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Abstract
High-entropy alloys (HEAs) are an emerging class of alloys with multi-principal elements that greatly expands the 
compositional space for advanced alloy design. Besides chemistry, processing history can also affect the phase and 
microstructure formation in HEAs. The number of possible alloy compositions and processing paths gives rise to 
enormous material design space, which makes it challenging to explore by traditional trial-and-error approaches. 
This review highlights the progress in combinatorial high-throughput studies towards rapid prediction, 
manufacturing, and characterization of promising HEA compositions. This review begins with an introduction to 
HEAs and their unique properties. Then, this review describes high-throughput computational methods such as 
machine learning that can predict desired alloy compositions from hundreds or even thousands of candidates. The 
next section presents advances in combinatorial synthesis of material libraries by additive manufacturing for 
efficient development of high-performance HEAs at bulk scale. The final section discusses the high-throughput 
characterization techniques used to accelerate the material property measurements for systematic understanding 
of the composition-processing-structure-property relationships in combinatorial HEA libraries.
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INTRODUCTION AND MOTIVATION
Throughout history, metallurgists have altered the properties and compositions of alloys to achieve higher-
performance materials. Traditional alloy design strategies involved microalloying trace elements into a 
primary base element, resulting in the discovery of many valuable alloys such as Cu-based bronze, Fe-based 
steels, and Ni-based superalloys. Over time the increasing demand for high-performance materials has led 
to increasingly complex alloys[1]. This trend has peaked in the past 20 years with the introduction of multi-
principal element alloys or high-entropy alloys (HEAs)[2]. Unlike traditional alloys, HEAs do not contain a 
single primary element; instead, multiple elements in the alloy are mixed in relatively similar (almost 
equiatomic) concentrations. Cantor and Yeh first popularized this new alloying strategy concept in 2004 
when they independently published works describing the manufacture and design philosophy of this new 
class of alloys[3,4]. Since the publication of these two works, the field of HEAs has exploded as such a new 
alloy design paradigm opens up a vast compositional space that was previously unexplored[5]. Although 
some fundamental questions such as phase selection and diffusion kinetics in HEAs remain elusive, many 
HEAs have shown high strength[6-8], large ductility[9], exceptional hardness and wear resistance[10-12], and 
superior corrosion resistance[13].

Despite the great potential that HEAs present for researchers, some crucial challenges must be overcome to 
increase their viability for future applications. While HEAs open up an uncharted multicomponent 
compositional space for material design, the vast compositional space makes it impractical to explore via 
traditional metallurgical techniques[14]. Additionally, the cost of HEAs can vary wildly due to the variety of 
possible elemental combinations. Some alloy systems only contain cheap transition metals (Fe, Ni, Cr)[15] 
that may be easy to scale, while other systems contain refractory elements (W, Nb, Ta)[16], which can 
significantly raise the cost of material. Finally, processing history significantly affects the microstructure and 
material properties even for a given nominal alloy composition. Many processing conditions including 
temperature, cooling rate, mechanical deformation, and irradiation can play a significant role in the 
formation of constituent phases and microstructures in HEAs[17-20]. Hence, processing imposes an additional 
and orthogonal dimension that multiplies with the huge compositional dimension and makes it more 
difficult to efficiently identify high-performance alloys using conventional alloy development strategies[21-23]. 
Thus, it is paramount for researchers to utilize efficient workflow to minimize the cost and experimental 
trials to study HEAs.

Over the past decade, many high-throughput material development techniques have emerged to tackle the 
combinatorial nature of HEAs. These techniques include magnetron sputtering, diffusion multiples, and 
additive manufacturing. Magnetron sputtering uses a magnetically confined plasma to accelerate positively 
charged ions toward a target material, leading to the sputtering of the target atoms onto a substrate to form 
a thin film with a thickness ranging from a few nanometers to a few microns[24]. A combinatorial materials 
library can be built by sputtering multiple elemental targets onto a single substrate[24-29]. The diffusion 
multiples method involves arranging different metals such that they are physically touching. Then this 
configuration is heated to an elevated temperature that enables atomic diffusion across the interfaces 
between the different metals. This process leads to a compositional gradient near the interface that serves as 
a compositional library[30-34]. Despite the large compositional space that diffusion multiples and magnetron 
sputtering can achieve, these approaches encounter some difficult issues. Both techniques involve samples 
of microscopic length scales, and thus, the microstructures and material properties observed from these 
libraries may not be representative of these materials at bulk scales. In addition, magnetron sputtering 
involves extremely high cooling rates on the order of 1010 K/s, which are substantially higher than those 
involved in routine metal manufacturing[35,36]. As such, the phases and microstructures in sputtered thin 
films are almost exclusively polymorphic or even amorphous and thus do not represent the microstructures
of bulk materials for most practical applications. 
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Additive manufacturing (AM), also called 3D printing, is a technology to make objects from 3D digital data, 
usually layer upon layer, as opposed to subtractive manufacturing technologies[37]. There exist several types 
of AM systems that can be used to produce metal alloys: powder bed systems, powder feed systems, thermal 
spray systems, and wire feed systems. In the case of a powder bed system, the feedstock powders are spread 
over a flatbed, and a 2D pattern is selectively melted over the bed using either a laser or electron beam as a 
heat source[38,39]. Powder feed systems flow powders through a delivery nozzle using a carrier gas and then 
melt the powders  onto the substrate as it impacts the substrate using heat from a laser[40,41]. Thermal spray 
3D printing (TS3DP) systems spray heated powders at high velocities onto a substrate leading to bonding 
between powder particles as they impact the substrate surface. This allows parts to be built layer by layer 
without the large heating and cooling rates of laser-based techniques[42]. Finally, wire feed systems use metal 
wires as feedstock and can use either electric- or plasma-based welding arcs to melt the wire and build a part 
layer by layer[43-46]. AM of multiple elemental feedstock powders or wires offers the capability to build large 
compositional libraries at bulk length scales. Furthermore, careful control of the printing parameters during 
AM, such as laser power and scan speed, allows for tailoring the cooling rates and resulting solidification 
microstructures to expand the material development space.

