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Abstract
Ferroelectricity is one of the most major physical phenomena in electronic devices due to its sustainable polarity in 
the absence of an external electric field and its switchability in response to external stimuli. In alignment with the 
industry trend towards increasingly integrated devices, research into smaller-sized ferroelectric materials becomes 
indispensable. In the pursuit of achieving the pinnacle of device miniaturization, recent studies have unveiled 
materials exhibiting sub-nanometric, unit cell-level domains. Concurrently, advances in transmission electron 
microscopy-based structural characterization techniques have been made, enabling in-depth analysis of the 
intricate properties of these miniaturized ferroelectric materials. This review highlights the structural mechanism of 
ferroelectricity in a reduced scale, as well as the recent advancements in electron microscopy techniques for 
characterizing miniaturized ferroelectric domains, particularly in the fields of in-situ biasing and atomic scale 
imaging. We believe that this work will provide structural insights for engineering and characterizing ferroelectrics 
for the design of downsized high-density memory devices at the quantum limit.
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INTRODUCTION
Ferroelectricity is one of the most major physical phenomena that is applicable to electronic devices because 
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of its sustainable polarity without an external electric field and its switchability by external stimuli[1]

[Figure 1A]. These properties of ferroelectric materials make them highly suitable for applications in non-
volatile memories, information storage devices such as FeRAM (Ferroelectric Random Access Memory) and
FeFET (Ferroelectric Field Effect Transistor). To apply ferroelectric materials in devices effectively, it is
crucial to understand the structure and properties of the polarization they exhibit. This involves
investigating the polarization mechanisms, which explain how polarization occurs, and the switching
dynamics that control polarization. Depending on the desired form of the component, the properties of
ferroelectric materials should be tuned and designed accordingly. Particularly, with the trend toward
miniaturization in the device industry, the downsizing of ferroelectric materials has become increasingly
important. Simultaneously, various techniques, such as transmission electron microscopy[2,3] (TEM), 
for analyzing the structure and characteristics of miniaturized ferroelectric materials are being developed 
and integrated to meet these demands [Figure 1B]. For example, high-angle annular dark-field scanning 
TEM (HAADF-STEM) can directly show the breaking of inversion symmetry and polarization in materials 
at the atomic scale, as illustrated in Figure 1C.

In this paper, we aim to provide a brief overview and classification of oxide-based ferroelectrics, particularly
focusing on their unique characteristics and the various mechanisms underpinning their extensive research.
We will discuss why oxide-based ferroelectrics have been predominantly studied and what potential benefits
can be expected from them. Subsequently, we will delve into various research endeavors related to the
scaling of ferroelectrics, primarily considering aspects related to thickness and width. Lastly, we review
techniques for analyzing the properties of ferroelectrics and explore their applications in research.

FERROELECTRIC MATERIALS
The pioneering research into ferroelectric phenomena began with the hysteresis measurements of Rochelle
Salt in 1921[4]. Subsequently, in 1941, ferroelectricity was discovered in the oxide perovskite material called
BaTiO3, which sparked expectations that ferroelectricity could manifest in simple structures. This led to the
active exploration and discovery of new ferroelectric materials in perovskite oxides such as Pb(Zr,Ti)O3

[5]

and LiNbO3
[6]. A brief history of representative oxide-based ferroelectrics is summarized in Table 1.

Alongside the discovery of these materials, research on non-volatile memory based on ferroelectrics began
in the 1950s[7], capitalizing on the characteristic of ferroelectric polarization states representing binary states.
FeRAM and FeFET[8], two significant developments in this field, were proposed in 1952 and 1963,
respectively, garnering considerable attention in the academic community. However, they faced limitations,
such as endurance, retention, scalability (with device thickness typically above 100 nm), and compatibility
issues in thin-film performance.

As a result, there have been research efforts to synthesize ferroelectric materials as thin films with the aim of
creating small electronic devices. Around the same time, there were significant efforts to create thin films of
superconductors such as YBa2Cu3O7, leading to advancements in the technology to epitaxially deposit them
in a single crystal form[9,10]. This progress allowed for the control of ferroelectricity coupled with 
lattice structures through epitaxial control. The development of thin films of layered ferroelectrics, 
such as SrBi2Ta2O9, aimed to address endurance issues[11]. Research has also been conducted on 
very thin ferroelectric films such as PbTiO3

[12] and BiFeO3
[13]. Additionally, as the thickness of thin films 

has gradually reduced, studies related to the manifestation of ferroelectric properties in non-ferroelectric 
materials, such as SrTiO3, have begun to emerge[14].

In recent years, a significant breakthrough occurred in the field of ferroelectric research with the discovery
that HfO2, which had been widely used as a high-k (permittivity) gate insulator in the semiconductor
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Table 1. A brief summary of representative materials in oxide-based ferroelectrics

Ferroelectrics BaTiO3 Pb(Zr,Ti)O3 LiNbO3 SrBi2Ta2O9 BiFeO3 thin film HfO2

Discovered year 1941 1949 1949 1960 2003 2011

Structure Perovskite Perovskite Perovskite Aurivillius Perovskite Fluorite

Ferroelectric mechanism Displacive 
Order-disorder

Displacive 
Lone pair

Order-disorder Improper Lone pair Improper

Remnant polarization (μC/cm2) 25 20-100 10-30 30-70 50-100 1-50

Figure 1. Ferroelectric characteristic and its domain structure. (A) A schematic of a typical ferroelectric P-E hysteresis loop. Based on 
the polarization direction, two distinct binary digits can be differentiated. (B) Dark-field TEM image showing ferroelectric domains with 
180° domain walls in Pb(Zr,Ti)O3 thin film. (C) HAADF-STEM image overlaid with its polarization angle map and corresponding 
Pb(Zr,Ti)O3 structure. Color wheel means the orientation of the polarization at each unit cell. Reproduced with permission[3]. Copyright 
2012, WILEY-VCH Verlag Gmbh & Co. KGaA, Weinheim.

industry, exhibited robust ferroelectric properties when doped with silicon[15]. This discovery, made in 2011,
led to an explosion of research related to inducing ferroelectricity in HfO2 through doping with elements
such as Zr and Y[16-18]. The introduction of this new paradigm in ferroelectric research, driven by 
the discovery of new materials, has sparked a multitude of studies aimed at realizing ferroelectricity at 
even smaller thicknesses and applying it to highly dense memory devices.

Two-dimensional (2D) ferroelectric materials, being inherently thin, offer significant advantages in terms of
scaling. Active research is being conducted on quasi-2D materials using oxide membranes such as BiFeO3

[19]

and CsBiNb2O7
[20]. The most well-known 2D materials include transition metal dichalcogenides such as

MoS2
[21], with numerous reports of ferroelectricity in materials such as SnTe[22], In2Se3

[23], and CuInP2S6
[24,25].

These 2D materials possess stable surfaces free of dangling bonds and are less affected by substrates, which
is advantageous. Most 2D ferroelectrics exhibit Curie temperatures above room temperature and have
varied electronic bandgaps, making them suitable for practical applications[26]. A prime example is SnTe,
which can exhibit in-plane ferroelectricity down to a one-unit-cell limit at low temperatures[27]. In addition,
CuInP2S6, a room-temperature ferroelectric with a layered structure, exhibits out-of-plane ferroelectric
polarization due to the off-centering of Cu and In ions from the center of sulfur octahedra, with
polarization observed even in layers as thin as 4 nm[24].
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As materials have become miniaturized, there has been a growing need for a better understanding of 
ferroelectricity within these materials. Consequently, research into techniques for characterizing such 
ferroelectricity has seen significant advancements. The ferroelectric properties in thin films often exhibit 
notable differences from those in bulk materials, which has spurred further investigations.

