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Hepatocellular carcinoma (HCC) is a common malignancy and an important cause of cancer 
death worldwide. Chronic hepatitis B virus (HBV) infection is the major cause of HCC. Recent 
studies of HBV-induced carcinogenesis not only discovered many new biomarkers but also 
developed a novel theory: Cancer Evolution-Development (Cancer Evo-Dev). Cancer Evo-Dev 
provides an evolutionary insight of developing more reasonable predictive and prognostic 
strategies. Characterizing chronic inflammatory microenvironment of cancer evolution, genetic 
polymorphisms of inflammatory factors, and HCC-related HBV mutations that negatively 
selected by host immunity may help greatly in identifying HBV-infected individuals who 
are more likely to develop HCC or benefit from HCC prophylactic options. Gene expression 
signatures and somatic mutation profiles reflect the different patterns of signaling pathway 
networks underlying tumor heterogeneity and can be applied to improve the molecular 
classification and prognostic stratification of HCC patients. Mutant cells that survive the 
selection can retro-differentiate into tumor initial cells and aggressive sub-clones. Detection of 
mutants or their hallmarks in cell-free DNA in peripheral blood potentially improve the early 
diagnosis, prognosis prediction, and personalized treatment of HBV-caused HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most 
frequently diagnosed cancers and an important cause 
of cancer death worldwide. Annually, there are 782,500 
HCC incident cases and 745,500 HCC-caused deaths 
worldwide.[1] Developing countries in East Asia and 
Sub-Saharan Africa contribute 80% of new HCC cases 

and related deaths.[2] Chronic infection of hepatitis B 
virus (HBV) is the major etiological reason for HCC in 
these areas, which contributes 80-90% of HCC patients.[3,4] 
According to a cohort study conducted in Taiwan, the 
cumulative lifetime (age 30 to 75 years) incidences 
of HCC for men and women that positive for hepatitis 
B surface antigen (HBsAg) were 27.38% and 7.99%, 
far more than those of men and women negative 
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for HBsAg and anti-hepatitis C virus (1.55% and 
1.30%).[5] Besides, HBV infection is also responsible 
for the increasing trend of HCC in western countries 
because of the travel and immigration of HBV infected 
populations.[6] Most HCC patients are diagnosed at 
advanced stage and cannot accept resection operation 
or liver transplantation.[7] Approximately 70% patients 
that have curative hepatectomy will relapse within 
5 years.[8] Both the narrow therapeutic window and 
the high recurrence rate highlight the importance of 
developing more rigorous surveillance and more active 
prevention for chronic HBV infected subjects with high 
HCC risk, and tailoring more suitable treatment options 
for HCC patients, which depend on continuously 
discovering promising biomarkers as well as developing 
carcinogenesis theory for the specific prophylaxis. 

Cancer Evo-Dev is a novel scientific theory describing 
the mechanism of HBV-induced hepatocarcinogenesis.[9] 
The central aspects of its framework are as follows. 
Carcinogenesis is an evolutionary process under 
the microenvironment of chronic non-resolving 
inflammation. This microenvironment is characterized 
by immune imbalance due to the interaction between 
the genetic predisposition of immune/proinflammatory 
molecules and HBV infection. Cytidine deaminases 
and their analogous are persistently activated by 
proinflammatory factors and subsequently induced 
mutations both in host and viral genomes. Mutant cells 
are mostly eliminated by selective pressures. Only 
a small proportion can survive in the inflammatory 
microenvironment because the somatic mutations 
alter signaling pathways. Those surviving clones 
usually share some characteristics of stem cells and 
gradually retro-differentiate into cancer initialing cells. 

This theory was presented based on recent outcomes 
of HBV-related carcinogenesis researches, mainly 
including molecular epidemiological studies, cancer 
genomic mutation analyses, and signaling transduction 
researches. [10-20] Those breakthroughs not only 
improved the understanding of cancer evolution 
from different aspects but also discovered many 
novel biomarkers and therapeutic targets. Therefore, 
this theory can provide an evolutionary insight of 
predicting HCC risk and developing more reasonable 
predictive and prognostic biomarkers and therapeutic 
targets. Here, we summarize the important novel viral, 
inflammatory, genetic, and protein biomarkers of HCC 
occurrence and prognosis and evaluate them through 
the lens of Evo-Dev theory.

