). As cells were asynchronous and at different stages of 
mitosis, we observed different intensities of the GFP signal, indicating different production levels of CD63-
GFP labeled EVs (Figure 1A, comparing GFP signal of central dividing cell with surrounding growing cells 
in third panel). Our double-positive LM-3475 clone was expanded in vitro and delivered via tail vein 
injection (i.e., 1 × 106 LM-3475 cells) into male and female athymic BALB/C mice for our tumor-bearing 
animal group [Supplementary Figure 1C]. We conducted in vivo imaging weekly to monitor tumor 
localization and evaluate tumor burden in individual mice. We detected bioluminescent signal in the 
thoracic area of mice within 6 weeks after tail vein injection of double-positive LM-3475 cells [Figure 1B], 
which was consistent in all animals by 12 weeks [Figure 1B]. Our animals were sacrificed at 16 weeks, and 
we observed large macroscopic tumor lesions in the lungs of tumor-bearing animals [Figure 1C]. Our 
pathological evaluations revealed the presence of both microscopic tumor foci and large tumors within lung 
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Figure 1. Establishment of the mouse model of human secondary lung cancer. (A) MDA-MB-231 subline 3475 cell line stably 
transduced with lentiviral constructs for expression of TdTomato-luciferase (pUltraChili-Luc) and pCT-CD63-GFP.  Confocal imaging of 
a single clone co-expressing both TdTomato and GFP, sorted by FACS [See Supplementary Figure 1], with DAPI staining to locate 
cellular nuclei (Blue color, left panel) and Td-tomato red protein expression (Red colored cells, second panel from the left) and the 
CD63-GFP protein on extracellular vesicles (EVs, Green dots, third panel from the left), with a Merged image all staining and 
fluorescent imaging on the right panel. CD63-GFP detection shows that cells at different mitotic stages produced different amounts of 
EVs as observable by the differential detection of GFP protein. The central dividing cell displays the highest amount of observable EVs; 
(B) Bioluminescent in vivo imaging of tumor-bearing mice at weeks 0, 6, and 12 after inoculation of TdTomato-Luc+/CD63-GFP+ MDA-
MB-231 subline 3475 cells. Bioluminescence intensity is indicated by means of radiant efficiency (photons/sec/cm2/sr) scale bars, with 
red being the most intense (See scale bar); (C) Representative formalin-fixed whole lung tissue images collected from two healthy mice 
(control; left) and two TdTomato-Luc+/CD63-GFP+ MDA-MB-231 subline 3475 inoculated lung tumor-bearing mice (case; right); (D) 
Representative images of Hematoxylin and Eosin (H&E) stained 5 mm tissue sections of lungs harvested from one control (left panels; 
0 × and 20 × magnifications) and one lung tumor-bearing animal (right panels; 0 × and 20 × magnifications). The image right panel 
from one lung tumor-bearing animal shows extensive infiltration of metastatic carcinoma legions with a few rare immature 
lymphocytes seen interspersed.

tissues [Figure 1D]. We did not observe significant differences in the growth or number of tumors between 
males and females.

Evaluation of a whole mouse condensate collection system (Version 1.0)
For these experiments, we sought to determine whether whole mouse condensates could be collected from 
unrestrained lung tumor-bearing and control athymic BALB/C mice. Utilizing the Sable Systems 
International (SSI) classic instrumentation line, we combined devices to enable collection of condensates in 
this air-tight system [Figure 2]. Using the SS4 pump (Figure 2A; flow rate of 2 mL per min), compressed 
breathing-grade air was circulated through a one-way Balston air flow filter (Figure 2B, to prevent air 
backflow) and through ¼ inch tubes into the successive chambers [Figure 2C and E]. The first was the 
animal glass chamber (Figure 2C; accommodates up to two mice) that was sealed on both ends by caps with 
double gaskets to prevent air leakage [Figure 2D]. This chamber was fitted with a removable metal grate to 
allow mice to move freely and to allow urine and feces to drop in the lower section of the glass chamber. As 
the air was continually pushed through the mouse glass chamber, it was then directed towards a second 
small glass chamber (Figure 2E; the condenser), which was set on ice to enable condensation of animal 
aerosolized biofluids (condensates). This glass condenser was also sealed on both ends with tight-fitting 
endcaps equipped with double gaskets that prevented air leakage. For our experiments, we collected 
condensates from animal pairs of the same sex weekly for 16 weeks. Our weekly collections revealed that we 
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Figure 2. Whole mouse exhaled breath condensate (EBC) collection system version 1.0. For this system, EBC is collected from two 
unrestrained mice roaming in a sealed glass chamber, which contains a removable metal grate that allows animals to move freely with 
normal postural movement. Airflow throughout the system is maintained and directed towards a condenser. The components of this 
mouse EBC collection system include: (A) an air pump that controls airflow (2.0 mL/min) of compressed breathing-grade air that is 
transported through 1/4 inch plastic tubes; (B) a one-way Balston 0.01 mic 93% airflow filter that maintains air sterility; (C) a glass 
mouse chamber (containing two mice); that is (D) securely sealed on both ends by caps with gaskets; connected to (E) a glass 
condenser sealed on both ends by caps, which is placed on ice to allow for the collection of EBC. It is estimated that ~62.5 µL of EBC can 
be captured from two mice within one h of collection.

could condense an average volume of ~62.5 µL of biofluid in each condenser within one h [i.e., average 
collected over 96 collections (3 animal pairs × 1 collection per week × 16 weeks × 2 groups)]. For our 
experiments, we collected three distinct condensates from dedicated animal pairs, separately from males (n 
= 6; 3 pairs) and females (n = 6; 3 pairs), both from our control (6 males and 6 females) and lung tumor-
bearing (6 males and 6 females) animal groups.