FERROELECTRIC MECHANISM
The foundation for the development of new ferroelectric materials begins with a structural understanding of
the underlying mechanisms responsible for ferroelectricity. Ferroelectricity typically arises from the
breaking of inversion symmetry in ionic crystal structures[3]. It can be explained through various
mechanisms, including proper ferroelectricity, often associated with displacive mechanisms, order-disorder
mechanisms, and anisotropic lone-pair effects. For instance, the tetragonal phase of BaTiO3 occurs at
temperatures below the Curie temperature of 120 °C[27]. In this material, the tetragonal lattice structure is
established with Ba ions as the reference points, and displacements of Ti4+ ions and oxygen octahedra give
rise to ferroelectricity[28] [Figure 1]. Almost concurrently, an order-disorder type ferroelectric model was
proposed for BaTiO3, which, in reality, exhibits mixed characteristics[29-31]. According to the order-disorder
model for BaTiO3, the disorder in the paraelectric phase is related to the positioning of Ti ions. This
characteristic of BaTiO3 is well-illustrated through Raman spectroscopy, where the high-temperature
Raman spectra show two broadbands at 260 and 530 cm-1, indicating the disorder of Ti ions[32,33]. In general,
the order-disorder mechanism involves electric dipoles aligning in one direction as the temperature drops
below the Curie point (TC), thereby acquiring ferroelectric properties. This mechanism is well-known in
materials such as KH2PO4

[34] and NaNO2
[35].

Another example, BiFeO3, exhibits ferroelectricity due to the presence of Bi3+ with 6s2 lone pairs[36].
Pb(Zr,Ti)O3 encompasses characteristics of both cases mentioned above, and it has a large remnant
polarization of about 82 μC/cm2[37]. It exhibits ferroelectricity through the relative displacements of oxygen
octahedra and Ti4+/Zr4+ ions, in addition to the presence of 6s2 lone pairs from Pb2+[38]. In the case of typical
displacive ferroelectricity, materials often face competition between polar distortion and BO6 octahedral
rotation, influenced by the Goldschmidt tolerance factor. As a result, among the numerous perovskite
materials, those with ferroelectric properties remained relatively undiscovered or less well-known[39].

On the other hand, improper ferroelectricity has been discovered in recent years and found to result from
polarization-coupled geometric distortion of polyhedral[40,41] or magnetic ordering[42] as in hexagonal-
YMnO3, layered perovskite such as Ca3Ti2O7, and orthorhombic-TbMnO3 materials. Strong hybridization
between the transition metal and oxygen ions is not necessary in improper ferroelectricity, so non-d0

transition metal can be introduced, allowing magnetoelectric coupling[43]. Boracite is an example of
improper ferroelectric and has attracted interest due to its multiferroic properties[44,45]. It has a complex
structure denoted as M3B7O13X (where M is a divalent metal and X is a halogen). Using Mg3B7O13Cl as an
example, the material transitions from a cubic phase at high temperatures to an orthorhombic phase
through structural shearing as the temperature decreases, leading to a ferroelectric transition[46,47]. The
spontaneous polarization is about 1 μC/cm2. Boracite can have six different domain states, each separated by
straight boundaries. It can simultaneously possess charge-neutral 180° and charged 90° domain walls,
making it a promising material for electronic applications[48,49].

More specifically, within the category of improper ferroelectrics, there exists a type known as hybrid
improper ferroelectrics[41]. In this case, polarization arises from a complex distortion pattern that involves
more than two nonpolar lattice modes with different symmetries. An example of a hybrid improper
ferroelectric is the layered perovskite Ca3Mn2O7, in which polarization is manifested through a combination
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of octahedral rotation mode and tilt mode. In addition, the reversal of polarization can be achieved by 
distortion in just one of these modes, either rotation or tilt. In the case of interfacial engineered materials, 
such as ferroelectric PbTiO3 and paraelectric SrTiO3 superlattices, improper ferroelectricity can emerge due 
to a unique type of atomic rearrangement[50]. First-principle calculations indicate that the ground state is not 
purely ferroelectric; rather, it predominantly involves the antiferrodistortive rotation of oxygen atoms. 
Polarization can arise from the coupling of two in-phase and out-of-phase octahedral rotational modes. 
Notably, these materials exhibit a very large dielectric constant that remains unaffected by temperature 
changes.

As illustrated in Figure 2, hexagonal YMnO3, unlike the typical perovskite structure, has a B-site Mn with a 
two-dimensionally networked MnO5 polyhedra structure[51]. These MnO5 triangular bipyramids can 
geometrically buckle to induce inversion symmetry breaking. Similarly, layered perovskites have BO6 
octahedra that are two-dimensionally networked such as YMnO3, aligned in-plane[52]. The way these 
octahedra rotate determines the ferroelectric polarization, and the polarization expressed as layer-resolved 
polarization is present in-plane. Structures such as Ruddlesden-Popper An+1BnO3n+1, Aurivillius 
Bi2O2(An-1BnO3n+1), and Dion-Jacobson A′(An-1BnO3n+1) belong to the layered perovskite structure[53] 
[Figure 2B].

In this way, oxygen octahedra and perovskite structures can also play a role in inducing ferroelectricity. The 
control of perovskite structures is achieved in thin films through factors such as strain and octahedral 
network connectivity[54,55]. Several studies have investigated the relationship between ferroelectric materials 
and oxygen octahedral structures[56,57]. BiFeO3 has diverse domain structures and exhibits various phase 
transitions in response to factors such as pressure, temperature, and strain[58-61]. It primarily adopts the 
rhombohedral R3c space group with an a-a-a- oxygen octahedral tilt in Glazer notation[62]. The octahedral 
structure can be altered in various ways through the interfacial connectivity[63,64], resulting in transition 
between ferroelectricity and antiferroelectricity, and fine-tuned domain spacing[56]. There have also been 
reports of ferroelectricity induced by variations in the oxygen octahedral structure in materials such as 
CaTiO3

[65]. Similar to most perovskite materials, CaTiO3 adopts the Pnma space group, and it exhibits 
paraelectric properties due to the stable a-b+a- oxygen octahedral rotations, as shown in Figure 3A[66]. It has 
been shown that local ferroelectricity can emerge at the ferroelastic twin boundaries between 
antiferroelectric domains in CaTiO3

[67,68]; also, ferroelectricity can be induced by the suppression of 
octahedral distortion when subjected to strong tensile strain[69]. Furthermore, through density functional 
theory (DFT) calculations, it has been validated that when the oxygen octahedra adopt forms such as a-a-a- 
or a+a+c-, a polar structure can be stabilized, and it realized through the interface engineering[70] [Figure 3B]. 
This highlights the significant impact that the oxygen octahedral structure can have on the ferroelectric 
properties of materials.

The delicate rotation of oxygen polyhedral is one of the key parameters to dominate the ferroelectricity in 
oxides. Brownmillerite structure (ABO2.5, A,B = transition metals), as shown in Figure 4A, similar to 
perovskite structure (ABO3), has the well-ordered oxygen vacancy channels, leading to the presence of 
oxygen tetrahedra[71,72]. Brownmillerite has a regularly repeating pattern of oxygen octahedral and 
tetrahedral layers due to oxygen coordination[73]. In the case of SrFeO2.5, a representative brownmillerite 
structural material, the oxygen octahedral FeO6 layers are centrosymmetric, similar to the cubic phase of 
SrFeO3, resulting in a non-polar structure[74,75]. However, the oxygen tetrahedral FeO4 layers can undergo 
non-centrosymmetric distortions, leading to ferroelectric properties[76-78]. Interestingly, the oxygen 
tetrahedra collectively rotate to the left or right in a chain-like manner while also exhibiting displacement. 
This combined behavior results in ferroelectricity. Theoretically, it has been reported that in SrCoO2.5, 



Page 6 of Jang et al. Microstructures 2024;4:2024016 https://dx.doi.org/10.20517/microstructures.2023.6731

Figure 2. Improper ferroelectric structure with geometric distortion. (A) Hexagonal YMnO3 structure with centrosymmetric non-polar 
(left), down-polar (middle), and up-polar (right). Distortion of MnO5 triangular bipyramids is indicated with arrows. (B) Ruddlesden-
Popper Sr3Zr2O7 layered structures showing polar and anti-polar characteristics. ZrO6 octahedral rotations determine the polarity of the 
structure. Reproduced with permission[52]. Copyright 2018, WILEY-VCH Verlag Gmbh & Co. KGaA, Weinheim.