EVALUATING THE MICROENVIRONMENT 
OF CANCER EVOLUTION

In the evolution process of HBV-induced hepatocarcino-

genesis, inflammatory microenvironment plays an 
important role via facilitating the generation of viral and 
host genetic mutation and also providing selective 
pressure. Therefore, the characteristics of the 
microenvironment in different evolutionary phases and 
in different populations can be used to stratify HBV-
infected individuals with different risk of developing 
HCC. Although inflammatory microenvironment is a 
complex system, it can be elucidated in two aspects: 
HBV itself and immune imbalance. 

HBV 
Despite the high incidence of HCC in HBV-infected 
population, only small percentages of chronic hepatitis 
B (CHB) patients develop HCC. HBV variables can 
serve as clues to identify distinctive outcomes of HBV-
infected populations, and to guide the personalized 
preventive medication accordingly. 

HBV replication
The level of HBV replication directly reflects the 
selective stress from the inflammatory environment, 
which can influence the evolution of HCC as well. 
Currently, HBV DNA load is regularly applied in clinic 
as an indicator of initiating antiviral treatment. It has 
been demonstrated by various studies that HBV DNA 
load increases the risk of HCC in CHB patients.[21-23] 

High level of HBV DNA load either in serum or liver 
tissue can also predict poor postoperative prognosis 
in HCC.[24] Hepatitis B e antigen (HBeAg), encoded 
by HBV precore region, is another marker for active 
replication of HBV. HBeAg positivity has been proved 
to be associated with an increased risk of HCC.[25] 

However, due to HBeAg seroconversion during the 
natural course of HBV infection, HBeAg expression 
is not usually high in HCC patients, explaining the 
reasons that HBeAg positivity is not significantly 
associated with an increased risk of HCC in some 
case-control studies.[14] Thus, HBV DNA load should 
be a more reliable indicator in the prediction of HCC.

HBV genotypes 
According to a sequence divergence of no less than 8% 
in whole viral genome, HBV can be classified into eight 
genotypes A to H, which can be further classified into 
sub-genotypes if the sequence divergence is between 
4% and 8%.[26] Variant genotypes are distributed 
unevenly around the world, and the predominant one 
in mainland China is genotype C (68.3%), followed 
by genotype B (25.5%).[27] Under selection pressure 
from inflammatory microenvironment, the fates of 
different genotypes/sub-genotypes are distinct in a 
given population. Genotype C HBV infection is an 
independent risk factor for HCC development.[16,21,28,29] 
Meanwhile, genotype B HBV infection was associated 



                Hepatoma Research ¦ Volume 2 ¦ December 23, 2016

Liu et al.                                                                                                                                     Novel predictive and prognostic strategies of HBV-related HCC

333

with the development of HCC in young patients 
(< 50 years old).[30] Our study further revealed that 
genotype B2 HBV infection was related to HCC 
recurrence, and that HBV genotype C2 HBV was 
predominant in HCC patients, which was related 
to its high prevalence.[31] As the HBV genotype is 
usually identified through a complex procedure that 
includes extracting HBV DNA, polymerase chain 
reaction, sequencing, and phylogenetic analysis, the 
wide application of HBV genotype/subgenotype for 
preliminary screening in community is limited. 

HBV mutations 
In the process of HBV-HCC evolution, one of the most 
prominent molecular events is the generation of HBV 
mutation, especially mutations in the preS region and 
basic core promoter (BCP) region of HBV genome. 
Due to lack of proof reading capacity, HBV genome 
has a higher mutation rate than other DNA viruses. 
Moreover, inflammatory factors induced by HBV 
infection can activate the expression of apolioprotein 
B mRNA editing enzyme catalytic polypeptides 
(APOBECs). HBV genome can be degraded and 
edited by APOBECs. [32] Most HBV mutants are 
cleared by host immune system, and only those that 
gained the ability to escape immune eradication 
survived. The mutant viruses, in return, keep on 
stimulating the immune system and maintain the 
inflammatory microenvironment. The HBV mutations 
reflect, to some extent, the selection pressure of host 
immune system and serve as risk factors of HCC. 