miRNA expression analyses of whole mouse condensates
As we recently demonstrated that miRNAs are detectable in human EBC and that they may have diagnostic 
value for the detection of lung cancer[43], we investigated whether microRNA expression analyses of our 
condensates could likewise distinguish mice with secondary lung tumors from control mice. We separately 
combined condensates from male pairs and from female pairs for each group and at each time point to 
enable RNA extractions from at least 100 µL biofluid. Then, using our optimized assays[97,98], we conducted 
small-RNA next-generation sequencing (NGS) analyses of mouse condensates collected at weeks 0, 5, 9 and 
13 from control females [Figure 3A, blue circles (n = 6)], control males [Figure 3A, blue triangle (n = 6)], 
and lung tumor-bearing females [Figure 3A, red circle (n = 6)], and lung tumor-bearing males [Figure 3A, 
red triangle (n = 6)]. Control male and female mice had received a mock injection of 1 × PBS at the same 
time as tumor-bearing male and female mice had received 1 × 106 LM-3475 cells, which were delivered via 
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Figure 3. MicroRNA analysis of EBC collected from unrestrained animals. (A) Timeline of the weekly EBC collections from animal pairs, 
separated by sex (circles for females, triangles for males), between healthy control mice (blue) and lung tumor-bearing mice (red), for a 
period of 16 weeks. Discovery analyses were performed using total small-RNA extracted from EBC collected at weeks 0, 5, 9, and 13 
using Next-Generation Sequencing (NGS). Validation analyses were conducted using total small-RNA extracted from EBC at weeks 1, 8, 
and 15 using quantitative reverse transcription PCR (RT-qPCR). Proteomic analyses were conducted on EBC collected and pooled for 
weeks 12, 14, and 16 from control and tumor-bearing mice groups; (B) PCA plots for miRNA expression of healthy control mice 
measured at weeks 0, 5, 9, and 13 for both females and males (top), and lung tumor-bearing mice at the same time points for both 
females and males (bottom); (C) Heatmap classification of the top 233 miRNAs detected by NGS using small RNAs extracted from 
EBC of healthy control (blue) and lung tumor-bearing (red) mice at weeks 0 (yellow), 5 (green), 9 (pink), and 13 (purple) for both 
females (grey) and males (black). The purple box highlights miRNAs commonly identified between condensates from control and lung 
tumor-bearing animals. The red box highlights miRNAs predominantly identified in condensates obtained from lung tumor-bearing 
animals. Two miRNAs, namely miR-374a and miR-584, which are bolded in orange text, are identified to be predominantly upregulated 
in condensates of lung tumor-bearing animals and are also identified to be upregulated in EBC obtained from lung tumor-bearing 
animals (system v2.0) displayed in Figure 7C and D. Taqman© qPCR analyses of hsa-miR-222 and has-miR-210 using total small-RNA 
purified from EBC collected at weeks 1 (blue), 8 (light purple), and 15 (dark purple), separately for  females and males, with data 
calculated using the 2ΔΔCt formula between healthy mice (i.e., using  week 1 Ct values as the reference), and lung tumor-bearing mice, 
both normalized to exogenous ath-miR-159a (100 pg) as an internal “housekeeping” control that was spiked in EBC before RNA 
extractions and qPCR analyses.

tail vein injection at week 0, to eliminate experimental biases due to biofluid injections. Principle 
Component Analysis (PCA) plots revealed that the miRNA profiles captured from control male and female 
mice were consistent across the 16 weeks of collection [Figure 3B, control (blue)], but revealed differences 
between week 0 and weeks 5, 9, and 13 for lung tumor-bearing male and female mice [Figure 3B, tumor 
(red)]. Furthermore, we observed that the miRNA profiles of condensates collected at weeks 5, 9, and 13 
from lung tumor-bearing mice clustered together, were consistent between males and females, but were 
highly different from those of male and female control mice [Figure 3C]. We noted that the miRNA profiles 
of condensates collected at week 0, following tail-vein injection of LM-3475 cells for lung tumor-bearing 
male and female mice, clustered together with those of control male and female mice [Figure 3C]. Overall, 
our miRNA profiles identified a set of miRNAs common between the control and tumor groups (Figure 3C, 
purple rectangle), and a set of tumor-associated miRNAs mostly detectable in the tumor group at weeks 5, 9 
and 13, in both males and female mice (Figure 3C, red rectangle). Although we identified miRNA 
expression differences between the condensates of control and tumor groups, we could not fully determine 
whether all these miRNAs were of human (tumor cell) or mouse (mouse tissues) origin due to strong 
sequence homology between these two species.
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As we sought to determine if we could conduct early and non-invasive detection of secondary lung tumors 
by analysis of miRNAs contained in condensate, we selected miR-222 and miR-210, which displayed high 
read counts by NGS, and had been reported in the literature for their increased expression in the circulation 
of women diagnosed with metastatic breast cancer[104,105], to conduct our qPCR analyses [Figure 3D]. Our 
qPCR data confirmed their upregulated expression in condensates of lung tumor-bearing mice, but also 
revealed that their expression increased between weeks 1, 5, and 8 for both lung tumor-bearing males and 
females [Figure 3D]. We also noted that comparatively, the increase in expression of both miR-222 and 
miR-210 was higher in the combined condensates of lung tumor-bearing female mice than in those of male 
mice. Particularly, we observed that increased expression of both miR-222 and miR-210 was detectable in 
condensates of lung tumor-bearing female mice only one week after tail-vein injection of LM-3475 cells, but 
not in male mice. Our analyses demonstrated that miRNAs contained in condensates collected with our 
v1.0 system could discriminate control from lung tumor-bearing mice. Our data also suggested that 
metastatic human female breast cancer cells were detectable quicker in female than in male tumor-bearing 
mice.