Figure 3. Hidden ferroelectricity of CaTiO3 and oxygen octahedra pattern engineering. (A) Annular bright field (ABF)-STEM and 
piezoresponse force microscopy (PFM) analysis of paraelectric CaTiO3 on (001) LaAlO3. Corresponding oxygen octahedral rotation 
mapping and polarization mapping results coincident with the non-polar structure. (B) ABF-STEM and PFM analysis of ferroelectric 
CaTiO3 on (111) LaAlO3. Corresponding oxygen octahedral rotation mapping, and polarization mapping results coincident with the polar 
structure. Reproduced with permission[70]. Copyright 2020, The Authors, published by Springer Nature.
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Figure 4. Novel ferroelectricity in brownmillerite structure. (A) Atomic structural features of perovskite and brownmillerite. Tetrahedral 
chain of brownmillerite can be distorted up and downward. (B) Experimental measurements in brownmillerite SrFeO2.5 thin film. 
Polarization and junction current as a function of electric field (left) and PFM measurements (right). Reproduced with permission[78]. 
Copyright 2019, WILEY-VCH Verlag Gmbh & Co. KGaA, Weinheim.

depending on the arrangement of the oxygen tetrahedral layer, the Pmc21 space group can be stabilized,
leading to the emergence of a ferroelectric state[79]. Furthermore, in the I2bm space group, it has been
calculated that the tetrahedral chain rotates in one direction, resulting in a polarization of approximately
6.38 μC/cm2[77]. Experimentally, in SrFeO2.5, ferroelectricity has been demonstrated through P-E
measurements, second harmonic generation (SHG), piezoresponse force microscopy (PFM), and various
other techniques[78] [Figure 4B]. Additionally, the ferromagnetic properties associated with tetrahedral
rotation have been observed, confirming its status as a multiferroic material. In the material Bi2SiO5,
ferroelectricity is induced similarly by the rotation of silicate tetrahedral chains, but there is a difference in
that the apical oxygen is fixed in brownmillerite structures such as SrFeO2.5

[80,81].

Fluorite HfO2 has a variety of polymorph structures, and depending on the structure, the material can
exhibit ferroelectricity. Under ambient temperature and pressure conditions, the monoclinic structure with
a non-polar P21/c space group is stable in bulk form[82], while it is known to stabilize the metastable non-
polar P42/nmc tetragonal phase and the polar Pca21 orthorhombic phase in thin films[17,83,84]. There are many
attempts to stabilize this orthorhombic phase through doping or strain. It is known that Si:HfO2 thin film
has a polar orthorhombic structure, which initially nucleates as a metastable tetragonal phase at high
temperatures. Depending on the presence or absence of capping during sample cooling, it either becomes a
monoclinic phase or stabilizes as a polar orthorhombic phase[16]. In cases where TiN electrode capping is
present, mechanical shearing is confined, leading to the manifestation of the orthorhombic structure. This
orthorhombic Pca21 structure has a unique configuration that divides into polar and non-polar layers,
gaining attention as a structure that can be ultimately scaled from the perspective of ferroelectric domains
and domain walls[85].
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FERROELECTRIC DOMAINS
After understanding the structural mechanisms that induce ferroelectricity, when we examine actual 
ferroelectric material inside, we find the same polarity regions called ferroelectric domains. These domains 
are separated by interfaces known as domain walls. When polarization is aligned in a single direction, it 
becomes electrically unstable, prompting the formation of domains to compensate for this instability. In 
other words, ferroelectric domains result from the interplay between wall energy and depolarization fields 
induced by surface bound charges from ferroelectric polarization[86]. Ferroelectric domains vary depending 
on the electrical and mechanical boundary conditions, such as crystallographic orientation, strain, and local 
defect[87-91]. For instance, in the case of tetragonal proper ferroelectrics such as Pb(Zr,Ti)O3 and BaTiO3, they 
have polarization in the <001> direction, resulting in domains of 90 and 180 degrees. In contrast, the 
domains of BiFeO3 have a rhombohedral structure with polarization in the <111> direction, allowing for 
domains of 71, 109, and 180 degrees[92]. Due to these various angular domains, the vortex nanodomain 
pattern of BiFeO3, as shown in Figure 5A, has been reported on a TbScO3 substrate[93]. The formation of 
these domains is driven by localized electrostatic forces, especially at the interface where the 109° domain 
walls end. Such domains can be switched using an electric field, enabling various applications of 
ferroelectric materials. Depending on the domain structure, the interaction between domains can either 
facilitate or hinder switching, potentially influencing parameters such as remnant polarization[94]. In terms 
of the coercive field, this parameter is related to the effectiveness of domain switching under an electric 
field[95]. Thus, these parameters can vary depending on the domain structure. For example, HfO2 possesses a 
high coercive field, which can be interpreted as a result of the nearly eliminated interactions between 
domains[85]. Therefore, understanding the domain formations and observing domain motions are essential 
for the design of practical electronic devices.

Besides, domain walls themselves can present radically different properties from neighboring domains, 
opening an alternative route towards unusual functionalities with enormous application potential. Because 
it plays the role of a boundary connecting two domains, lattice distortion is strong[2,96,97], and accordingly, a 
strain-related driving force arises, making it easy for charged defects to accumulate[98,99]. In the case of 
BiFeO3 sample grown on DyScO3 substrates with higher deposition rates and with higher oxygen pressure, 
the 71° domain wall shows small lattice distortion and relatively low conductivity, whereas the 109° and 
180° domain walls exhibit significant lattice distortion and high conductivity. In the case of BiFeO3 grown 
on SrRuO3-buffered SrTiO3 substrates, the conductive nature of a 71° domain wall is also achieved due to 
oxygen vacancies lowering the Schottky barrier at the domain wall[100]. In addition, when the polarization 
directions of adjacent domains meet at the domain wall in a tail-to-tail or head-to-head configuration, the 
charge accumulation results in high metallic conductivity[101-103]. BiFeO3 shows p-type conduction through 
the appearance of Fe4+ and bismuth vacancies at the domain wall[98]. Similarly, in Pb(Zr,Ti)O3, the 
accumulation of Ti3+ at the domain walls enables n-type conduction. In the layered ferroelectric 
(Ca,Sr)3Ti2O7, most of the polarization is aligned in-plane, leading to predominant head-to-head and tail-to-
tail configurations and resulting in numerous charged walls[104]. Not only does the domain wall affect 
conductivity, but it also facilitates the accumulation of oxygen vacancies. This can effectively lower the local 
energy bandgap, enhance the photocurrent[105], or produce a depolarization field, leading to an increased 
electromechanical response and, consequently, improved piezoelectric properties[106]. Attempts have been 
made to utilize the conducting domain wall of LiNbO3 in memristors[107]. These phenomena have triggered 
efforts to apply domain boundaries in electronic devices for diverse purposes. A SrRuO3/BiFeO3/SrRuO3 
film was fabricated with a tail-to-tail polarization configuration, inducing in-plane charged domain 
walls[108]. Using electric field cycling, they demonstrated the ability to create, erase, and move these charged 
domain walls, revealing memristive characteristics.