Our recent study of HBV mother-to-child transmission 
revealed that mutated viruses lost their advantages 
in infecting infants, whereas the wild-type HBV had 
advantage of infecting newborn’s hepatocytes, 
interestingly, the HCC-risk HBV mutations was being 
gradually selected since the establishment of chronic 
infection.[10] Mutations in HBV the preS region (including 
A2962G, A2964C, C3116T, C7A, T105C, and preS 
start codon mutation) and mutations in the BCP region 
(including C1653T, T1753V, and A1762T/G1764A) 
were independently associated with an increased risk 
of HCC.[11,15,21,33] Mutations in combination (combo 
mutations) can enhance the validity of predicting the 
occurrence of HCC.[21,33,34] HBV combo mutations 
of C1653T, T1753V, and A1762T/G1764A increase 
the validity of HCC prediction compared with single 
HBV mutation.[21] The HBV mutations can improve the 
sensitivity and specificity of HCC prediction model based 
on age, gender, cirrhosis and HBV DNA loads.[21,25,35] 

The carcinogenic effects of HBV can be blocked 
by antiviral treatments. In our prospective hospital-
based cohort study, antiviral treatment against HBV 

using interferon and nucleoside analogues (NAs) 
significantly reduced HCC occurrence (13.90/1,000 vs. 
7.70/1,000 person-years, P = 0.005).[36] Furthermore, 
proved by a cohort study and randomized clinical 
trial, treatment with NAs can also significantly reduce 
the risk of early recurrence (hazard ratios, 0.41; P < 
0.001).[13] However, levels of those protective effects 
are distinct among HBV-infected subjects with different 
viral mutations. Antiviral treatment with NAs cannot 
reduce HCC risk in patients without A1762T/G1764A 
or C1653T and in those with T1753V.[36] The protective 
function of antiviral treatments for postoperative 
recurrence cannot be observed in the HCC patients 
expressing carboxylic acid-terminal truncated HBV X 
protein (Ct-HBx) in their liver remnants.[13]

Immune imbalance
Immune imbalance is responsible for the maintenance 
o f  ch ron ic  non- reso lv ing  in f l ammat ion  and 
subsequently provides a fertile microenvironment for 
cancer evolution. Immune imbalance can be reflected 
by the proportion shift of immune cells, abnormal 
activation of inflammatory pathways, and genetic 
predisposition of inflammatory molecules, which can 
serve as biomarkers for HCC prediction and prognosis.

Immune cells
The liver is enriched with innate immune cells such as 
macrophages and natural killer (NK) cells, as well as 
adaptive immune cells such as CD8+ cytotoxic T cells, 
CD4+ T helper cells and B cells, playing an important 
role not only in host defenses against invading 
microorganisms and tumor transformation, but also in 
liver injury and repair. Their presence or enrichment can 
be seen as predictive or prognostic factors for HCC. 
CD8+ T in liver tissues, for example, is the protective 
factor, while the enrichment of M2 macrophages and 
T helper 17 cells (Th17) as well as the imbalance 
between CD8+ T cells and regulatory T (Treg) cells or 
between Th1 and Th2 are the risk factors of HCC.[37] 
Immune cells that infiltrated into HCC tissues function 
distinctly on HCC prognosis. Intratumoral natural 
killer cells and CD8+ T cells indicate good prognosis, 
while intratumoral Treg cells, neutrophils, and M2 
macrophages indicate poor prognosis.[37] 

Inflammatory pathways
The abnormal alteration of inflammatory pathways 
can be reflected by hallmark cytokines. Biomarkers 
indicating the abnormal activation of inflammatory 
pathways can also predict the occurrence and 
recurrence of HCC.[38,39] For example, Wnt/β-catenin 
signal ing pathway plays an important role in 
inflammation-induced carcinogenesis via regulating the 
expression of cytokine-induced human inducible nitric 