In order to rapidly discover new HEAs with desirable properties, researchers need to utilize an efficient 
workflow to leverage the strengths of various design and characterization techniques. Figure 1 illustrates a 
typical protocol for high-throughput development of HEAs. First, the elements of interest are selected based 
on their fundamental properties and interactions, which are fed into a high-throughput computational 
method like machine learning, molecular dynamics, CALculation of PHAse Diagram (CALPHAD), or first-
principles calculations. These computational methods can then predict the bulk materials’ phase formation, 
microstructure, and properties for initial screening of potential compositions of interest. Subsequently, 
high-throughput manufacturing can be used to fabricate the vast material library and high-throughput 
materials characterization enables rapid measurements of the material properties. This review focuses on 
high-throughput computational techniques, synthesis methods, and characterization studies that produce 
and analyze alloys with reasonable cooling rates at bulk scale. First, this review explores the high-throughput 
computational methods that can easily identify the potential compositions that show promising properties 
for structural or functional applications. Then, it discusses the high-throughput manufacturing of bulk 
compositional libraries encompassing a wide range of potentially interesting alloys by AM. The final section 
of this review describes some high-throughput characterization techniques to accelerate screening of 
multicomponent metal alloys. This combination of high-throughput methods offers a guideline for 
researchers to discover new alloys rapidly and efficiently.

OVERVIEW OF HEAS
Definition of HEAs
There currently exist two well-accepted definitions of HEAs. The first one, referred to as the “compositional 
definition”, states that HEAs are alloys with multiple principal elements (at least 5) where each principal 
element makes up 5 at. % to 35 at. % of the overall composition[4,48]. The most commonly studied HEA is the 
Cantor alloy system which contains equiatomic CoCrFeNiMn, a prime example of this definition[2,3]. 
Figure 2A illustrates this high-entropy region within a ternary phase diagram, with the center of the phase 
diagram covered by the high-entropy region[49]. It should be noted that the edges of the phase diagram in 
Figure 2A may contain two or more elements to match the composition definition. Additionally, minor 
elements can be added to a base HEA system to tune its properties further[50].
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Figure 1. Schematic illustration of a typical protocol for high-throughput development of HEAs. (A) Selection of elements for a
prospective alloy system; (B) high-throughput computational methods are used to select a range of promising compositions that can be
explored experimentally; (C) high-throughput manufacturing and characterization of the promising compositions selected via
computation to determine the target composition. The lower illustration in (C) is quoted with permission from Borkar et al.[47], copyright 
2016, Elsevier. HEA: high-entropy alloy.

Figure 2. (A) Schematic illustration of the composition space of conventional alloys, equiatomic HEAs, and non-equiatomic HEAs.
This figure is quoted with permission from Li et al.[49]; (B) ashby chart of the yield strength vs. fracture toughness of many material
groups showing high/medium entropy alloys have excellent damage tolerance, adapted from George et al.[5], copyright 2019, Springer
Nature. HEA: High-entropy alloy.

The second widely accepted definition is based on the mixing entropy of an alloy system, assuming an ideal 
random solution state. The mixing entropy is calculated as  where R is the ideal gas 
constant, n is the number of principal elements, and xi is the atomic fraction of the ith element[48]. Yeh et al. 
separated the alloy design space into three regimes where a low entropy alloy has ΔSmix  < 0.69R, a medium 
entropy alloy has 0.69R  < ΔSmix  < 1.61R and a HEA has 1.61R  < ΔSmix

[51]. It should be noted that the 
definition of mixing entropy above includes the assumption that the random solution state is defined as the 
liquid state or a high-temperature solid solution state such that the atoms have enough energy to maintain 
completely random configurations[51]. However, it has been pointed out by Miracle et al. that the above 
threshold for HEAs would exclude certain non-equiatomic alloys with five principal elements, as 
calculations show that such alloys exhibit ΔSmix  < 1.61R[48]. Miracle et al. also pointed out that others have 
suggested using a threshold of 1.36R  < ΔSmix which would include the alloys that were excluded by the 
threshold proposed by Yeh et al., making the entropy definition more consistent with the principal element 
definition[48].
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Four core effects
Despite their relatively short history, HEAs have already shown great potential for practical applications. 
Their properties are already competitive with and even exceed those of state-of-the-art materials. This 
potential is highlighted in Figure 2B, which illustrates the exceptional combination of high toughness and 
yield strength of HEAs compared to traditional structural materials[5]. The origin of these outstanding 
properties is often attributed to four core effects associated with HEAs: the high entropy effect, severe lattice 
distortion, sluggish diffusion, and cocktail effect[48]. Figure 3 presents a schematic illustration of the four 
core effects associated with HEAs. Each of these effects contributes to the unique properties observed in 
HEAs, and these contributions will be discussed below.