Proteomic analyses of whole condensates
Although our experiments indicated that condensates collected with our v1.0 system contained miRNAs 
that could discriminate control and lung tumor-bearing mice, we could not confirm that the condensed 
biofluids were solely obtained from exhaled breath. Indeed, upon the transfer of condensates to Eppendorf 
tubes, we could generally detect a smell of urine emanating from our condensates. Therefore, we sought to 
investigate the protein content of this biofluid to estimate tissue contribution, and used the S-trap-based 
sample processing coupled with DIA-MS proteomics approach, a workflow that we previously developed 
for the robust and ultra-sensitive proteomic analysis of low input proteins (as low as 5 ng input;[100]). We 
conducted these proteomic analyses on whole mouse condensates combined separately from 6 control (i.e., 
3 male and 3 female mice with 53 ng of total protein input) and 6 lung tumor-bearing mice (i.e., 3 male and 
3 female mice with 76 ng of total protein input), collected at weeks 12, 14, and 16 [Figure 4]. Our analyses 
identified a total of 448 proteins between condensates of control and lung tumor-bearing mice. We 
determined that 232 proteins were common to both control and lung tumor-bearing mouse condensates 
but that 216 were unique human proteins, which were only detected in condensates of lung tumor-bearing 
mice. When evaluating the 55 most differentially expressed proteins, common to both control and lung 
tumor-bearing mouse condensates (Supplementary Figure 3; aligning to both human and mouse protein 
sequences), we identified several upregulated proteins in the condensates of lung tumor-bearing mice, of 
which some have been correlated with pro-metastatic properties in previous studies (Supplementary Figure 
3; Plectin, Gelsolin, Vimentin, β1 integrin, Integrin a6, α-enolase, S100A4)[100,106-107]. Due to the high sequence 
homology between human and mouse for these 55 proteins, mouse tissue or human tumor contribution 
could not be confirmed. However, when we conducted putative tissue origin analysis of the 232 proteins 
(i.e., based on prominent tissue expression determined in ProteinAtlas) common to both control and lung 
tumor-bearing mouse condensates, we determined that a large proportion could be categorized to other 
tissue origins than the lung or respiratory system (Figure 4, skin, urine, upper digestive tract, colon, testes, 
and breast).

Evaluation of a nose/mouth targeted exhaled breath condensate collection system (Version 2.0)
Since our low output proteomic analyses suggested that whole animal collection of condensates introduced 
protein contaminants from tissue sources other than the lung, to improve our miRNA expression analyses, 
we sought to focus our collection on exhaled breath condensates. Thus, we improved the design of our 
collection system by including a mouse restraining device (i.e., as described by Liu et al.[96]) and by including 
an exhaled breath collection chamber to allow targeted capture of exhaled breath condensate (EBC) directly 
from the nose/mouth of individual mice [Figure 5]. Similarly to that of our v1.0 collection system, this 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202404/evcna3077-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202404/evcna3077-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202404/evcna3077-SupplementaryMaterials.pdf
https://dx.doi.org/10.20517/evcna.2023.77


Mitchell et al. Extracell Vesicles Circ Nucleic Acids 2024;5:138-64 https://dx.doi.org/10.20517/evcna.2023.77                                     Page 150

Figure 4. Proteomic analysis of EBC from healthy controls and lung tumor-bearing mice. Pie chart distribution of all 286 identified 
proteins in pooled EBC samples of control (n = 6) and lung tumor-bearing (n = 6) mice, stratified based on the preferential organ/tissue 
origin of each individual protein as informed by ProteinAtlas, and distributed as either from lung, skin, urine, breast, testis, colon, or 
undetermined tissue origins (i.e., Other).

Figure 5. Nose and mouth EBC collection system v2.0 for restrained individual animals. The system designed and described here 
includes additional devices that enable air flow and direct collection of EBC from the nose and mouth of restrained mice. The system is 
composed of: (A) an air pump controlling airflow (2.0 mL/min) from an air tank transported by 1/4 inch tubes; (B) an airflow valve to 
maintain air directionality and sterility; (C) an exhaled chamber that is tightly connected with gaskets; to the (D) mouse immobilization 
chamber where the animal is restrained and through 1/4 inch tubes; towards (E) a glass condenser sealed on both ends by caps and 
sitting on ice for the accumulation of EBC droplets; which is connected to (E). a second air pump set up in vacuum mode to enhance air 
circulation through the entire system (i.e., set at 0.2 mL/min). This system allows for individual collection of ~29 µL EBC from 
restrained mice within 2 h.

system included an air pump (Figure 5A; set at 2 mL per minute) supplying compressed breathing-grade 
air, a one-way airflow Balston filter [Figure 5B] to enable unidirectional air flow, an exhaled breath 
collection chamber (Figure 5C; see blue arrows for airflow) that was sealed by a gasket at its connection at 
the end of the mouse restrainer [Figure 5D], and a sealed glass condenser [Figure 5E]. In order to enhance 
airflow, we added an air pump to gently pull air from the end of the condenser (Figure 5F; set at 0.2 mL per 
min). Importantly, we determined that within a 2-h collection window (i.e., the maximum allowed time by 
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the internal IACUC committee), we could collect an average of ~29 µL of EBC from individual mice. Due to 
the collection of a lower EBC volume with our v2.0 collection system than with our v1.0 system 
(i.e., 63 µL per h), for experimental and feasibility reasons, we chose to analyze combined EBC samples (i.e., 
3 control mice or 3 lung tumor-bearing mice) to reach a total working volume of 100 µL. Since we did not 
observe differences in the identity of the miRNAs differentially expressed in condensates collected from 
male and female lung tumor-bearing mice with our v1.0 system, but we observed increased detectability of 
miR-222 and miR-210 at earlier stages of disease (i.e., at week 1) in female mice compared to male mice, we 
chose to conduct our proof-of-principle miRNA NGS and qPCR analyses of EBC collected with our v2.0 
EBC collection system from female mice only. This was further supported by the fact that the incidence of 
male breast cancer and its metastasis to the lung is extremely rare[108], and that our cells were of female breast 
cancer origin.