Page 9 of Jang et al. Microstructures 2024;4:2024016 https://dx.doi.org/10.20517/microstructures.2023.67 31

Figure 5. Various types of ferroelectric domains. (A) TEM images of vortex shape nanodomain structure of BiFeO3 thin film. 
Reproduced with permission[93]. Copyright 2011, American Chemical Society (B) Atomic scale STEM image of small size of domains in 
improper ferroelectric, YMnO3. Reproduced with permission[96]. Copyright 2013, The Authors, published by Springer Nature.

In the improper ferroelectric YMnO3, the ferroelectric domain is interestingly coupled with magnetic 
order[109], making its domain structure different from conventional ferroelectrics. YMnO3 can exhibit six 
distinct domain patterns[96,110,111] [Figure 5B]. Structural distortions at domain walls, accompanied by Y ion 
movements, manifest as antiphase boundaries combined with ferroelectric domain walls. Considering a 
domain labeled as α as the baseline structure, α, β, and γ domains exhibit antiphase boundary relationships. 
With polarization directions denoted as + or -, a total of six possible domains can emerge from a single 
point, forming a cloverleaf pattern. These domains appear periodically as α, β, γ and can be defined as either 
clockwise or anti-clockwise vortex directions based on their order. While enhanced conductivity observed 
in domain walls of materials such as BiFeO3 and Pb(Zr,Ti)O3 was not evident in YMnO3’s conductive 
atomic force microscopy (c-AFM) results[110], there are findings of domain wall conductivity due to vacancy 
ordering in oxygen-deficient situations[112]. However, the domain orientation in YMnO3 can vary, being 
either in-plane or out-of-plane[113]. Depending on how domain walls meet, they can exhibit characteristics of 
charged domain walls in the case of tail-to-tail longitudinal domain walls or uncharged domain walls when 
forming antiparallel transverse domain walls[51,114].

In Y-doped HfO2 single crystals, the structure stabilizes from monoclinic to orthorhombic based on the 
yttrium doping concentration[115]. With about 12% doping, a stable ferroelectric domain with 90° and 180° 
domains was imaged. However, in thin films, a mix of various structures such as monoclinic, orthorhombic, 
and tetragonal is commonly observed, intertwined in small-sized grains with varied orientations, 
necessitating atomic scale analysis using STEM. HfO2 thin film is known for its wake-up effect, where the 
structure changes and domains align under an electric field, enhancing its ferroelectric properties[116]. For 
instance, in a Gd-doped HfO2 film, the monoclinic, orthorhombic, and tetragonal structures coexist as 
nanosized grains[117] [Figure 6A and B]. The 90° domain boundaries of the orthorhombic structure are 
displayed similarly to those in Figure 6C; however, after field cycling, switching occurs at the 90° domain 
wall. Similarly, in Hf0.5Zr0.5O2, both uncharged and negatively charged types of 90° domain walls were 
identified, and it was revealed through field-cycling that a 90° domain wall transforms into a 180° domain 
wall. This was used to explain the origin of the wake-up effect. Computational studies on the domain forms 
of HfO2 ferroelectric orthorhombic structure revealed various domain wall formations depending on 
polarization orientation and lattice matching. Notably, a specific 180° domain wall energy showed a 
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Figure 6. Polymorphic domain structure of HfO2. (A) Monoclinic atomic structures with three different directions. (B) Orthorhombic 
atomic structures with three different directions. (C) HAADF-STEM images show intermixed monoclinic and orthorhombic, and 
tetragonal structure with a few nanometer scales. Reproduced with permission[117]. Copyright 2018, WILEY-VCH Verlag Gmbh & Co. 
KGaA, Weinheim.

negative value of about 21.3 mJ/m2, indicating stabilization of an anti-polar domain[118]. These findings pave 
the way for future studies on ultranarrow domains that maintain polarization at a half-unit cell width and 
on scaled-down ferroelectrics[85].

Beyond the domain walls in ferroelectrics, exotic topological domain structures have become a significant 
research focus[119]. As the dimensions of ferroelectrics decrease, the influence of boundaries such as 
interfaces and surfaces increases, leading to the formation of structures such as flux-closure domains[120], 
polar vortices[121], skyrmions[122], merons[123], and hopfions[124] [Figure 7A]. These structures, studied 
extensively in magnetic materials, pose a challenge in ferroelectrics due to the strong coupling between the 
lattice and polarization. This coupling causes an energy penalty for polarization rotation against the 
crystallographically permitted directions, making the creation of exotic topological structures more 
challenging than in magnetic materials. However, advancements in theoretical studies and experimental 
characterization methods have spurred research into various topological structures. Theoretical studies on 
new topological polar vortices in reduced dimensions, such as nanodots and nanorods, have led to 
numerous investigations[125,126]. For instance, when PbTiO3/SrTiO3 multilayer films are grown under tensile 
strain on GdScO3, flux-closure domains form, as shown in Figure 7B, with their periodicity varying with the 
thickness of the PbTiO3 film[120]. These structures emerge as a result of the interplay between elastic energy, 
electrostatic energy, and polarization gradient energy. In superlattice PbTiO3/SrTiO3 on DyScO3, for 
example, the formation of polar vortices is driven by competition among the epitaxial constraint-induced 
elastic energy in PbTiO3 on DyScO3

[121], the significant polar discontinuity between PbTiO3 and SrTiO3 
causing electrostatic energy, and the gradient energy required for changes in polarization direction and 
magnitude. Factors such as the periodicity of the superlattice and strain play a crucial role in this 
competition. For periodicity shorter than ten unit cells, conventional a1 and a2 domains form, whereas 
longer periodicities lead to the formation of flux-closure domains. In addition, on TiO2-terminated SrTiO3 
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Figure 7. Exotic topological ferroelectric domains. (A) Representative examples of topological structures. Each arrow indicates the 
direction of polarization. Reproduced with permission[119]. Copyright 2020, Wiley-VCH Gmbh. (B) Atomic scale STEM image of flux-
closure domains in PbTiO3/SrTiO3 multilayer films. Reproduced with permission. Yellow arrows represent the directions of polarization. 
Reproduced with permission[120]. Copyright 2015, American Association for the Advancement of Science.

substrate, which imposes compressive strain as opposed to the tensile strain of DyScO3, polar skyrmions can 
be obtained. When a 5 nm PbTiO3 film is grown on SmScO3 substrate under tensile strain, polar merons, 
which are akin to half-formed skyrmions, are observed. These exotic topological structures hold potential 
for applications in advanced memory devices and nanoelectronics.

FILM THICKNESS SCALING
In thin films, the characteristics of the material can differ significantly from bulk due to the size effect,
notably effects caused by strain, interfaces, etc. Consequently, the form of domains can change, and the
overall characteristics of the thin film can be entirely different. For example, strained BaTiO3 thin films
grown on DyScO3 and GdScO3 substrates lead to enhanced ferroelectric properties[127]. Ferroelectric
transition temperature is almost 500 °C higher, and a remnant polarization is at least 250% higher than bulk
BaTiO3 single crystal. In thin films of paraelectric SrTiO3, ferroelectricity can be realized at a thickness of
fewer than 12 unit cells due to polar nanoregions induced by antisite defects[14], as shown in Figure 8. For
another paraelectric CaTiO3, when thin film growth is induced in the (111) direction, ferroelectric structural
characteristics appear up to about 9 nm, and beyond that, the original Pnma phase paraelectric
characteristics appear[128].