                                                                            Hepatoma Research ¦ Volume 2 ¦ December 23, 2016 

Liu et al.                                                                                                                                     Novel predictive and prognostic strategies of HBV-related HCC

334

oxide synthase.[40] Activation of Wnt/β-catenin pathway 
contributes to HCC development. The hallmarks 
of Wnt/β-catenin pathway, Wnt-1 and Wnt3a, have 
both predictive and prognostic value.[37,41,42] Likewise, 
signaling pathways such as phosphatidylinositol-3 
kinase (PI3K)/protein kinase B (AKT)/mammalian 
target of rapamycin (mTOR) pathway, and insulin-like 
growth factor pathway also play an important role in 
hepatocarcinogenesis.[43]

Genetic polymorphisms of immune/inflammatory 
molecules
Genetic polymorphisms of immune/inflammatory 
molecules can also serve as predictive biomarkers 
for  HCC development.  For example,  genet ic 
polymorphisms of signal transducer and activator 
of transcription 3 (STAT3), class II human leukocyte 
antigen DP (HLA-DP), HLA-DQ, miRNA-122-binding 
site, pre-miR-218, nuclear factor-kappaB (NF-κB), and 
its inhibitor IkappaBalpha are significantly associated 
with HCC risk.[12,17,18,44-47]

IDENTIFYING SIGNATURES OF SIGNALING 
PATHWAY ALTERATION

Gene signatures
The alteration of signaling pathways confers stemness 
characteristics and competitive advantages to cancer 
cells. These alterations usually affect complex 
signaling networks that cannot be represented by 
a signal gene. More than 300 published microarray 
studies of human HCC samples provide sufficient 
information regarding tumor gene expression profiles.[48] 
The accumulation of data regarding differentially 
expressing genes makes it possible to conduct meta-
analysis and subsequently determine gene signatures.
Recent gene signature studies are summarized in 
Table 1.[49-66] Gene signatures developed in those 
studies were used to separate patients into 2 or 
more subgroups with different clinical outcomes, 
phenotypes, and altered signaling pathways. The 
methods of developing gene signatures fall into two 
major groups. The first group of gene signatures 
was generated in case-control studies with the data 
of training cohort or published gene expression 
data. Most of the gene signature studies belong 
to this group.[50,52,53,55,57,59,61-65] The second group of 
gene signatures concerning defined phenotypes or 
signaling pathways was derived from the data of cell 
or animal model studies.[49,51,56,58,60] For examples, 
Lee et al.[49] developed a gene signature of stemness 
from the gene profiling data of rat fetal liver tissue and 
Kaposi-Novak et al.[51] developed a gene signature of 
Met signaling pathway using the Met deficient mouse 
model. The predictive value of novel gene signatures 

was usually evaluated in cohort studies. High risk 
patients that were identified through cluster analysis 
or score model based on gene signatures were prone 
to have unfavourable clinical outcomes, such as poor 
overall survival and early recurrence. 

Although the tumor gene signatures were identified 
by di fferent studies with var ious comparison 
strategies, they shared some genes conferring cancer 
stemness. For instance, a group of genes related to 
proliferation and epithelial cell adhesion molecule 
(EpCAM)-positive phenotype were included in 8 gene 
signatures summarized in different studies and all 
associated with poor prognosis.[48] Gene signatures 
from adjacent non-tumor tissues were also reported 
to be significantly associated with HCC recurrence, 
indicating that the histological “normal” adjacent tissue 
may be at the early stage of cancer evolution. That 
highlights the need of biopsy-based gene signature 
detection for specific individuals, like HBV-infected 
patients. However, signatures from adjacent tissues 
obtained in different studies are lack of genes in 
common. Cross validations are needed to consolidate 
the criteria. Altered expression patterns of the genes 
in HCC are usually caused by epigenetic modifications 
in their regulatory elements and somatic mutations of 
their repressors. 