High entropy effect
Traditional alloying strategies suggest that alloys with multi-principal elements form multi-phase, brittle 
intermetallic systems[51]. However, many works on HEAs show they could achieve metastable and stable 
single-phase solid solutions[53-55]. Even in HEAs that show multiple phases, the number of phases is much 
lower than the maximum number predicted by the Gibbs phase rule[56-58]. These results suggest that the high 
mixing entropy leads to increased mutual solubility of elements in HEA systems. The effect of high mixing 
entropy is described by the equation for Gibbs free energy of formation, which implies that phases with high 
entropy will have a lower Gibbs free energy and thus be more stable[59]. Thus, the high mixing entropy aids 
in stabilizing single-phase solid solutions as long as this contribution overcomes the enthalpy of formation 
of possible intermetallic phases, especially at elevated temperatures. Additionally, this relationship also 
implies that the contribution of the mixing entropy to the Gibbs free energy decreases at lower temperatures 
and suggests that HEAs in the form of solid solutions at high temperatures may become metastable and 
decompose at low temperatures. For example, Stepanov et al. showed that Cantor alloy exhibits a typical 
single-phase face-centered cubic (FCC) structure upon quenching; however, it can decompose with the 
precipitation of a secondary Cr-rich σ-phase after prolonged annealing at 600 °C[60]. This representative 
finding again underscores the importance of processing history in the phase selection of HEAs, which will 
be discussed in later sections.

Sever lattice distortion
In HEA systems, various atoms with different atomic sizes lead to varying bond configurations and local 
lattice energies. These bond configurations create a high lattice distortion within the crystal structure[61,62]. 
The severe lattice distortion has been experimentally confirmed in many HEA systems via X-ray diffraction 
(XRD), neutron diffraction, and TEM[62-66]. Such severe lattice distortion leads to more diffuse scattering 
through the lattice and causes the broadening of diffraction peaks with a decrease in the peak intensities 
compared to traditional dilute alloy systems. The increase in lattice distortion also impedes the motion of 
dislocations through the matrix, which leads to solid solution strengthening. Traditional solid solution 
strengthening models typically involve the contributions of solute atoms to a matrix of solvent atoms. Still, 
these models are challenging to apply to HEAs as the solvent and solute atoms cannot be clearly 
distinguished[59]. To that end, new solid solution hardening models have been developed by accounting for 
the lattice and shear modulus distortion in the local environment near each constituent atom[61,67]. The 
lattice distortion within HEA systems has also been shown to correlate strongly with the stability of various 
phases. For example, single-phase solid solutions tend to be more stable in systems with low lattice 
distortions. In contrast, intermetallic and multi-phase structures are more likely to form in systems with 
high lattice distortions. This effect can sometimes outweigh the effect of high configurational entropy in 
phase selection[55,68,69].
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Figure 3. Schematic illustration of properties of HEAs. This figure is quoted with permission from Li et al.[52], copyright 2021, John Wiley 
and Sons. HEA: High-entropy alloy.

Sluggish diffusion
Diffusion through HEAs can be much slower than diffusion in conventional alloys. Many researchers have 
investigated the elemental diffusion in HEA systems and have found that the diffusivities are often much 
lower than those in binary or dilute alloy systems[70-72]. This sluggish diffusion can improve the stability of 
solid solution phases as harmful intermetallic phases can be largely suppressed. Intermetallic phases can 
only form under non-polymorphic solidification conditions, which require long-range diffusion. 
Additionally, metastable solid solutions form under polymorphic crystallization conditions, which only 
require topological atomic rearrangements on the atomic length scale[23]. Thus, the sluggish diffusion in 
HEAs suppresses the long-range diffusion that would lead to the formation of brittle intermetallic phases 
and instead promotes polymorphic crystallization to form solid solutions. Additionally, the coarsening of 
grains can be inhibited due to sluggish diffusion, leading to improved thermal stability and 
thermomechanical performance at elevated temperatures[73-75].

Cocktail effect
Dr. Ranganathan first proposed the cocktail effect to describe the synergistic nature of compositionally 
complex alloys[76]. This effect describes the unexpected properties observed in HEAs, bulk metallic glasses, 
and super-elastic and super-plastic metals (also called “gum” metals)[48]. Unlike the other effects described 
earlier, the cocktail effect does not predict the expected properties of HEAs. Still, it serves as a reminder that 
certain elemental combinations can achieve synergistic effects that are not predicted from the base 
constituent elements.

HIGH-THROUGHPUT COMPUTATIONAL METHODS TO DESIGN HEAS
As previously mentioned, the compositional space opened by the concept of HEAs is vast. This design space 
is too large to explore through traditional trial-and-error means. Thus, it is of significant interest to identify 
promising compositions and phases via high-throughput computational methods[77]. These computational 
methods include machine learning, first-principles calculations, molecular dynamics, and CALPHAD. The 
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field of high-throughput computational studies is extremely wide and covers too many topics to discuss 
succinctly. As such, the discussion of computational methods is limited to studies focused on phase 
formation and mechanical properties of HEAs to illustrate the potential advantages and disadvantages of 
the previously mentioned methods.

Machine learning
Machine learning (ML) is a powerful computational tool to rapidly explore vast design space through 
statistical methods[78]. These methods include artificial neural networks (ANN), support vector machines 
(SVM), and decision trees, which can often be used to quantitatively predict material properties such as 
hardness[79] or to predict qualitative factors such as the expected phases of a given alloy composition[80]. Over 
the past decade, as computational power has continued to increase, there has been an explosion in the 
topics of machine learning and big data[81]. Machine learning methods have an extremely high potential to 
handle large databases due to their statistical nature. This section includes examples from literature of 
various ML techniques and methods that are representative of the state-of-the-art results achieved in the 
field.

ML techniques are capable of predicting the structure and properties of various alloys in reasonably short 
periods. However, this predictive capability is largely dependent on the size and quality of the training data, 
a thorough consideration of appropriate input variables (also known as feature engineering), and the choice 
of ML model[82]. Typically robust databases of training data only exist for materials that have been well 
studied, such as the Ni-Ti-Hf shape memory alloy (SMA) systems[83]. For example, Liu et al. developed 
Gaussian process regression (GPR) models to estimate thermal parameters related to the martensite and 
austenite finish temperatures in a Ni-Ti-Hf alloy system to design a SMA[83]. The predicted parameters were 
described as     = (Af  + Mf)/2, and ΔT  = Af  - Mf, where Af  and Mf  are  the  austenite  finish  and  martensite 

finish temperatures, respectively. The value of  represents the average of the austenite finish and 
martensite finish temperatures and thus illustrates the temperature region where an SMA is expected to 
transform. Tuning this range can be useful in aerospace applications where autonomous actuation can be 
induced due to the temperature difference of the surroundings at take-off (typically 275 K) and cruising 
(usually 215 K)[83]. On the other hand, ΔT represents the total temperature range of  the austenite  finish and 
martensite finish temperatures, indicating the hysteresis during the transformation. A lowΔT  can  lead to 
more efficient actuation when the martensitic and austenitic phase transformations are activated.