With the advancement of various thin film synthesis methods such as pulsed laser deposition (PLD),
molecular beam epitaxy (MBE), and atomic layer deposition (ALD), it became possible to deposit
ferroelectric materials very thinly, enabling the development of miniaturized ferroelectric materials with
newly induced ferroelectric properties. However, ferroelectricity in thin films does not always appear
favorably[129]. In terms of a dead layer, a parasitic low permittivity layer associated with the boundary
between ferroelectric and electrode, it is thought to cause a collapse in the permittivity of thin film capacitor
structures. This limits the effective use and integration of high permittivity materials. While the dead layer is
an inherent feature at the dielectric-metal interface, it can be engineered out in certain cases, particularly
where interface bonding is weak. For SrTiO3 single crystals, theoretical analyses have confirmed the
presence of a dead layer, predicting strong intrinsic suppression of permittivity[130]. Experimentally, when
lamellae of SrTiO3 single crystals, created using a focused ion beam (FIB), are formed into capacitor
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Figure 8. Emergence of ferroelectricity in ultrathin films of otherwise non-ferroelectric SrTiO3. (A) Schematics illustrating the effect of
polar nanoregions based on thickness. In thicker films, polar nanoregions are not effectively aligned, whereas in thinner films, they align
well. (B) Inverted ABF-STEM image and corresponding polarization mapping. Polar nanoregions are well visualized. Reproduced with
permission[14]. Copyright 2015, American Association for the Advancement of Science.

structures with Pt electrodes, a significant inherent suppression of permittivity is observed, despite SrTiO3

remaining intact up to the interface[131]. However, in specific systems, this dead layer can be eliminated. For
example, in BaTiO3 single crystals made into lamellae and constructed into an Au/BaTiO3/Au structure,
there are no indications of permittivity suppression in thin films as thin as 75 nm[132]. This indicates the
possibility of engineering out the dead layer by controlling defects and strain. Theoretical calculations have
revealed the potential existence of a negative dead layer in ferroelectric capacitors, especially when proper
interface termination is established[133]. This understanding not only confirms the existence of strong
intrinsic effects even with perfect interfaces but also emphasizes that with an appropriate choice of electrode
material, interface bonding effects can enhance the dielectric response, overcoming the material's
limitations. This understanding confirms strong intrinsic effects even in perfect interfaces and highlights the
importance of selecting suitable electrode materials, thereby overcoming the inherent limitations of the
materials.

Also, ferroelectric materials inherently have a size effect, where ferroelectricity decreases as the critical
thickness is approached. This phenomenon has been a significant topic of discussion. In reality, the limit of
critical thickness exists due to factors such as defects and interface effects within materials. As the film
becomes thinner, the effect of the depolarization field increases[134], and with increased interface, issues arise
from oxygen vacancy and charge injection at the interface between metal electrodes and ferroelectrics,
leading to fatigue after cycling, reducing endurance. In recent years, many studies on thin films have been
conducted to overcome the limitations of critical thickness. Several materials and their critical thickness and
polarization characteristics are introduced. It has been confirmed that a (001) oriented BaTiO3 thin film
between two metallic SrRuO3 electrodes shows ferroelectricity down to a thickness of about six unit cells[134].
The disappearance of ferroelectric instability is due to a depolarizing electrostatic field, which arises from
dipoles at the ferroelectric-metal interfaces. It is also evident that the softness of the SrRuO3 lattice plays a
pivotal role in screening the ferroelectric polarization in BaTiO3. The critical thickness for ferroelectricity is
further reduced to 1.2 nm[135]. For Pb(Zr,Ti)O3, a critical thickness as thin as that of BaTiO3 has been
reported[12]. In PbTiO3 thin films with a stripe domain pattern, a study revealed the correlation between the
reduction in film thickness and the decrease in Curie temperature[136]. Based on these findings and
subsequent calculations, it was predicted that films as thin as two unit cells could be formed at lower
temperatures. Using synchrotron X-ray, it has been demonstrated that at room temperature, the
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ferroelectric critical thickness can be reduced to as little as three unit cells, about 1.2 nm[12]. There was even a
subsequent report suggesting an absence of critical thickness altogether[137]. Through STEM analysis, films
grown on SrTiO3 with a SrRuO3 electrode showed a remnant polarization of 22 μC/cm2 down to a two unit
cells thickness. In contrast, films grown on SrTiO3 without a SrRuO3 electrode exhibited a reduced
polarization of 16 μC/cm2 at a mere 1.5 unit cells (0.6 nm) thickness, as shown in Figure 9. In the case of
BiFeO3, although the bulk is rhombohedral, thin films can stabilize in a tetragonal structure due to
strain[138]. Several reports showed that ferroelectricity appeared in such thin films in a tetragonal phase[139].
When transformed to a tetrahedral-like structure on a La0.7Sr0.3MnO3 bottom electrode, strong out-of-plane
polarization was reported to appear even at a thickness of 1.2 nm due to the accumulation of oxygen
vacancies at the interface. Furthermore, at room temperature, tetragonal phase BiFeO3 on an SrRuO3

electrode was reported to have robust out-of-plane spontaneous polarization even at one unit cell
thickness[140]. Although very thin, compared to bulk, the polarization characteristics themselves were
significantly degraded, so this trade-off needs to be addressed.

For the improper ferroelectric YMnO3, it was reported through calculations that there might be no critical
thickness[141]. The intrinsic bulk polarization is 8.7 μC/cm2, smaller than conventional proper ferroelectrics,
but in films, it is slightly smaller at 6.5 μC/cm2. It is known that it can have a single domain without
electrodes or external fields, unlike proper ferroelectrics in terms of free energy. This polar state has been
experimentally proven through STEM and SHG, and it was maintained even at a thickness of three unit
cells, about 10 nm[142]. At a very low temperature of 20 K, it was confirmed that hexagonal YbFeO3 had no
critical thickness limit up to three unit cells[143]. Especially through the fitting of depolarization effects, it was
proven that the spontaneous polarization was maintained even as the thickness became very thin. In layered
bismuth oxide Sm-substituted Bi6O9, ferroelectric properties were found even at a thickness of less than one
nanometer at room temperature[144]. In particular, it was confirmed that the remnant polarization has a high
value of 17 μC/cm2, even at a reduced thickness [Figure 10].

HfO2 shows promise for polarization-driven memories and ferroelectric-based transistors because of their
compatibility with complementary-metal-oxide-semiconductor technology. When ferroelectricity was first
reported in Si:HfO2 thin films with a thickness of 10 nm, it was expected that they would exhibit high
ferroelectricity even at thin thicknesses[16]. In the case of Hf0.5Zr0.5O2 grown on the metallic pyrochlore
Pb2Ir2O7, the polar orthorhombic phase stabilizes at thicknesses below 30 nm, and ferroelectric
characteristics were confirmed even at 5 nm[145]. Near the interface, the orthorhombic phase remains stable,
while in thicker films, the upper portion transitions into a non-polar monoclinic phase with a finger-like
shape. A 10 nm thick Y:HfO2 grown in the (111) direction was reported to have a very large polarization
value of 64 μC/cm2[146]. When oriented in the (111) direction, the Pca21 orthorhombic phase becomes stable,
exhibiting minor rhombohedral distortion, which highlights the significance of structural limitations in
maintaining the ferroelectric phase. Ferroelectricity was confirmed in Hf0.5Zr0.5O2 grown by ALD, even at an
incredibly thin thickness of 1 nm[147]. From a structural perspective, as the material's size decreases, it
undergoes structural distortion and shifts towards higher symmetry. Unlike conventional perovskite
structures that transition to non-polar, the fluorite-structured Hf0.5Zr0.5O2 exhibits a high-symmetry polar
orthorhombic phase rather than a non-polar monoclinic one. As a result, ferroelectricity increases with
decreasing size. Similarly, ZrO2, possessing the same fluorite structure, typically remains stable in the
antiferroelectric tetragonal phase[148]. However, when its thickness is reduced to 2 nm or less, it transitions to
the ferroelectric Pca21 orthorhombic structure. Notably, ferroelectric properties persist even at a unit cell
thickness as thin as five angstroms.
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Figure 9. Thickness-dependent ferroelectricity in Pb(Zr,Ti)O3 on a SrTiO3 substrate. ABF images from regions with thicknesses of 6.5, 
4, and 1.5 unit cells. Displacements and polarizations consider both the cation and oxygen. While polarization is suppressed in thin film, 
it remains stable. Reproduced with permission[137]. Copyright 2017, The Authors, published by Springer Nature.