Somatic mutation profiles
Somatic mutations are genetic basis of carcinogenesis. 
The values of somatic mutations depend on their 
impacts on related signaling pathways. By changing 
patterns of signaling transduction, somatic mutations 
on a small proportion of genes can promote cancer 
evolution, which are categorized as “driver mutations”.[19] 
As a matter of fact, some outstanding somatic 
mutations in HBV-HCC occur in the genes responsible 
for epigenetic modifications-chromatin remodeling 
including ARID1A and ARID2 and methylation such 
MLL4. [67,68] Due to survival competition and the 
positive selection of inflammatory microenvironment, 
driver mutations accumulate sufficiently to promote 
malignant transformation of hepatocytes. 

The distribution, combination, and dynamic patterns 
o f  d r i ve r  mu ta t i ons  re f l ex  t he  p ressu re  o f 
microenvironmental selection and growth advantage 
of hepatocyte subsets. The high frequent mutations 
can have clinical values as biomarkers for targeted 
therapy, classification, and prognostic prediction.[67-71] 
For instance, homozygous deletions were detected in 
40% of HCC patients and were significantly associated 
with poor survival (P < 0.0001).[68]

Using next generation sequencing technology, some 
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basic patterns of HCC somatic mutations have been 
extensively investigated. The somatic mutations 
provide a novel genomic insight of molecular 
classification and prognostic prediction. Some genes 

including TP53, TERT, CTNNB1, ARID1A, and AXIN1 
are proved to be hotspots of genetic alteration [Table 2]. 
However, specific mutation in a single hot gene is not 
frequent, ranging from 5% to 20%. Such a low rate 

Table 1: Representative gene signature studies of hepatocellular carcinoma

Study Population Sample type Etiology Gene No. Different clinical outcomes 
of subgroups

Lee et al.[49] n = 61 (validation 1, Chinese)
n = 78 (validation 2, European) Tumor tissue HBV, HCV 907 Overall survival (P < 0.001)

Budhu et al.[50] n = 20 (training, Chinese)
n = 95 (validation, Chinese)

Adjacent liver 
tissue HBV, 17

Risk of survival/recurrence
HR (95% CI) in validation set:
15.1 (5.0-45.8)/7.9 (2.5-25.0)

Kaposi-Novak et al.[51] n = 249 (Caucasian) Tumor tissue HBV, alcohol, 
HCV 24 Overall survival (P < 0.001)

Wang et al.[52]
n = 23 (training, Asian)

n = 25 (validation, Asian) Tumor tissue HBV, HCV 57
Rate of vascular invasion 

(accuracy: 84%; sensitivity: 86%; 
specificity 82%)

Boyault et al.[53] n = 57 (training, French)
n = 63 (validation, French) Tumor tissue HBV, alcohol,  

HCV 16 Overall survival (P < 0.001)

Woo et al.[54] n = 65 (Chinese) Tumor tissue HBV 628

Risk of early recurrence
(within 2 years after surgery)

HR (95% CI):
12.539 (3.59-43.76)

Hoshida et al.[55] n = 82 (training, Japanese)
n = 225 (validation, European)

Adjacent liver 
tissue HBV, HCV 132

Risk of late recurrence
(more than 2 years after surgery)
HR (95% CI) in the validation set:

2.08 (1.03-4.18)

Coulouarn et al.[56] n = 139 (Caucasian) Tumor tissue HBV, alcohol, 
HCV 249 Overall survival (P < 0.001)

Yoshioka et al.[57] n = 42 (training, Japanese)
n = 97 (validation, Japanese) Tumor tissue HBV, HCV 172

Risk of early recurrence
(within 2 years after surgery)

HR (95% CI) in the validation set:
3.29 (1.83-5.91)

Woo et al.[58]
n = 61 (validation 1, Chinese)

n = 78 (validation 2, 
Caucasian)

Tumor tissue HBV, HCV 625
Risk of recurrence

HR (95% CI) in the Chinese set:
2.84 (1.51-5.34)

Roessler et al.[59]
n = 247 (validation 1, Chinese)

n = 139 (validation 2, GEO 
data)