Detection of human tumor extracellular vesicles in mouse EBC
As determined in previous studies, EBC collected with different types of condensing devices from humans 
has been found to contain EVs[48-50]. Thus, for this proof-of-principle study, we sought to determine whether 
EBC collected from the nose/mouth of restrained mice also contained EVs. Thus, we conducted 
nanoparticle analyses of whole EBC collected with the v2.0 EBC collection system from both control and 
lung tumor-bearing mice using our Spectradyne Nanoparticle Analyzer nCS1 instrument [Figure 6A]. Our 
analyses of EBC collected and pooled from three mice at weeks 2, 6, and 11 revealed that nanoparticles of 
65-150 nm in diameter were detectable from both control (n > 57 nanoparticles, Figure 6A top graph) and 
lung tumor-bearing mice (n > 1,663 nanoparticles, Figure 6A bottom graph), but that they were present at 
much greater concentrations in the EBC of lung tumor-bearing female mice than control female mice. 
Additionally, we observed that the number of nanoparticles detectable in EBC of lung tumor-bearing mice 
between weeks 2 and 11 nearly doubled (Figure 6A; from 1,663 at week 2 to 2,651 particles at week 11). 
Next, we performed Transmission Electron Microscopy (TEM) on EVs ultracentrifuged from 1 ml of EBC 
collected and combined from 6 lung tumor-bearing female mice between weeks 19 and 22 using our v2.0 
collection system (Figure 6B; bottom panels). Since our Spectradyne analyses showed that EVs from control 
mice were in much lower concentrations, we collected and combined 3 ml EBC obtained from 6 control 
female mice over a period of six weeks and then conducted ultracentrifugation and TEM analyses 
[Figure 6B]. EVs detectable from EBC of control and lung tumor-bearing female mice were ~80-100 nm in 
diameter [Figure 6]. Since our analyses indicated that EBC collected from lung tumor-bearing mice 
contained a higher number of nanoparticles, we sought to determine whether this increase was due to an 
output of human tumor EVs. Thus, we used the ONi human EV profiler kit to conduct super-resolution 
nanoimaging [Figure 6C]. With this kit, phosphatidylserine present in the membrane of EVs is bound onto 
the ONi platform with a proprietary S4 capture molecule, and they are then evaluated for presence of 
human CD9, CD63, and CD81 tetraspanin proteins by laser detection of their three individually 
fluorescently labeled anti-human antibodies [Figure 6C]. We note that the scanning wavelength of each of 
the three lasers used to detect these three fluorescent antibodies did not coincide with the fluorescent signal 
of TdTomato and that no signal was detected for GFP in any raw data files acquired from the imaging of 
exhaled EVs. Since a mouse EV profiler kit was not manufactured by ONi, our EV validation analyses were 
focused only on human EVs. Our analyses revealed that we could not detect human CD9, CD63, and CD81 
from mouse EVs pelleted by ultracentrifugation from 3 mL of control mouse EBC and tested on the ONi 
platform (Figure 6C; upper panels). We also note that this volume was three-fold the volume of EBC 
collected and ultracentrifuged from lung tumor-bearing mice (i.e., 1 mL) and thus three-fold the input of 
mouse EVs present in EBC collected from lung tumor-bearing mice. Our analyses showed that we could 
individually detect human CD9, CD63, and CD81 proteins on the surface of EVs immobilized on the ONi 
platform, which were purified by ultracentrifugation of 1 mL EBC from lung tumor-bearing mice 
(Figure 6C, lower panels). We displayed scans of the ONi grids for all detectable EVs in 
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Figure 6. Purification and analysis of exhaled extracellular vesicles from mouse EBC. EBC collected directly from the nose and mouth of 
individual animals was evaluated for the presence of exhaled EVS. (A) EBC from healthy control (n = 3) and lung tumor-bearing (n = 3) 
mice collected at weeks 2, 6, and 11 was evaluated using the Spectradyne nCS1 nanoparticle analyzer, using C400 cartridges for the 
detection of nanoparticles between 65 and 400 nm; (B) EBC samples from 6 control (left; 3 mL) and 3 lung tumor-bearing (right; 1 mL) 
mice, collected over 4 weeks, were subjected to ultracentrifugation and the pellets analyzed by imaging using transmission electron 
microscopy (TEM); (C) EV pellets from healthy control (top panels) and from lung tumor-bearing mice were analyzed using Super-
Resolution Microscopy (ONi instrument) using anti-human anti-CD63, anti-CD9, and anti-CD81 anti-tetraspanin antibodies to evaluate 
the size and identity exhaled EVs contained in the ultracentrifuged EBC pellets of control (top panels) and lung tumor-bearing mice 
(bottom panels).

Supplementary Figure 4. Our results suggest that the ONi human EV profiler kit could not capture or 
identify human CD9, CD63, or CD81 tetraspanins on EVs ultracentrifuged from the EBC of control mice 
(Figure 6C; top panels), but identified all three proteins on EVs ultracentrifuged from the EBC of lung 
tumor-bearing mice.