Figure 10. Ferroelectricity in layered bismuth oxide. The HAADF-STEM image shows a well-grown film with a thickness of one 
nanometer. Despite the film being reduced by 1 nm in thickness, the remnant polarization remains high. Reproduced with 
permission[144]. Copyright 2023, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of 
Science.
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FERROELECTRIC DOMAIN WIDTH SCALING
For high-density integration, it becomes extremely important to not only reduce the thickness of the 
ferroelectric thin film but also downsize the width of the domain, which serves as an information unit. In 
terms of domain size, it is classically described by the Landau-Lifshitz-Kittel’s law concerning ferroic 
domains[149-151]. This law was theoretically proposed based on a straightforward stripe-patterned domain. As 
the domain's vertical dimension area grows, the energy of the domain wall also increases. Consequently, 
when the thickness increases, the formation of a domain wall is avoided, leading to a larger domain size. 
Moreover, when the domain's volume energy decreases, its formation becomes more stable. This 
relationship can be mathematically represented by the square root dependence on the domain size's 
thickness. Initially, this law was introduced to describe the domain of ferromagnetism. However, Mitsui and 
Furuichi later extended it to the ferroelectric Rochelle salt 180° domain structure[86]. In the case of single 
crystal BaTiO3, lamellae were created using a FIB to observe domain changes according to thickness[152]. This 
approach demonstrated, through direct STEM observation, that the law governing these changes applies 
well from the millimeter scale down to the nanometer scale. In addition, within a single lamella, it was 
observed that a sharp thickness gradient leads to a strong bifurcation. In the context of thin films, the 
relationship is direct: an increase in film thickness results in a larger domain size, while a decrease leads to a 
smaller domain size. In PbTiO3 thin films, a nanoscale 180° stripe domain pattern was confirmed as a 
satellite pattern in X-ray scattering[136]. It was observed that as the thickness reduced to 1.6 nm, the 
periodicity of these domains decreased to as small as 3.7 nm. Also, this has been observed in Pb(Zr,Ti)O3 
films, where changes in the size of the stripe pattern's a-domain with respect to thickness were confirmed 
using PFM and TEM. The critical thickness for forming a stripe pattern was found to be around 60 nm, and 
the domain width was constrained to approximately 10 nm at that thickness[153].

Another issue causing small-sized domains is the thickness of the ferroelectric domain wall. Ferroelectricity 
naturally creates domains with Ising-, Bloch-, or Neel-type domain walls to prevent sudden polarity shifts, 
which can often weaken the magnitude and confined size of ferroelectricity [Figure 11A]. Neel-like domain 
walls have been observed in Pb(Zr,Ti)O3 single crystals and thin films, while Bloch-type domain walls were 
observed in LiTaO3 single crystals[154-156]. In such domain walls, to change the aspect of polarization, the size 
must either diminish or the polarization must decrease through rotation, as shown in Figure 11B. 
Consequently, the thickness of the domain wall is large, and the domain size is limited. Moreover, because 
ferroelectricity is influenced by the soft phonon mode, which represents a collective movement of atom 
displacements, the switching scale of individual domains is inherently restricted[85].

For the improper ferroelectric hexagonal ErMnO3, the situation is somewhat similar. At specific local 
domain wall points, very thin domains with a thickness of one unit-cell have been observed, which was 
attributed to strong electrostatic attractive interactions[157]. However, this was not a commonly observed 
feature. Due to the coexistence of the general antiphase boundary and the ferroelectric domain wall, there 
are limitations to the wall width. In ErMnO3, the thickness of the ferroelectric domain wall is around a few 
nanometers, with observations showing a gradual switch in polarization[158,159].

Pca21 orthorhombic HfO2 has garnered significant attention due to its remarkably fine domains and walls 
with a half-unit cell width[85] [Figure 11C]. The domain formation in HfO2 stems from the alternating 
arrangement of ferroelectric and spacer layers, leading to a flattened phonon dispersion. As a result, HfO2 
can switch via the creation of zero-width domain walls, contrasting the diffused domain walls observed in 
prototypical ferroelectric PbTiO3. Analysis of STEM images for PbTiO3 reveals these diffused domain walls, 
where a reduction in the strength of polarization is noticeable over a domain wall area spanning 1~3 nm, 
accompanied by lattice distortion[155]. In contrast, the half-unit cell domain width of HfO2 was directly 
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Figure 11. Scaling of domain wall width in PbTiO3 and HfO2. (A) Calculation results of the finite thickness of the domain alongside the
destabilized one unit cell-width domain. (B) HAADF-STEM images of Neel-like domain wall in Pb(Zr,Ti)O3. Reproduced with
permission[155]. Copyright 2016, WILEY-VCH Verlag Gmbh & Co. KGaA, Weinheim. (C) Calculation results of zero-width domain wall
and stabilized on unit cell-width domain. (D) ABF-STEM image of the unit cell-width domains in HfO2. (A and C) Reproduced with
permission[85]. Copyright 2020, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of
Science. (D) Reproduced with permission[15]. Copyright 2022, The Authors, published by Springer Nature.

verified in Hf0.5Zr0.5O2 films grown between TiN electrodes using STEM [Figure 11D]. Polarization in HfO2

manifests solely within the polar layers, with the movement of oxygen in the Hf lattice confirming this
polarization. In the as-grown state, domains with unidirectionally aligned polarization are visible on the left
of Figure 11D, while those with alternately aligned polarization appear on the right of Figure 11D. Unique
oxygen displacement configurations, such as down-up-up-down-up, have been observed, and these
structural attributes vividly depict the zero-width domain wall characteristics[15].

Another example of ultrafine domains is CsBiNb2O7
[20] [Figure 12A]. This material, with its layered Dion-

Jacobson phase, can be exfoliated in a quasi-two-dimensional manner due to the weak bonding between
layers. The in-plane polarization, aligned in the layer direction in the bulk crystal state, can exhibit unit cell-
sized domains. This characteristic is attributed to the Cs ion weakening the bond between the NbO6
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Figure 12. Unit cell-width ferroelectricity in various materials. (A) HAADF-STEM image and atomic structure of layered CsBiNb2O 7.
Displacements of Bi ions are indicated by arrows. Reproduced with permission[20]. Copyright 2021, American Physical Society. (B) PFM
and HAADF-STEM images accompanied by the atomic structure. When domain walls form, BiO6 octahedra emerge. Reproduced with
permission[160]. Copyright 2022, The Authors, published by Springer Nature.

octahedra layers, resulting in reduced domain wall energy. In HfO2, the polar and spacer layers have 
different oxygen coordination numbers, three and four, respectively, and each layer exhibits very weak 
coupling, preventing lattice vibrations from propagating. Likewise, layered perovskites show weak couplings 
between oxygen polyhedra across each layer, suggesting a possible origin for layer-resolved ferroelectricity. 
Bi2TeO5 is another example where unit cell-wide domains form due to weakened connections between 
oxygen polyhedra[160] [Figure 12B]. Bi2TeO5 has a layered structure primarily consisting of pyramidal BiO5 
pentahedra. When a domain boundary forms, an additional BiO6 octahedron intercalates as a buffer layer 
between the adjacent polar BiO5 layers, reducing domain wall energy. These examples illustrate that 
weakened connectivity in the oxygen polyhedral network is a key factor in inducing unit cell-wide 
ferroelectric domains.