Tumor tissue HBV, HCV 161

Risk of early recurrence
(within 2 years after surgery)

HR (95% CI) in the Chinese set:
2.72 (1.48-4.5)

Villanueva et al.[60] n = 287 (Japanese)
Tumor and 

adjacent liver 
tissue

HBV, HCV
16 for tumor;

17 for adjacent 
liver tissue

Risk of recurrence
HR (95% CI):

1.75 (1.20-2.53) for tumor signature;
1.92 (1.20-3.06) for adjacent 

signature

Minguez et al.[61] n = 79 (training, Caucasian)
n = 135 (validation, Caucasian) Tumor tissues HCV, HBV, 

alcohol 35
Risk of vascular invasion

HR (95 % CI) in the validation set
3.12 (1.29-7.51)

Weng et al.[62] n = 80 (Chinese) Tumor tissue HBV 3

Risk of early recurrence
(within 1 year after surgery)

HR (95% CI):
4.762 (1.764-12.856)

Kim et al.[63]
n = 139 (training, South Korea)

n = 292 (validation, South 
Korea)

Tumor tissue HBV 65
Risk of poor survival

HR (95% CI) in validation the set:
1.36 (1.13-1.64)

Kim et al.[64]
n = 56 (training, South Korea)

n = 40 (validation, South 
Korea)

Tumor and 
adjacent liver 

tissue
HBV 127 Overall survival (P < 0.001)

Lim et al.[65] n = 286 (training, South Korea)
n = 83 (validation, China) Tumor tissue HBV 30

Risk of poor prognosis
HR (95% CI) in validation set:

2.048 (1.130-3.712)

Kim et al.[66] n = 396 (Chinese) Tumor tissues HBV

233 for late 
recurrence, 
65 for early 
recurrence

Risk of late recurrence
HR (95% CI): 2.2 (1.3-3.7)
Risk of early recurrence

HR (95% CI): 1.7 (1.1-2.6)

HBV: hepatitis B virus; HCV: hepatitis C virus; HR: hazard ratio; CI: confidence interval



                                                                            Hepatoma Research ¦ Volume 2 ¦ December 23, 2016 

Liu et al.                                                                                                                                     Novel predictive and prognostic strategies of HBV-related HCC

336

limits the application of a single mutation. For example, 
RB1 somatic mutation can serve as an independent 
predictor for poor cancer-specific survival (HR 2.5, 
95% CI: 1.05-5.93, P = 0.038) and early recurrence 
(OR 3.93, 95% CI: 1.29-11.90, P = 0.015). But the 
frequencies of RB1 somatic mutation were only 3.4% 
and 7% among different studies.[68,69] Similarly, somatic 
mutations of CDKN2A and FGF-CCND1 were proved 
to be significantly associated with overall survival (P 
= 3.0 × 10-4 and P = 7.4 × 10-6 respectively) and their 
frequencies were both less than 5%.[70] 

Although the spectrums and frequencies of altered 
genes vary greatly among individuals, they are 
clustered to pathways or function groups that 
are closely related with stemness and embryonic 
characteristics. In this regard, global mutation rates 
of functionally related genes are added together to 
define the mutation rate of a given signaling pathway. 
Mutation rates of Wnt/β-catenin, p53/cell cycle control, 
JAK/STAT, PI3k/mTOR, and MAP kinas signaling 
pathways range from 12% to 72%. Similar outstanding 
outcomes are also observed in function gene groups 
of chromatin remodeling and telomere maintenance. 
Ahn et al.[69] developed a somatic mutation signature 

of cell cycle pathway which comprised 4 genes 
including RB1, MYC, CCND1, and RBL2. The total 
mutation rate of those 4 genes were 23% and the 
signature was significantly associated with poor 
cancer-specific and recurrence-free survival (P = 0.002 
and P = 0.007, respectively). Therefore, it is promising 
to use combo somatic mutations as predictive and 
prognostic biomarkers.