As previously mentioned, an essential aspect of building an ML model is the determination of the input 
variables that will most accurately predict the output variables. Typically, adding more input variables can 
improve the model’s accuracy, as variables that do not correlate strongly with the output variables will have 
to be emphasized less through training sets. However, using too many input variables increases the 
dimensionality of the model, making it computationally expensive to execute. Additionally, the solution 
space formed by many input variables can often contain local minima that require many iterations to 
escape. For this reason, Liu et al. initially started with 48 input variables based on the relevance of those 
variables to the physical processes involved in martensitic and austenitic phase transformations[83]. These 
chosen features included fundamental atomic properties (e.g., atomic radius, atomic number, relative 
atomic mass, etc.), thermal properties (e.g., melting point, boiling point, the heat of fusion, thermal 
conductivity, etc.), overall alloy compositions, electronic configurations, and process conditions (e.g., 
solution temperature, aging temperature, etc.). This variable space was refined via mutual information (MI) 
and Pearson correlation (PC). MI indicates the dependency of the output variable on the input variables, 
which ensures that only the most impactful variables are used. In contrast, the PC between the two variables 
illustrates their correlations. Input variables strongly correlated to each other produce redundant 
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information and can thus be disregarded. Using this method, Liu et al. built a model that explored a 4500-
point compositional space in which seven compositions were identified that exhibit 230 <  < 260 and the 
lowest ΔT  values. These results illustrate ML models’ capabilities to selectively tune a material system’s 
properties using robust training datasets from previous studies and carefully selected input variables.

Most ML techniques are black-box ML with limited interpretability, which can hinder the development of 
chemical insight into the origin of preferable properties. Recently, a new method to implement ML 
described as a ML-based alloy design system (MADS) has been developed to predict alloys and maximize 
the hardness within an Al-Co-Cr-Cu-Fe-Ni-V alloy system[79]. This method is schematically illustrated in 
Figure 4A and consists of four steps. First, a database containing alloy compositions within the selected 
system and their measured hardness is established. Then a set of 142 features to model the hardness is 
established and refined to remove all except the five most crucial factors. This refinement step is important 
to reduce the computational cost and redundancy of information within the ML model. A model utilizing 
the most critical parameters is constructed and then executed to optimize the composition toward 
maximum hardness. Finally, the designed alloy compositions are experimentally fabricated and tested to 
verify the predicted properties. The five features selected were the average deviation of the atomic weight, 
the average deviation of the period column in the periodic table, the average deviation of the specific 
volume, the valance electron concentration, and the mean melting point for the alloy. After exploring the 
presented alloy system, the optimized composition was determined to be Co18Cr7Fe35Ni5V35 which was 
predicted to have a hardness of 1,002 HV and was experimentally verified to show a hardness of 1,148 HV, 
showing the prediction is in good agreement with the experimental value. This new HEA exhibits about 
25% greater hardness than the maximum hardness in the original training dataset. The hardness 
improvement illustrates ML methods’ ability to take previous experimental data and extrapolate it to 
discover new compositions with better properties than previously achieved.

Artificial neural networks (ANNs) are common ML methods that use a layered architecture of input, 
hidden, and output nodes trained to predict useful material properties such as phase formation, hardness, 
and yield strength. The input layer consists of multiple nodes which hold values of the parameters that are 
known either a priori or from databases. Then each node in the 1st hidden layer is calculated by a weighted 
sum of the nodes from the input layer. Nodes in subsequent hidden layers are calculated by a weighted sum 
of the nodes from the previous layer. Finally, the output layer consists of the target/output parameters 
calculated from a weighted sum of the nodes from the hidden layer immediately preceding the output layer. 
These parameters can include the predicted properties of the studied alloys, such as the hardness of a 
material, the elastic properties, phase prediction classifier etc. The weights for every calculated sum are 
initialized as a best guess and then adjusted to minimize the error between the predicted and experimental 
values for training data. Once the error is minimized, the adjusted weights can then be used in conjunction 
with input data for new alloy systems outside of the training set to predict properties of interest[81,84,85].

Notably, Nassar et al. used two different ANNs (NN1 and NN2) to predict the phase formation with 37 
possible elements in the alloy composition[86]. NN1 had only composition data as its inputs and, thus, only 
37 input nodes. NN2 used composition data and some calculated thermodynamic properties of each 
composition, such as the entropy of mixing, enthalpy of mixing, valence electron concentration (VEC), 
atomic radius difference, and Pauling electronegativity difference. The output node values were a binary of 
0 or 1, where 1 indicates the formation of a single-phase solid solution (SS) or a solid solution plus 
intermetallic (SS + IM). At the same time, 0 predicts a primary IM phase or IM + amorphous phase 
structure. After training, the neural networks could accurately predict the type of microstructure given an 
arbitrary composition with 92% and 90% accuracy for NN1 and NN2, respectively. The improved accuracy 
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Figure 4. (A) Schematic diagram of machine learning-based approach to design new HEAs. This figure is quoted with permission
from Yang et al.[79], copyright 2022, Elsevier; (B) schematic illustration of artificial neural  network  method,  adapted  from  Risal 
et al.[87], copyright 2021, Elsevier; (C) actual versus predicted misfit and yield strength for 10-fold cross-validation of machine 
learning models, insets show the error distribution around the mean. This figure is quoted with permission from Vazquez[90], 
copyright 2022, Elsevier; (D) elemental content distribution of predicted eutectic HEAs, adapted from Wu et al.[6], copyright 
2020, Elsevier. HEA: High-entropy alloy.

of NN1 is surprising, given that it only used the elemental composition as input, while NN2 included 
features related to thermodynamic properties.