The brownmillerite material is of interest when examining unit cell-wide domains. What makes it unique is 
its structure: it alternates between oxygen octahedra and oxygen tetrahedra, with a distinctive arrangement 
of oxygen vacancy channels[161]. Interestingly, only the oxygen tetrahedra exhibit ferroelectric properties in 
brownmillerite, whereas the oxygen octahedra remain non-polar[162]. This alternating structure, with non-
polar regions disrupting the continuity of polar regions, is a trait also seen in other materials such as HfO2, 
CsBiNb2O7, and Bi2TeO5. Specific types of brownmillerite, namely CaFeO2.5 and SrFeO2.5, have unique 
structures: the former is anti-polar, and the latter is polar. If these polarizations were to intermix, they might 
display a random polarization pattern akin to the sequence observed in HfO2.

CHARACTERIZATION TECHNIQUES FOR FERROELECTRICS
Beyond the measurements of polarization-electric field or polarization-voltage hysteresis, which validate 
fundamental traits of ferroelectrics such as spontaneous and remnant polarization and the coercive field, 
there is a need to study the structural features and switching behaviors of ferroelectric domains for their 
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integration into electronic devices. Microscopy-based imaging methods are predominantly used to evaluate 
these characteristics. At its simplest, domains are visualized using an optical microscope that employs 
polarized light. This approach is non-destructive and primarily captures domain patterns that are a 
micrometer in size or larger. As the trend moves towards smaller electronic devices, the spotlight has turned 
to techniques such as X-ray imaging, scanning probe microscopy (SPM) imaging with nanometer-scale 
probes, and TEM imaging on the unit cell level[163-166]. Every method brings its unique strengths and 
challenges, and often, a combination of techniques is employed to elucidate ferroelectric properties. This 
review seeks to delve into the TEM imaging approach, focusing on the detailed examination of miniaturized 
domains and their related atomic structures. In this section, we will discuss the TEM imaging method, 
emphasizing a detailed exploration of miniaturized domains and recent advancements in the atomic-level 
structures.

Before discussing the TEM imaging approach, it is worth noting that PFM is a powerful tool for 
investigating the domain dynamics of ferroelectrics[167]. The principle of PFM involves using the 
piezoresponse force, which acts between the scanning probe and the surface of the sample while scanning 
the surface with the probe[168]. The contrast of the domain is due to the converse piezoelectric effect induced 
by AC voltage, resulting in a topographic image. PFM allows for nondestructive visualization and control of 
ferroelectric domains, not only sensing with the probe but also directly applying bias to facilitate domain 
switching, making it an excellent method for observing domain wall motion[169]. The resolution in PFM is 
determined by the size of the scanning probe's apex, with recent advancements achieving imaging 
resolution down to about 10 nm from the micrometer level. Advanced PFM offers a range of versatile 
modes, such as switching spectroscopy PFM that captures local hysteresis loops at individual points[170], 
Stroboscopic PFM for nanosecond time resolution[171], resonance-enhanced PFM to boost measurement 
sensitivity[172], along with dual AC resonance tracking PFM[173], and band-excitation PFM[174].

To analyze the precise atomic structure of ferroelectrics, TEM serves as a powerful observation tool enabling 
atomic scale examination with the use of a short-wavelength electron beam. The transmitted beam 
interferes with the ultra-thin specimen, generating phase information about the periodic crystal structure. 
Crystallographic information and chemical composition can be characterized using TEM. In addition, TEM 
is suitable for identifying the domain structure over a relatively large area, spanning a few square 
micrometers. In particular, dark-field TEM images, which select specific diffraction spots, show a strong 
bright contrast for the selected region under a two-beam condition. Because diffraction spots can violate 
Friedel’s law based on the polarity of the structure, ferroelectric domains are distinctly visualized by 
intensity in dark-field TEM. Furthermore, TEM operates in real-time mode, enabling in situ imaging under 
conditions such as the application of an electric field or heating, and it also offers the advantage of 
visualizing defects in materials and polymorphic structures[175].

Using in situ holders, a conductive nanoprobe is precisely positioned to contact the specimen through a 
piezo-driven manipulator[176]. The ferroelectric switching process can be observed in situ with this 
nanoprobe, as demonstrated in a Pb(Zr,Ti)O3 thin film[177,178]. The intrinsic electric fields, established at the 
interfaces between the ferroelectric and electrode, dictate the nucleation sites and growth rates of the 
ferroelectric domains, as well as the orientation and mobility of domain walls. Meanwhile, dislocations exert 
only a mild pinning force on the movement of domain walls. In a capacitor configuration using a 
Pb(Zr,Ti)O3 film between Ni and SrRuO3 electrode, a ferroelectric hysteresis graph resembling the typical 
P-E hysteresis is derived from the switched area-electric field curve[179]. In a study concerning 
Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 (PMN-PT), the influence of electric field on ferroelectricity was explored 
based on the thickness of the TEM sample[180]. The results demonstrated that, for thicker samples, the 90-
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degree domain switches to 180 degrees when subjected to electric biasing. In contrast, thinner samples 
maintained the 90° domain [Figure 13]. Given that TEM samples need to be exceptionally thin to permit 
electron beam transmission, their characteristics, when thin, are distinct from those of thicker counterparts, 
providing a clear insight into domain behavior at a reduced scale.

Although most research has been focused on studies using conductive nanoprobes, recent experiments have 
been conducted using micro-electromechanical systems (MEMS) devices to apply electric biasing locally 
and stably[181,182]. Ferroelectric thin film samples are usually prepared by creating a lamella using FIB and 
then transferring the sample[181,183]. Through the design of the sample's electrode, the electrical path can be 
constructed as desired, either in-plane or out-of-plane[182,184,185]. In PMN-PT single crystal, electrical biasing 
experiments were conducted using a MEMS chip. During the 280 electrical cycles, c-domain formation was 
observed, and charge accumulation was also monitored using TEM. The accumulation of charge led to the 
formation of frozen domains and shed light on ferroelectric degradation[185]. As another example, in situ 
electrical biasing experiments were conducted on an (La,Sr)MnO3/Hf0.5Zr0.5O2/(La,Sr)MnO3 capacitor at the 
atomic scale. Direct observation confirmed the reversibility of oxygen vacancy migration at the oxygen-
reactive electrode, and it was revealed that the vacancy migration is intertwined with ferroelectric 
switching[184]. When in situ bright field (BF)-STEM imaging was performed at a field of 300 kV/cm, lateral 
creeping of the domain wall in Pt/Pb(Zr,Ti)O3/(La,Sr)MnO3 was observed as an image contrast[186]. In 
addition, another example, as shown in Figure 14, includes direct observations at the atomic scale using Fe 
ion displacements of BiFeO3 ferroelectric domain switching when an electric field was applied[187].

Atomic scale imaging methods, such as negative spherical aberration imaging (NCSI) and STEM, provide a 
detailed view of structures such as unit cell-wide domain at the atomic level[188]. These techniques allow for a 
precise analysis of even the nanosized domains such as flux-closure domains[189,190] and their domain 
walls[154]. Through the analysis of ionic displacement and distortion at the atomic level, we gain a deeper 
insight into the structures. Unlike TEM, which analyzes phase information, these methods provide imaging 
of precise atomic structures, making them suitable for analyzing unique features in thin films, such as the 
polar nanoregions[191,192] in relaxor ferroelectric properties or distinct domain forms such as polar 
vortexes[121,193,194]. They are adopted for unveiling hidden information. Electric polarization could be 
determined by ionic displacements in the images, and structural features such as tetragonality and relative 
tilt and rotation angles are simultaneously characterized at the unit cell level[195].