miRNA analyses of EBC and exhaled EVs collected directly from nose/mouth
Next, we sought to evaluate the utility of our EV-CATCHER assay customized for species-specific 
purification of exhaled EVs from mouse EBC[97]. Thus, we selected a human-specific and a mouse-specific 
anti-CD63 antibody to purify and conduct comparative miRNA expression analyses of human and mouse 
EVs contained in the EBC of control and lung tumor-bearing mice. We chose an anti-human anti-CD63 
customized EV-CATCHER assay for the purification of human EVs from mouse EBC, as opposed to an 
anti-GFP antibody (i.e., CD63-GFP labeled EVs are produced by LM-3475 cells in Figure 1A), because we 
had demonstrated its high affinity for human EVs in a previous study[97]. Due to the limited availability of 
exhaled EVs, we initially tested the ability of our anti-human anti-CD63 EV-CATCHER assay to purify and 
release intact EVs produced by pCT-CD63-GFP transduced LM-3475 cells [Supplementary Figure 2] by 
measuring their uptake in vitro. When comparing the uptake of CD63-GFP EVs (i.e., produced by our 
LM-3475 cells) purified by ultracentrifugation or by our anti-human anti-CD63 EV-CATCHER by non-
transduced LM-3475 cells, we similarly detected GFP labeled EVs inside treated cells using confocal 
microscopy [Supplementary Figure 2]. Prior to the purification of exhaled EVs, we also compared the 
species specificity of our anti-human and anti-mouse anti-CD63 antibodies by Western blot analyses of EVs 
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ultracentrifuged from tissue culture-derived media of human MDA-MB-231 breast cancer cell, human 
HEK293 cells, and primary mouse bone marrow-derived endothelial cells (BMEC), which revealed high 
species-specific recognition of our anti-human and anti-mouse anti-CD63 antibodies [Figure 7A]. 
Considering the high tumor burden observed at 24 weeks (Supplementary Figure 5; see H&E), we chose to 
conduct our miRNA NGS analyses with EBC collected at weeks 20, 21, and 22 to ensure similar disease 
burden among the animals and high miRNA detectability. Prior to our analyses with NGS, we conducted 
species-specific sequential isolations of human and then mouse EVs from whole mouse EBC, using our 
respective anti-human and anti-mouse CD63-EV-CATCHER assays. Our NGS data of whole EBC 
(Figure 7B, blue and green squares) identified miRNAs unique to lung tumor-bearing animals compared to 
whole EBC of control mice (Figure 7B, red and green squares). Comparatively, when using our anti-human 
anti-CD63 EV-CATCHER to purify human tumor EVs from mouse EBC of lung tumor-bearing mice 
(Figure 7B, red and orange squares), we identified miRNAs, whose expression overlapped with those 
detected in whole EBC of lung tumor-bearing animals but not detected in control EBC (Figure 7B, blue and 
red squares). When using the anti-mouse anti-CD63 EV-CATCHER assay, we generated miRNA profiles 
(Figure 7B, blue and purple squares), which clustered closely to that of whole EBC from control mice 
(Figure 7B, blue and green squares). It is important to note that when using the anti-human anti-CD63 EV-
CATCHER assay on EBC of control animals (Figure 7B, blue and orange squares) where no human EVs 
were anticipated to be present, due to the minimal cross-reactivity of the human anti-CD63 antibody 
against mouse CD63, we captured non-specific miRNA profiles that clustered between the miRNA profiles 
of whole EBC from control mice and mouse EVs purified with the anti-mouse anti-CD63 EV-CATCHER 
assay from control animals. As displayed in Supplementary Figure 6, the number of reads detected non-
specifically (104 reads) was 1,000-fold lower than the signal detected specifically with human exh-EVs 
purified from EBC of lung tumor-bearing mice (107 reads). We noted that the non-specific capture of EVs 
us ing  our  an t i -human ant i -CD63  EV-CATCHER wi th  EBC o f  cont ro l  mice  was  
~10.5% (5.8% + 0.8% + 3.5% + 0.4%), or for 27 miRNAs that were unique to mouse whole EBC. However, we 
observed an overlap of 80.6% (69.3% + 3.5% + 5.8% + 1.2% + 0.4% + 0.4% or 207 miRNAs) of all 257 
miRNAs reproducibly detected (i.e., with at least 5 reads in 6 out of 9 samples per group in 2 out of the 
three weeks) between whole EBC of lung tumor-bearing mice and human EVs purified from the EBC of 
lung tumor-bearing mice [Figure 7C]. These results confirmed that the bulk of differentially expressed 
miRNAs detectable in the EBC of lung tumor-bearing mice originates from human tumor exhaled EVs.