Another work that shows consistent results with NN2 is that of Risal et al., where 598 alloy compositions 
extracted from the literature were used as the training set, and the input parameters included the VEC, 
melting temperature of the alloy, enthalpy of fusion and variance of atomic radius[87]. The basic structure of 
the neural network used in their work is illustrated in Figure 4B. Interestingly, they achieved a prediction 
accuracy of 90.66%, slightly lower than that of NN1 and almost the same as NN2 in Nassar et al.’s work[86]. 
This result can be rationalized by the fact that NN typically only elucidates the correlation between 
parameters and thus may not always reveal the underlying physical connection between the input and 
output variables. Many examples exist in the literature on NNs, providing valuable predictions for HEAs’ 
microstructure type and material properties. However, further study is needed to understand the 
mechanisms that lead to these valuable properties.

A common criticism of ML models is that they often lack interpretability despite their high predictive 
accuracy[88,89]. Sure-independence screening and sparsifying operator (SISSO) is an example of an ML 
method that can produce easy-to-understand relationships between the input and output variables. SISSO 
can output these relationships as analytical equations such that the dependence of the output variables on 
each input variable can be easily understood. Vazquez et al. recently used SISSO to predict the mechanical 
properties of alloys within a Ta-W-Nb-Mo-V refractory HEA (RHEA) system[90]. This method functions 
very differently from other ML algorithms as most methods attempt to filter the possible valuable features to 
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build an input space that is computationally efficient to analyze, as shown in previous examples. In the case 
of SISSO, the features are compiled as mathematical functions (descriptors) by applying mathematical 
operators to arbitrary groupings of the features. The descriptor space is then narrowed using sure 
independence screening (SIS) to identify descriptors that most strongly correlate to the target properties. 
Then, the sparsifying operator (SO) produces a linear model of the descriptors that best predicts the target 
property[91]. In this way, SISSO can produce models which converge even if the initial feature space is larger 
than the data set. Additionally, Vazquez et al. point out that SISSO is computationally inexpensive 
compared to typical ab-initio calculation methods like DFT[90]. Figure 4C shows the prediction of misfit 
volume and yield strength vs. the actual values calculated by DFT. The accuracy of the prediction of the 
misfit volume suggests that SISSO can reliably predict the mechanical properties of RHEA systems while 
remaining computationally much cheaper than DFT calculations. While the yield strength prediction 
overall shows a very low root mean squared error (RMSE), the R2 value is quite large, which arises due to 
limited experimental data and a lack of documentation of the processing conditions related to many 
compositions in the yield strength database. This result highlights the need for larger, more robust, and 
more detailed databases of experimental HEA data to improve the training quality of future ML models.

As previously mentioned, ML models can predict phase formation using solely composition information. 
This concept is taken even further by Wu et al., who used a NN to study the effect of each element in a HEA 
system on the phase to predict the primary phase fraction after casting[6]. With this technique, they could 
design near-eutectic compositions within the Al-Co-Cr-Fe-Ni system[6]. The database[6] to train the model 
was prepared using experimental data from the literature, and CALPHAD calculations were performed 
using the nickel-based superalloy database TTNI8. Wu et al. chose to only use the elemental compositions 
as the input nodes and the primary phase fraction as the output node. The primary phase fraction was 
defined as 0 for eutectic compositions. In contrast, hyper- and hypo-eutectic compositions showed a 
positive value when FCC was predicted as the primary phase and a negative value when body-centered 
cubic (BCC) was predicted as the primary. After training and executing the NN, the authors identified 400 
near-eutectic compositions and correlated them with the atomic fraction of each element. This plot is 
shown in Figure 4D, where it can be seen that the majority of the near-eutectic compositions fall into the 
region when Al content (at. %) is between 15% and 20% and the Cr content is below 25%. The other 
elements do not seem to significantly affect the formation of eutectic structures, which suggests that the Al 
and Cr contents are most crucial for eutectic structure formation in this alloy system. Thus, the NN was first 
used to predict the amount of Al that needed to be added to an equiatomic CoFeNi alloy to form a eutectic 
microstructure and how much Cr could be added to maintain that microstructure. Finally, the ratios of the 
other elements were further adjusted to predict a near-eutectic microstructure. The best composition based 
on the criteria of stable eutectic microstructure was Ni32Co30Fe10Cr10Al18. This work presents the potential of 
ML models to refine a huge design space containing thousands of unique compositions down to a single 
optimized composition that can then be experimentally studied in detail.