In general, HAADF-STEM and annular BF (ABF)-STEM images are the widely adopted imaging modes in 
STEM. HAADF-STEM is a robust imaging mode that displays the atomic number or Z-contrast of 
materials. The background of these images is dark, and thermally diffused scattered electron signals appear 
bright. It has been reported that the intensity of HAADF-STEM images is proportional to roughly 1.4~2 
times the atomic number. However, it is challenging to observe light elements, such as oxygen, due to their 
low thermal diffuse scattering effect. ABF-STEM was introduced in a smaller annular form to address the 
difficulty HAADF-STEM has in detecting light elements. It has been revealed that ABF-STEM can image 
elements as light as hydrogen[196]. However, there are still challenges in imaging lighter elements due to 
issues such as aberration, defocus, tilt, and sample thickness.

eABF-STEM (enhanced ABF-STEM) is a newly developed technique designed for the sensitive visualization 
of light elements, offering improvements over the traditional ABF-STEM[197]. This method combines the 
advantages of both ABF-STEM and BF-STEM [Figure 15]. A BF-STEM image is generated from the 
scattered electron signal, where light elements appear bright and heavy elements appear dark. This is 
because heavy elements scatter farther from the center, while light elements scatter less. Although BF-STEM 
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Figure 13. Thickness dependence of ferroelectric/ferroelastic domain switching under electric biasing. (A) Dark-field TEM images of 
thick TEM samples under the electric field. Yellow regions indicate the 180° domain switched regions. (B) Dark-field TEM images of thin 
TEM samples under the electric field. Pink regions indicate the 90° domain switched regions. Reproduced with permission[180]. Copyright 
2020, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science.

Figure 14. In situ BF-STEM image at the wall location together with Fe-displacement vectors superimposed on the color map of the 
Fe-displacement rotation angle. The sequence of applied voltages is numbered. Reproduced with permission[187]. Copyright 2022, The 
Authors, published by American Chemical Society.



Page 21 of Jang et al. Microstructures 2024;4:2024016 https://dx.doi.org/10.20517/microstructures.2023.67 31

Figure 15. Four different STEM imaging modes. (A) STEM images of the LaAlO3 with intensity profiles. Reproduced with permission[197]. 
Copyright 2013, Elsevier B.V. (B) Comparison between ABF- and eABF-STEM images of CaTiO3 thin film.

is effective for detecting light elements, it can be challenging to accurately interpret atomic columns since 
intermediate weight elements are ambiguously displayed. In contrast, ABF-STEM displays dark signals at 
atomic columns against a bright background, making atomic columns intuitively recognizable. However, a 
drawback of ABF-STEM is the difficulty in observing light elements, as the incoherent effective source size 
diminishes the ABF-STEM signal. eABF-STEM is obtained by subtracting BF detector signals from ABF 
detector signals. While the overall signal intensity is reduced compared to ABF-STEM, the intensity 
difference between light and heavy elements increases, significantly enhancing the visibility of light 
elements. When eABF-STEM is utilized in ferroelectric materials, it is frequently used to demonstrate the 
relationship between the oxygen octahedra and ferroelectricity[198]. There has been a revelation using eABF-
STEM about the gradual change in the oxygen octahedral tilt due to interface strain in the ferroelectric 
Bi0.5Na0.5TiO3 thin film, and its association with the ferroelectric displacement of the Ti ion[199].

Moreover, advanced electron microscopy techniques, such as differential phase contrast (DPC) and 4D-
STEM imaging using pixelated detectors, are being rapidly developed[200-203]. These techniques not only allow 
for the direct mapping of the internal electric field within materials but also enable imaging at higher 
resolutions[204]. DPC determines the phase shifts caused by interactions between the electron beam and the 
sample, enabling the detection of both electric and magnetic fields, as shown in Figure 16. Especially after it 
was revealed that atomic resolution could be achieved, there were expectations that the measurement of 
polarization would become possible[205]. Indeed, this capability was demonstrated in the material BiFeO3, 
where the distribution of the electric field and the nature of polarization due to doping could be 
analyzed[200]. Research has been published illuminating the flexoelectric effect related electrical polarization 
mapping[201] and the non-Ising electric field distribution in ferroelectric domain walls[206] using DPC. In 
addition, a recent study highlighted the DPC in real-time to observe the atomic switching of ferroelectric 
wurtzite Al0.94B0.06N induced by an electron beam[207].

The ferroelectric polarization can be observed over a large scale, but it can also manifest in very local 
structures. To analyze the subtle details visible in TEM images, software-based analysis techniques, such as 
deep learning, are being extensively researched alongside the development of TEM hardware[70,208]. Software-
based techniques for atomic position analysis have been extensively studied to analyze factors such as 
polarization, relative displacement, distortion of the octahedra, and the lattice's tetragonality[209-212] 
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Figure 16. DPC-TEM measurements of electric fields. (A) Schematic representation of the basic principle of the DPC technique. (B) 
Vector plot of the atomic electric field in Ca-doped BiFeO3. Reproduced with permission[200]. Copyright 2018, American Chemical 
Society. (C) Electric fields at the polar domain walls. Reproduced with permission[201]. Copyright 2020, The Authors, published by 
Springer Nature Limited.

[Figure 17]. The atomic positions can be determined using 2D quadratic fitting, Gaussian fitting, or the 
center of mass methods. Recently, techniques such as segmentation through k-means clustering based on 
unsupervised learning are also used to find atomic positions[208]. To extract precise peaks, the signal-to-noise 
ratio is improved using the Wiener filter in the frequency domain, especially for periodic images[213]. 
Advanced techniques such as nonlocal means denoising[214] and block matching and three-dimensional 
filtering (BM3D)[215,216] have also been employed. Currently, a significant portion of image analysis through 
peak detection has been automated, and the processing speed has greatly improved, alleviating many 
challenges in the structural analysis of ferroelectrics[208].

One of the strengths of deep learning-based analysis is that it allows for objective data analysis, eliminating 
human subjectivity; also, it is capable of processing vast amounts of data swiftly and efficiently. An example 
of applying deep learning to TEM research is its use in analyzing STEM images to understand the structure 
of the oxygen octahedra[70]. This research identified the a-b+a- and a-a-a- octahedral tilt structures in CaTiO3 
and linked them to ferroelectricity. Since STEM images are two-dimensional, they contain very subtle 3D 
structural information, which was meticulously analyzed. In addition, in a study involving polycrystalline 
Hf0.5Zr0.5O2, deep learning was used on 4D-STEM data[217]. This revealed that it was possible to distinguish 
between the centrosymmetric monoclinic P21/c, tetragonal P42/nmc phase, and the orthorhombic Pca21 
phase with ferroelectric polarization in the TEM samples, disregarding factors such as thickness, tilt, and 
rotation. Similarly, an automated workflow using the ResNet 18 convolutional neural network technique 
was reported for classifying the monoclinic and orthorhombic phases in HZO to identify ferroelectric 
domains[218].
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Figure 17. Example of machine learning-based STEM image analysis flowchart. Entire workflow of precise atomic peak analysis in 
parallelly acquired HAADF-STEM and ABF-STEM images of SrTiO3. Preprocessing steps reduce noise and enhance the peak contrast, 
and segmentation steps achieve the coordinate information of atomic columns. Reproduced with permission[208]. Copyright 2022, The 
Authors, published by Springer Nature.

CONCLUSIONS
As the demand for advanced devices in the rapidly evolving information technology and artificial 
intelligence industries increases, pioneering a new class of miniaturized, high-functioning materials 
becomes a paramount research priority. With advancements now reaching the ultimate limits of materials, 
such as the unit cell or atomic levels, this review sheds light on various ferroelectric materials. These 
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materials are examined from both structural and domain perspectives, which are critical to ferroelectric 
research. We introduced the characteristics manifested in reduced structures. In particular, we highlighted 
the importance of the oxygen polyhedral structure as the cornerstone of oxide ferroelectric miniaturization. 
Moreover, we discuss the progressive advancements in sophisticated microscopy techniques vital for 
characterizing these miniaturized materials. In the future, it seems imperative to achieve breakthroughs that 
utilize atomic structures at the unit cell scale. Moving forward, there is a need to elucidate still-unknown 
challenges in operating unit cell-based devices stably and integrating them into real-world applications.
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