Feasibility of detecting differently expressed miRNAs in EBC by qPCR analyses
Next, we sought to retrospectively validate our findings by evaluating EBC samples collected at earlier stages 
of disease (i.e., weeks 2, 6, and 11) and to determine whether we could detect metastatic lung tumors non-
invasively by simple qPCR analysis of differentially expressed miRNAs identified by our NGS analyses 
[Figure 7D]. As similarly observed with our NGS data obtained from condensates collected with our v1.0 
collection system, we also found miR-222 and miR-210 to be increased in expression in whole EBC of lung 
tumor-bearing animals collected with our v2.0 collection system, compared to EBC of control mice. 
However, we also identified two additional miRNAs (miR-374a and miR-584) that were mostly detectable 
by our NGS analyses in whole EBC and human tumor EVs of lung tumor-bearing animals but not detected 
in EBC of controls. When reanalyzing NGS data obtained with condensates collected from control and lung 
tumor-bearing mice with our v1.0 collection system (see Figure 3C; see miR-374a and miR-584), we noted 
that although both miRNAs had lower reads, they appeared also to be uniquely upregulated in condensates 
of lung tumor-bearing mice. When we conducted our comparative qPCR analyses of EBC collected from 
control and lung tumor-bearing female mice, we reproducibly validated the upregulated expression of all 
miRNAs in EBC of lung tumor-bearing mice. However, we found that miR-222 and miR-374a provided 
greater sensitivity for earlier detection of disease (Figure 7D; at week 2) than miR-210 and miR-584 
(Figure 7D; at week 6). These results further confirmed that exhaled metastatic human lung tumor EVs 
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Figure 7. MiRNA analyses of EBC and exhaled EVs collected from control and lung tumor-bearing mice. (A) Western blot evaluation of 
anti-human and anti-mouse CD63 antibodies using EVs purified from tissue culture media of human breast cancer MDA-MB-231 cells, 
human kidney cancer HEK293 cells, and normal mouse bone marrow endothelial cells (BMECs); (B) Heatmap analysis of the top 142 
most differentially detectable miRNAs between small-RNA extracted from whole EBC (green), and sequentially purified from human 
exhaled EVs using the anti-human anti-CD63 EV-CATCHER assay from whole EBC (orange), and mouse exhaled EVs using the anti-
mouse anti-CD63 EV-CATCHER assay from the same whole EBC samples (purple), collected at weeks 21 (light grey), 22 (brown), and 
23 (dark grey) from female control (blue) and lung tumor-bearing (red) mice detectable at study end (week 24). We conducted our 
analyses in triplicate (i.e., three repeats per RNA purification) on 9 control female mice and 9 lung tumor-bearing female mice. The EBC 
collected three times a week from the same 3 females was combined (~ 300 µL) to conduct the three different analyses (whole EBC, 
human exh-EVs, mouse exh-EVs) in triplicate [i.e., 3 sets of 3 EBC collections per control (n = 9) or lung tumor-bearing group (n = 9)]; 
(C) Venn Diagram displaying the overlap in the identity of the miRNAs detected between whole EBC of lung tumor-bearing mice 
(yellow), human exh-EVs in lung tumor-bearing mice (orange), mouse exh-EVs in control mice (purple), and human exh-EVs in 
controls mice (green, non-specific signal). The miRNAs that were selected for these analyses were detected by NGS but had at least 5 
reads in 6 of the 9 samples analyzed and were reproducibly detected at least two of the three weeks (weeks 20, 21, and 22). The Venn 
diagram indicates that 21 miRNAs were non-specifically detected by use of the anti-human anti-CD63 EV-CATCHER assay with EBC of 
control mice and represented 9% of all selected miRNAs; (D) Small RNAs extracted from whole EBC samples collected at weeks 2, 6, 
and 11 were evaluated for expression of miR-222, miR-210, miR-374a, and miR-584 by TaqmanTM quantitative PCR analyses using the 
2ΔΔCt method to evaluate fold change by comparison to the control sample at week 2. All 4 miRNAs were selected because they were 
found to be upregulated in the whole EBC of lung tumor-bearing mice compared to control mice by NGS analyses.

provide molecular surrogates for non-invasive early detection of secondary lung tumors in mice.

Proteomic analyses of EBC from individual animals
Finally, using our EV proteomic analytical approach described above, we sought to confirm whether the 
protein content of EBC collected with our v2.0 system for nose/mouth collection from single animals 
allowed for a more targeted capture of biological material of lung tissue or respiratory tissue origin. Our 
EBC proteomic analyses identified a total of 286 proteins that were common to control female mice [n = 3; 
29 ng total protein input for mass spectrometry (MS)] and lung tumor-bearing female mice (n = 3; 38 ng 
total protein input for MS). Due to high sequence homology between human and mouse proteins, we could 
not determine the human tumor or mouse tissue contribution. However, our proteomic analyses of EBC 
from lung tumor-bearing mice identified 47 additional human proteins (a total of 333 proteins). When 
selecting the top 60 most differentially expressed EBC proteins that were common to control and lung 
tumor-bearing EBC [Supplementary Figure 7], we confirmed detection of several proteins that had been 
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correlated with pro-metastatic properties, which were also upregulated in condensates collected from lung 
tumor-bearing mice with our v1.0 system, but that displayed even greater differential expression in EBC 
collected with our v2.0 system (i.e., Vimentin, α-enolase, integrin B1, Plectin)[100,106-107]. Finally, when we 
analyzed the most likely tissue distribution/origin of the common proteins detected the EBC of both groups, 
by using prominent tissue expression as determined with ProteinAtlas, we found that our v2.0 collection 
system generally enabled the collection of EBC with a higher proportion of proteins of lung and respiratory 
tissue origin [Figure 8]. These proteomic analyses illustrate that adding a nose/mouth collection device 
improved performance of our EBC collections as we observed its enrichment with proteins of respiratory 
tissue origin.

DISCUSSION
In this proof-of-principle study, we investigated whether the analysis of exhaled condensates collected from 
an orthotopic animal model of secondary lung cancer would enable the non-invasive detection of lung 
tumors. Considering that we and others have previously demonstrated that miRNAs can be reproducibly 
detected in human exhaled breath condensates[43-47] and that they hold both diagnostic and prognostic 
potential for the detection of lung cancer, we developed collection systems and molecular assays to quantify 
them in mouse exhaled condensates.

In order to establish a baseline for the study of exhaled condensates from mice, we compared the collection 
and analysis of two types of condensates recovered from our mice using two different systems: one for the 
collection of condensates from unrestrained mice, freely roaming in a sealed glass chamber (v1.0 system), 
and one for the targeted capture of exhaled breath condensates directly from the nose/mouth of individually 
restrained animals (v2.0 system). Despite experimental and technical limitations due to the low volumes of 
condensate and EBC that were recovered with our v1.0 and v2.0 systems, respectively, we successfully 
conducted miRNA next-generation sequencing (NGS), qPCR validation, and used proteomic analyses to 
evaluate the condensates. Although our proteomic analyses yielded low outputs, we utilized our data to 
evaluate the potential origins of the proteins from condensate and EBC samples collected with our two 
different systems. Our results unequivocally demonstrated that human proteins can be specifically identified 
from condensates (i.e., 216 proteins) and EBC (i.e., 47 proteins) samples collected from lung tumor-bearing 
mice. However, when evaluating the putative tissue origin of proteins (n = 232) detected in condensates 
collected with our v1.0 system, which were common between control and lung tumor-bearing mice, we 
observed that a large proportion of them were associated with tissues/organs outside of the respiratory 
system (i.e., skin, urogenital (i.e., urine), reproductive (i.e., testis and breast), lower (i.e., the colon) and 
upper digestive tracts [i.e., esophagus and mouth)]. This suggested that the collection of condensates from 
free-roaming mice additionally gathered biological material from organs other than the respiratory system, 
which we anticipated would limit the discovery of exhaled human lung tumor proteins. Indeed, studies on 
metastatic breast cancer cell lines that were intentionally established to enhance metastatic colonization 
within the lungs upon inoculation into the circulatory system, demonstrated that some of these metastatic 
cells may colonize and expand as tumor foci in organs other than the lung[101,109,110].