While ML techniques such as those discussed in this section can readily analyze extremely large data sets, 
their accuracy depends heavily on the robustness and comprehensive nature of experimentally verified 
training sets[77]. There is currently a severe lack of such high-fidelity datasets to accurately train ML models 
to ensure ML can accurately predict the properties of future alloy systems[92]. In the meantime, as these 
databases expand, the scientific community is also implementing other computational methods that do not 
rely so heavily on previous results to predict future alloying behavior. These methods include first-principles 
calculations, molecular dynamics (MD), and CALPHAD calculations and will be discussed in the following 
sections.
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First-principles calculations
First-principles calculations (also called ab-initio) are computational methods that rely purely on 
fundamental quantum physical laws without additional assumptions[93]. The literature on first-principles 
methods is vast and presents a comprehensive overview beyond the scope of this work. This section will 
provide a sufficiently broad outline of the general concepts, advantages and disadvantages of these 
techniques pertinent to combinatorial studies of HEAs[93]. The main strength of these methods is that they 
do not require previous empirical observations of the predicted properties, and thus very little prior work is 
needed to implement them[94]. The most common practical implementation of ab-initio calculations is 
density functional theory (DFT) in the Khon-Sham formalism[94,95]. This method maps the quantum-
mechanical many-electron Schrodinger equation onto an effective one-electron problem using electron 
density as a key variable. This mapping also requires the use of the exchange-correlation functional of the 
electron density which is not known for most systems and must be approximated either with the local 
density approximation (LDA)[96,97] or the generalized gradient approximation (GGA)[98-100]. Once these 
fundamental functions are calculated, the overall energy of the system can be calculated and used to 
determine the energy of formation for the possible phases of the system. This result can help researchers 
determine the stability of different phases to determine which phases are likely to form. It should be noted 
that in its initial state, DFT is a ground state theory and thus only provides the ground state energy at 0 K 
for a given configuration of atoms[94]. These results can be combined with thermodynamic concepts and 
statistical sampling techniques to bridge the gap between 0 K to a finite temperature[94].

Despite the strong predictive power of ab-initio calculations, they often suffer from high computational 
costs, which can significantly decrease the ability of researchers to explore the vast design space that is 
necessary to build accurate property maps for HEAs. To overcome this challenge, many researchers either 
combine first-principle calculations with more high-throughput methods like ML[101] or use new algorithms 
and models to improve the computational efficiency to the point where first-principles calculations can be 
used to explore hundreds to thousands of compositions in relatively short periods. Examples of such works 
will be discussed in this section.

One approach that is considered highly promising toward high fidelity and high throughput computations 
of HEAs is based on the small set of ordered structures (SSOS) containing several atoms[92]. This method 
works well to predict properties of equiatomic configurations of HEAs but loses computational efficiency 
when employed for non-equiatomic compositions. Sorkin et al. implemented a preselected set of small 
ordered structures (PSSOS) approach to address the issue of computational efficiency and used it to 
estimate the stability of BCC and FCC phases within the Al-Co-Cr-Fe-Ni system[92]. Traditionally the SSOS 
method uses a set of small, ordered structures (SOS) to model a HEA with a given composition. First, 
symmetry-unique SOS are constructed using non-conventional, non-primitive unit cells of cubic lattices. 
Each SOS has a unique pair correlation function. The complete set of possible SOS solutions is constructed 
and optimized using DFT. Then a small subset of SOS is selected by matching the pair correlation function 
of the target composition as a linear combination of the pair correlation functions of the selected SOS. This 
small set of SOS constitutes the solution of the SSOS. Screening the entire SOS solution space is impractical 
when studying HEAs, so the authors restricted their SOS space to those containing 5, 6, or 7 atoms. They 
selected the most frequent SOS structures in the solution set to further reduce the SOS space and only 
optimized those using DFT. This selection decreases the original SOS from over 50,000 sets to 1,500.

Through the above-mentioned process, the authors can predict the formation energy and density of the 
alloy system’s BCC and FCC phases of 8,801 compositions. This result is exemplified in Figure 5A, which 
shows a plot of the formation energy and density of the BCC phase with varying Al and Cr compositions. 
Here the marker color represents the Ni content, and the marker size represents the Co content. It can be 
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Figure 5. (A) Predicted formation energy and density per atom of  BCC  lattice  structure  in  AlCoCrFeNi  system  calculated  via  the
SSOS method as a function of Al and Cr content, the color denotes the Ni content, and marker size denotes the Co content. This
figure is quoted with permission from Sorkin et al.[92]; (B) plot of predicted elastic constants (C 11, C 12, C44), Poisson ratio, and Bulk
modulus to shear modulus ratio calculated with the VCA model as a function of Ti in the TixVNbMo system. This figure is quotedwith

permission from Chen[104]. BCC: Body-centered cubic; SSOS: small set of ordered structures.

seen that the addition of Al leads to a substantial decrease in the formation energy of the BCC phase. After
calculating the same parameters for the FCC phase, the authors found that the difference in the formation
energies of BCC and FCC (ΔEBCC→FCC  = EBCC - EFCC) goes from positive to  negative  as  the Al content
increases, which is consistent with DFT calculations of the system. These results illustrate that the PSSOS
method provides a new opportunity to achieve similar accuracy predictions of phase formations as DFT but
with much cheaper computational costs, making this method highly suitable for high-throughput
exploration of HEA space.