DETECTING CELLS WITH MALIGNANCY 
POTENTIAL AND THEIR HALLMARKS IN 
PERIPHERAL BLOOD 

Circulating tumor cells
Release of cancer cells into the circulation is common 
in HCC patients. The appearance of circulating tumor 
cells (CTC) in the blood stream characterizes the 
intermediate stage of tumor metastasis process.[72] CTC 
test can be applied to monitor early metastasis, assess 
the effectiveness of therapeutic options, and predict 
the prognosis.[73] A study examining blood samples of 
123 HCC patients one month before and after tumor 
resection indicated that EpCAM+ CTCs were presented 
in 66.67% of patients and that CTCs count in 7.5 mL 
blood (CTC7.5) is an independent prognostic factor 

Table 2: Important somatic mutations and related signaling pathways of hepatocellular carcinoma

Study Population and sequencing 
method Etiology Mutation frequency 

of important genes
Global gene mutation frequency of 

signaling pathways 

Guichard et al.[67]

n = 24 (training),
whole exome equencing;

n = 125 (validation),
Sanger sequencing

Alcohol,
HBV,
HCV, 
NASH 

CTNNB1 (32.8%),
TP53 (20.8%),

ARID1A (16.8%),
PIK3CA (1.6%)

Wnt/β-catenin pathway (49.6%),
p53/cell cycle pathway (32.8%),
chromatin remodeling (22.4%),

PI3K/Ras pathway (12.8%)

Kan et al.[68] n = 88,
whole genome sequencing HBV

CTNNB1 (16.0%),
IL6R (26.0%),
TP53 (35.2%),
AXIN1 (5.0%)

Wnt/β-catenin pathway (62.5%),
JAK/STAT pathway (45.5%),

p53 pathway (43.2%),
Apoptosis (45.5%)

Ahn et al.[69] n = 231,
whole exome sequencing

HBV, 
HCV

CTNNB1 (16%),
TP53 (32%),
CCND1 (5%),

RPS6KA3 (5%),
ARID1A (7%)

Wnt/β-catenin pathway (31%),
p53 pathway (37%),

cell cycle pathway (23%),
PI3K/Ras pathway (12%),

chromatin remodeling (34%)

Totoki et al.[70] n = 608,
whole exome sequencing

HBV, 
HCV

CTNNB1 (31%),
TP53 (31%),
ARID2 (10%),

NF1 (4%),
TERT (54%),
NFE2L2 (5%)

Wnt/β-catenin pathway (66%),
p53 signaling (72%),

chromatin remodeling (67%),
PI3k/mTOR signaling (45%),
telomere maintenance (68%),
Nrf2/Keap1 pathway (19%)

Schulz et al.[71] n = 235,
whole exome sequencing

Alcohol,
HBV, 
HCV,

 NASH

CTNNB1 (37%),
TP53 (24%),
TERT (60%),

ARID1A (13%),
ALB (13%),

AXIN1 (11%),
CDKN2A (9%)

Wnt/β-catenin pathway (54%),
p53 pathway (49%),

telomere maintenance (60%),
PI3k/mTOR pathway (51%),
MAP kinase pathway (43%),
hepatic differentiation (34%),
epigenetic regulation (32%),
chromatin remodeling (28%)

HBV: hepatitis B virus; HCV: hepatitis C virus; NASH: nonalcoholic steatohepatitis; CTNNB1: catenin beta 1; TP53: tumor suppressor 
p53; ARID1A: AT rich interactive domain 1A; PIK3CA: phosphoinositide-3-kinase catalytic alpha polypeptide; IL6R: interleukin 6 receptor; 
CCND1: cyclin D1; RPS6KA3: ribosomal protein S6 kinase polypeptide 3; ARID2: AT rich interactive domain 2; NF1: neurofibromin 1; 
TERT: telomerase reverse transcriptase; NFE2L2: nuclear factor (erythroid-derived 2)-like 2; CDKN2A: cyclin-dependent kinase inhibitor 
2A; JAK: Janus kinase; STAT: signal transducer and activator of transcription; MAP: methionine aminopeptidas
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of tumor recurrence.[74] Therefore, EpCAM+ CTCs 
may be used as a real-time parameter for monitoring 
treatment response. In addition, EpCAM+ CTCs are 
positive in HCC patients with different BCLC stages 
and the positive rates of EpCAM+ CTCs in patients of 
BCLA stage A, B, and C are 11.1%, 19.4%, and 57.9%, 
respectively.[75] Thus, EpCAM+ CTC is prognostic and 
predictive in HCC. 