Thus, to improve the collection of exhaled lung condensates, we developed our v2.0 system, where EBC was 
directly captured from the nose/mouth of our mice. Although we noted a significant decrease in the volume 
of biofluid collected with our v2.0 system (i.e., from ~63 µL for unrestrained animal pairs/h to ~29 µL per 
single restrained animal per 2 h), we observed an increase in proteins originating from the respiratory 
system relative to the v1.0 system. As anticipated with lower volumes and thus lower amounts of condensed 
biological material (< 40 ng input for MS), our proteomic analyses of EBC identified a lower number of 
proteins but demonstrated that proportionally to those detectable with the v1.0 system, putative respiratory 
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Figure 8. Proteomic analysis of EBC pooled from controls and lung tumor-bearing mice. Pie chart distribution of the 231 identified 
proteins stratified based on the preferential organ/tissue expression of each individual protein based on ProteinAtlas, and classified as 
either from lung, skin, urine, breast, testis, upper digestive tract, colon, and other undetermined tissue origins (i.e., Other).

proteins were enriched in EBC collected directly from the nose/mouth of our animals with the v2.0 system. 
Although the v1.0 collection system generally appeared to provide a condensate that was less clean than 
EBC (i.e., proteins originating from urine, skin, semen, etc.), we believe that it holds value for the collection 
of condensates in animal studies investigating advanced lung diseases or injuries, where immobilization or 
animal manipulation is restricted due to shallow breathing and/or the risk of stress-related death. For 
example, when investigating the continuum of dose-dependent injury and/or recovery after inhalation of 
highly toxic chemicals, such as sulfur mustard, the analysis of lung injuries in rats can only be performed by 
collection and analysis of bronchoalveolar lavages (BAL) and by pathological evaluation of lung tissues at 
either scheduled study termination (i.e., 30 days) or via a serial sacrifice experimental design[111]. In such 
instances, we would propose that regular and non-invasive collection of condensates may not only enable 
health monitoring by identification and quantification of important prognostic exhaled biomarkers but also 
serve to limit and reduce the numbers of animals otherwise necessary for a serial sacrifice approach. 
Together, our preliminary proteomic analyses substantially support the conclusion that condensates and 
EBC samples contain exhaled proteins of lung tissue and tumor origin. Future proteomic studies involving 
larger animal colonies and the collection of larger EBC volumes have the potential to enable unambiguous 
identification of exhaled tumor proteins or proteins from exhaled tumor EVs.

To date, only a small number of studies have been conducted on mouse exhaled breath that have evaluated 
the detection of exhaled biomarkers, which may be associated with asthma, non-cystic fibrosis 
bronchiectasis, and chlorine exposure[112-114]. However, to our knowledge, no studies have measured or 
detected miRNAs in exhaled condensates collected from mice. There have been studies conducted on BAL 
collected from mouse models of asthma, hyperoxia, and ARDS, which demonstrated that it is rich in 
miRNAs with potential diagnostic, prognostic, and therapeutic value, and that these miRNAs are contained 
in EVs originating not only from lung tissue but also from immune and blood cells[115-117]. Although a few 
human studies have suggested that EVs contained in the biofluid lining of the lungs can become aerosolized 
during normal tidal respiration and be purified from EBC, no studies have evaluated the presence of EVs in 
mouse EBC[118-119]. Thus, using nanoparticle and TEM analyses, we investigated and determined that the 
EBC of both control and lung tumor-bearing mice contains EVs. Interestingly, whereas a low number of 
EVs (65-150 nm) could be detected in the EBC collected from control animals (Supplementary Figure 8; 
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n = 158 per ml of EBC), we found that this number was ~10-fold greater (Supplementary Figure 8; n = 
1,450) - and even higher at later stages of disease - for EBC collected from lung tumor-bearing mice. 
Furthermore, when we used super-resolution nanoimaging, we were able to confirm that the EBC of human 
lung tumor-bearing mice contained human tumor-derived EVs (positive for CD9, CD63, and CD81). 
Although we could observe low levels of EVs by TEM in the EBC of control mice, due to the lack of a 
proper mouse EV validation assay, as per MISEV guidelines, we could not fully validate their identity as 
being murine cell-derived EVs. Based on our preliminary experiments, we conclude that such validating 
experiments can be performed but will require very high volumes of EBC (> 10 mL).