Virtual crystal approximation (VCA) serves as a computationally efficient alternative to more complex first-
principles methods like special quasirandom structure (SQS) and similar local atomic environment (SLAE).
Normally, DFT methods must use approximations to study highly disordered systems[102]. The
approximation is carried out by constructing a supercell that contains multiple disordered configurations
with artificially imposed boundary conditions[102]. However, such calculations require large supercells that
are computationally taxing to utilize in DFT calculations. VCA deals with this issue using a pseudo-
potential that averages the properties of each atom in different positions in the lattice cell. Ramer and Rappe
previously investigated multiple methods to produce the averaged pseudo-potential such as averaging the
pseudo-potentials for each atom within the lattice and averaging ‘all-electron results’[103]. It was found that
the averaging of ‘all-electron results’ provided the most accurate result when compared to experiments. This
method involved averaging the Coulombic potentials and charge densities of the constituent atoms and
then using these values to generate wavefunctions that are self-consistent solutions to the Kohn-Sham
equation[103].
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The computational efficiency of VCA makes it uniquely suited to explore HEA systems, as shown by Chen 
et al., who used the VCA method to explore the effect of Ti within the TixVNbMo system[104]. VCA only 
requires the construction and analysis of a primitive cell, while other DFT methods require the use of a 
supercell as previously discussed, making them much more difficult to calculate. Since VCA has previously 
achieved reliable results for studying RHEA systems, Chen et al. proposed that it is reasonable to implement 
it to analyze the mechanical properties of this RHEA. Figure 5B illustrates the effect of Ti content on the 
lattice elastic constants and elastic properties [Poisson ratio and ratio of the bulk modulus to the shear 
modulus (B/G)]. Looking at the lattice elastic constants, it is clear that C12 > C44 for all compositions, and the 
Cauchy pressure (Cp = C12 - C44) is positive for all the compositions. This suggests that the nature of the 
bonding for all these compositions remains metallic. The Born-Huang mechanical stability criterion is also 
met (C11 - C12 > 0, C11 + 2C12 > 0 and C44 > 0), which indicates that the BCC crystal structure remains stable for 
these compositions. The Poisson ratio and B/G ratio seem to both increase with increasing Ti. Both of these 
values have been suggested to correlate well with the ductility of a material, implying that higher Ti content 
improves ductility. Chen et al. also indicated that Young’s modulus (and hence yield strength) decreases 
with increasing Ti. To verify the accuracy of these results, the authors compared the properties of the 
equiatomic composition TiVNbMo to experimental values from literature and found a reasonable 
consistency.

New fist-principles methods such as Lederer-Toher-Vecchio-Curtarolo (LTVC) have been established over 
the last five years to provide novel approaches towards calculating solid solution phase stability in HEAs in 
order to guide future alloy discovery[105]. This method incorporates energy calculations into a mean-field 
statistical mechanics model, which uses order parameters to predict the transition temperature of a HEA 
system into a solid solution phase. The authors lay out the development of their protocol in 3 stages: (i) The 
automatic flow for material discovery (AFLOW)[106] repositories are used to train cluster expansion (CE) 
models[107] within the Alloy Theoretic Automated Toolkit (ATAT)[108] and estimate zero temperature energy 
configuration of atomic configurations, which are derivative structures from either FCC or BCC lattices, on 
which HEAs show solid solution formability; (ii) Then, the estimated atomic configurations are entered into 
a mean field statistical mechanical model called the generalized quasi-chemical approximation (GQCA)[109]; 
(iii) Finally, an order parameter is proposed by calculating the evolution of the probability of finding certain 
ordered configurations of atoms within the lattice.

To test this new method, the authors verified its accuracy by comparing its predictions to Monte Carlo 
simulations and experimental data for binary alloys. They also compared CALPHAD predictions via 
Thermo-calc for ternary alloys and experimental data from the literature. Once the method was considered 
reliable and accurate, the authors used it to predict the solid solution formation in many different alloys. 
They compared their predictions to the well-known empirical rules that usually inform the design of HEAs 
to form solid solutions. Figure 6A and B show the plots of the electronegativity and atomic size differences, 
as well as the VEC and atomic size differences. The large scatter of the green data points suggests that the 
LTVC method can be used to predict the formation of solid solutions beyond what is typically expected by 
the usual empirical rules. This study suggests that LTVC shows excellent potential to efficiently explore a 
large compositional space and discover new alloys that would not be considered under previous knowledge.

As HEAs have been increasingly studied over the past decade, certain empirical rules have been established 
that correlate well with the observed properties[110]. In the past, it has been suggested that these empirical 
rules can provide a guideline surrounding the design of HEAs with desirable properties, such as the 
formation of single-phase solid solutions[111]. However, certain empirical rules, such as the VEC threshold 
for the stability of FCC and BCC solid solutions, have failed to maintain predictive accuracy over the 
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Figure 6. LTVC model predictions for quaternary and quinary alloys (green - predicted SS, blue - predicted SS and verified by 
experiments) plotted as a function of (A) the electronegativity difference and the atomic size difference; (B) the VEC and the atomic 
size difference. These figures are quoted with permission from Lederer et al.[105], copyright 2018, Elsevier. The effectiveness of the VEC 
rule previously used and the proposed rule from the work of Yang et al. in the Al-Co-Cr-Fe-Ni system[112], copyright 2022, Elsevier; (C) 
BCC structure (D) FCC structure. These figures are quoted with permission from Yang et al.[112], copyright 2022, Elsevier. BCC: body-
centered cubic; FCC: face-centered cubic; LTVC: Lederer-Toher-Vecchio-Curtarolo; VEC: valence electron concentration; SS: solid 
solution.

years[112]. Yang et al. revisited this rule using special quasirandom structures (SQS) to investigate 180 
compositions within the Al-Co-Cr-Fe-Ni alloy system[112]. The predictions of the phase selection between 
FCC and BCC were then compared to previous predictions made using the VEC of the alloy system. In their 
findings, Yang et al. argued that the threshold of VEC < 6.87 for the stability of the BCC phase could not 
accurately predict the phase formation in this system. The results presented by Yang et al. suggest that the 
FCC phase is stable when VEC < 8 and VEC < 5, while the BCC phase is most stable when 5 < VEC < 6.87. 
This finding reflects more accurately the trends illustrated in their work and is consistent with experimental 
data. The comparison for the accuracy of the two VEC rules is presented in Figure 6C and D, which shows 
that the new VEC rule has a superior prediction accuracy for both the BCC and FCC phases when the 
number of elemental alloy components increases from 1 to 4. It should be noted that this new rule also 
works well for quinary alloys but does not work well in predicting the dual-phase region. Further study is 
needed to produce more robust empirical rules that allow for simple rule-of-thumb predictions.