Cell-free DNA
Biopsy of HCC may be restricted by the special 
position of tumors or the poor condition of patients, 
resulting in the limitation of HCC gene analysis for 
prognostic and predictive purposes.[76] The necrosis 
and apoptosis of tumor cells usually release cell-free 
DNA (cfDNA) into circulation. Based on sequencing 
technology, genetic and epigenetic information can 
be obtained from these cfDNA. Detecting cfDNA is 
a microinvasive method to find early HCC, termed 
as “liquid biopsy”. [77] The abnormities including 
methylation changes and point mutations in cfDNA 
can be detected in peripheral blood even before the 
solid tumor nidus can be detected. 

Hypermethylated RASSF1A within cfDNA sequence 
is present in the sera of 93% HCC patients. When 
combining RASSF1A  methylat ion and AFP to 
diagnose HCC, the sensitivity and specificity increase 
from 65% and 87% using AFP alone to 77% and 89%, 
respectively. Serum methylated RASSF1A is also 
prognostic and also reflects the tumor load in HCC 
patients.[78] A study with a cohort of 151 HCC patients 
indicated that 4 hypermethylation genes (RGS10, 
ST8SIA6, RUNX2, and VIM) in sera have weak 
correlation with each other but the combination of the 
4 genes as a classifier successfully identified HCC 
patients from HBV-induced cirrhosis population, with 
the sensitivity of 85% and the specificity of 96%.[79] 

TP53 R249S mutation in cfDNA was proved to have a 
remarkable ecological correlation with HCC exposure 
in China and Africa.[80] In a retrospective study using 
short oligonucleotide mass analysis to exam R249S 
in the plasma ahead of cancer diagnosis, 9 (64%) of 
14 patients who developed HCC during the follow-
up were positive for R249S.[81] Genetic mutation 
in serum is related to the mutation in tumor tissue. 
Another study examining the mutations of CTNNB1, 
a gene encoding β-catenin, in HCC patients’ sera 
indicated that CTNNB1 mutation was not present both 
in serum and corresponding tumor tissues, although 
the average mutation rate of CTNNB1 was about 25% 
in previous researches.[82] This suggests that clinical 
application of cfDNA mutations should be mutation 
signatures rather than single gene mutation. 

CONCLUSION

HBV-induced HCC is  a common mal ignancy 
characterized by high mortality, high recurrence 
rate, and significant heterogeneity. Cancer Evo-
Dev, a novel scientif ic theory of HBV-induced 
carcinogenesis, provides an evolutionary insight of 
HCC occurrence/recurrence prediction. From this 
point of view, recent development of HCC predictive 
and prognostic strategies can be categorized as 
three main directions: evaluating the inflammatory 
microenvironment of cancer evolution via investigating 
HBV variables and characterist ics of immune 
imbalance, identifying alteration patterns of signaling 
transformation through signatures of gene expression 
and somatic mutation, and detecting cells with 
malignancy potential and their hallmarks in peripheral 
blood. To validate predictive or prognostic biomarkers, 
4 steps should be taken: (1) exploratory research, 
to discover promising biomarkers; (2) case-control 
study, to evaluate statistical association between the 
occurrence/recurrence and biomarkers; (3) cohort 
study, to validate the sensitivity and specificity of 
biomarkers; (4) randomized clinical control trail, to 
determine if the screening and related prophylaxis/
treatment can reduce the occurrence/recurrence. 
Currently, most novel biomarkers were just validated 
in phase 2 or 3. Further validation and reasonable 
combination of novel biomarkers should be conducted 
under the direction of Cancer Evo-Dev theory. 
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