Since we determined that the EBC of lung tumor-bearing mice contained human tumor-derived EVs, we 
sought to evaluate their miRNA cargos and thus customized our EV-CATCHER assay with an anti-human 
anti-CD63 antibody, which we had previously tested for the purification of human EVs from human plasma 
and serum[97]. We experimentally confirmed the capture and release of intact CD63-GFP+ EVs produced in 
large amounts by our LM-3475 cells in vitro prior to purifying low abundance (i.e., compared to tissue 
culture) human tumor-derived EVs from the EBC of lung tumor-bearing mice. Our miRNA NGS analyses 
not only support the idea that human lung tumor-derived EV-miRNAs can reliably be detected and 
quantified in the EBC during tumor progression, but also that the bulk of the miRNA signal originates from 
exhaled human tumor-derived EVs. We wish to note that although we could non-specifically capture 
miRNA NGS profiles from the EBC of control mice using our anti-human anti-CD63 EV-CATCHER assay, 
these profiles only contained 10.5% of the detectable miRNAs with 1,000 times fewer miRNA reads 
compared to human tumor-derived EVs purified from the EBC of lung tumor-bearing mice. Once we 
reliably identified human tumor-derived EV-miRNAs consistently detectable at weeks 20, 21, and 22, using 
qPCR, we demonstrated that a select set of these miRNAs (i.e., miR-222, miR-210, miR-374a, miR-584) 
could reliably be detected as upregulated within 1-2 weeks post tail vein injection of the metastatic LM-3475 
cell line. In contrast, and consistent with studies using other metastatic breast cancer cell lines[109,110], in vivo 
bioluminescent imaging of tumor cells appears significantly detectable 6 weeks after tail vein injection. 
Although our data suggests that qPCR detection of tumor-specific exhaled EV miRNAs may be more 
sensitive than bioluminescent imaging of lung tumors in animals (i.e., NGS and qPCR both have lower 
sensitivity thresholds than standard in vivo imaging techniques), further investigation on the sensitivity of 
this non-invasive detection is required. To date, only one micro-CT scanning mouse study has detected 
small lung tumors (i.e., as low as 15.4 % of lung volume) by imaging[120]. To determine the sensitivity of 
qPCR detection of early tumors and to determine whether our qPCR detects miRNAs from disseminated 
cells or from existing small tumor foci, future studies will need to compare micro-CT images of animals at 
1-2 weeks post-tail vein injection with the corresponding qPCR signal[9].

Although we experimentally limited our molecular analyses on EBC collected from female mice, 
considering that breast cancer and secondary lung cancer following primary breast cancer are prevalent in 
females[108], our findings open a new avenue for the study of lung diseases in animal models, as the non-
invasive collection and analysis of their EBC may facilitate the identification and quantification of exhaled 
miRNAs profiles associated with active, progressing, and/or exacerbated disease. We envision that 
expanding our approach to study human primary and other secondary lung cancers, in adequately powered 
animal studies, has the potential to identify relevant exhaled human EV biomarkers[121-125]. However, instead 
of using clonal cell lines, we propose that using patient-derived tumor cells in immuno-competent mice 
may help investigate the potential diagnostic and/or prognostic value of human-tumor exhaled EV miRNAs 
and other RNAs[126]. Furthermore, since EV-CATCHER can easily be customized to target surface markers 
of specific EV subpopulations, we foresee that using it to separate lung tumor cell-derived exhaled EVs from 
immune and innate cell-derived EVs may help further improve the selection of exhaled tumor EVs for the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202404/evcna3077-SupplementaryMaterials.pdf
https://dx.doi.org/10.20517/evcna.2023.77


Mitchell et al. Extracell Vesicles Circ Nucleic Acids 2024;5:138-64 https://dx.doi.org/10.20517/evcna.2023.77                                     Page 158

fine-tuned detection of different types of lung cancers. It is important to note that diet, inflammation, and 
other confounding factors associated with the environment may also be studied in lung cancer animal 
models to determine whether their effects on tumor growth may be non-invasively detectable in exhaled 
tumor EVs or exhaled EVs of different cellular origin (i.e., immune cells, lung cells).

Overall, our findings are highly clinically relevant, as the lung represents a central organ for the circulation 
of blood and is an opportunistic site for metastatic colonization of circulating tumor cells (CTCs), which 
can originate from several primary tumor organ sites that include breast, colorectal, head-and-neck, 
urogenital, gynecological and lymphatic cancers[127-132]. Considering that these biologically different cell types 
have the potential to colonize the lung, the analysis of EBC from lung tumor-bearing animal models 
established using metastatic cancer cells originating from different tissue types may help identify common 
metastatic miRNAs (e.g., the miR-200 metastatic cluster was detected in both our mouse EBC datasets) as 
well as primary tumor site-specific miRNAs, which may help with the development of molecular assays for 
early and non-invasive detection of metastatic lung disease. However, to determine its applicability to 
human EBC studies, careful evaluation of the type of EBC collection system, proper representation of lung 
cancer types and stages for adequate power analyses, and most importantly, evaluation of the 
reproducibility and sensitivity of the purification and quantification assays will be necessary to determine 
the usefulness of EBC and exhaled tumor EV biomarkers for the non-invasive detection of human lung 
cancers.

Limitations of the study
Although our study is novel and provides insights into the collection and analysis of exhaled tumor EVs 
from tumor-bearing animal models, we have identified several limitations that should be carefully 
considered when designing future studies. Particularly, we showed that our v2.0 system allowed for the 
collection of a low number of EVs from control animals, which limited subsequent analyses and molecular 
validations. Even though we had confirmed the specificity of our anti-human anti-CD63 EV-CATCHER 
assay, we determined that we could still capture non-specific miRNA signal, likely due to mouse anti-CD63 
recognition. This indicates that to conduct species-specific EV purifications, additional anti-human anti-
CD63 antibodies will have to be tested to guarantee sole purification of human tumor EVs from mouse 
EBC. Alternatively, we propose that a targeted anti-GFP EV-CATCHER assay, although not biologically 
relevant to EVs (i.e., not targeting common EV tetraspanins), could be used in future studies to increase 
specific selection of exhaled human tumor-derived EVs produced by CD63-GFP+ LM-3475 cells, along with 
GFP fluorescent signal detection to further confirm the identity and origin of CD63-GFP+ tumor EVs.

In sum, this study is the first of its kind and it unambiguously demonstrates that exhaled EVs and their 
miRNA cargos can be purified and quantified from the EBC of lung tumor-bearing animal models to detect 
aggressive secondary lung cancer of primary breast origin non-invasively.
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