Molecular dynamics
Molecular dynamics (MD) simulations represent a powerful tool to explore and predict material properties 
of potentially useful materials before significant investments in experimental characterization are made. In 
MD simulations, the researchers typically define an MD box that outlines the boundary conditions of the 
system as well as the initial positions and velocities of each atom[113]. The ambient conditions of the 
simulated system must also be defined, such as temperature and pressure. Once it is initialized, the system is 
allowed to reach thermal equilibrium[113]. Then the microscopic trajectory of each atom is determined by 
Newton’s equations of motion depending on the potential energy functions utilized in defining the 
system[113,114]. The accuracy of simulated atom trajectory via MD simulations makes these methods well-
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suited to study the nucleation and evolution of defects such as vacancies, dislocations, grain boundaries, and 
twinning[115-117].

In the past, MD simulations have also been used to explore phase transformation, mechanical behavior, 
nucleation and crystallization processes within HEAs[118-120]. MD simulations can study much larger systems 
with faster computation times than ab-initio calculations because they use classical Newtonian mechanics 
versus the quantum mechanical interactions on which ab-initio methods are typically based. They can also 
accurately simulate non-equilibrium systems due to the rapid time scales over which a simulation is 
conducted[113]. Despite these impressive advantages, a known weakness of MD simulations is that their 
accuracies depend heavily on the accuracy of the potential energy functions used to define them. However, 
these potential energy functions must first be measured by experimentation or calculated via ab-initio 
methods, which can limit the applicability of MD simulations to novel systems that have not been studied 
before[113]. This section presents works that take advantage of the strengths of MD simulations to explore 
large composition and application spaces with relatively low computation times.

As previously discussed, many computational methods can be used to investigate and predict material 
properties, such as yield strength, hardness, and phase formation. However, MD simulation has the added 
benefit of allowing researchers to investigate deformation mechanisms within an alloy via simulation of 
atomic motion under various ambient and loading conditions[118]. This ability is especially important as it is 
very difficult and laborious to observe plastic deformation processes under experimental[118,121]. Pan et al. 
applied atomic-scale tensile MD simulations to a Fe80-xMnxCo10Cr10 alloy system to investigate 
transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) mechanisms in this 
system[121]. In this work, the atomic fraction of Mn, strain rate, and grain size were all adjusted to investigate 
each variable’s effect on the system’s deformation mechanisms[121]. Figure 7A shows a schematic illustration 
of the model where green dots represent the FCC phase and white dots denote grain boundaries. The FCC 
transforms into BCC and HCP during deformation, and this transformation was found to be most prevalent 
when x = 40. The addition of Mn also reduced the stacking fault energy, which facilitated twinning during 
deformation, leading to improved strain hardening. Interestingly the transformations and twinning 
mechanisms were suppressed for smaller nano-grain sizes, which Pan et al. attributed to the transformation 
from the intragranular evolution mechanism at larger grain sizes to the intergranular evolution mechanism 
at smaller grain sizes. This study shows the potential of MD simulations to explore compositional space and 
to provide a detailed analysis of deformation mechanisms before significant investments in experimental 
characterization.

MD simulations can be used to investigate the relationship between the stacking fault energy and 
strengthening mechanisms within an alloy system. Understanding this relationship can then provide 
guidelines for designing new HEAs with tailored properties and deformation mechanisms suited to specific 
applications[122]. Jarlov et al. performed MD simulations using the Large-scale Atomic/Molecularly 
Massively Parallel Simulator (LAMMPS) to investigate the effect of the chemical composition in the Co-Cr-
Fe-Ni alloy system on the generalized stacking fault energy (GSFE)[122]. The authors used this method to 
explore the system’s strengthening and deformation mechanisms during tensile tests. Figure 7B shows the 
simulated cell, and the planes marked as I, II, and III indicate the planes displaced during the tensile 
simulation. Based on the simulations, it was found that increasing Ni and Co contents led to an increase in 
the energy required to introduce stacking faults and deformation, while increasing Cr and Fe contents led to 
a decrease in the energy required to introduce these defects. When carrying out tensile simulations of the 
various compositions, it was found that the yield strength correlated linearly with the energy required to 
introduce intrinsic stacking faults. Thus, the strongest composition was identified as (CoCrNi)90Fe10, 
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Figure 7. (A) Constructed molecular dynamics model of Fe80-xMnxCo10Cr10 HEAs with FCC lattice structure and distribution of

elements in the model. This figure is quoted from Pan et al.[121], copyright 2022, Elsevier; (B) simulation cell used in LAMMPS to
calculate generalized stacking fault energy of the Co-Cr-Fe-Ni system. This figure is quoted with permission from Jarlov et al.[122],
copyright 2022, Elsevier; (C) elemental distribution in the Co-Cr-Ni MEA system with different compositions produced by MD
simulation. This figure is quoted with permission from Li et al.[123], copyright 2021, Elsevier. FCC: Face-centered cubic; HEA: high-
entropy alloy; MD: molecular dynamics.

achieving the highest number of deformation twins. This result illustrates the power of MD simulations to
optimize the alloy composition based on yield strength and tailoring of the simulated deformation
mechanism.

While MD simulations can be powerful tools to predict the material properties of alloys, the high
computational cost associated with these simulations makes it difficult to rapidly produce large datasets for
high-throughput studies[123]. On the other hand, ML techniques are known for their potential to quickly and
efficiently process and output huge amounts of data and thus offer a means to overcome the low data
output of MD simulations. Li et al. combined high throughput MD simulation with ML to leverage both
techniques’ strengths to explore an extensive data set and provide accurate and detailed information on the
material properties[123]. MD simulations can produce highly accurate predictions of yield strength, but the
data produced by these simulations have high dimensional input-low dimensional output characteristics.
These properties make it challenging to produce mathematical models to predict the correlation between
input factors and yield strength. On the other hand, ML techniques can produce enormous amounts of data.
Still, their accuracy requires a large and robust set of training data that experimentation cannot do. Thus, Li
et al. utilized high-throughput MD simulation to produce an extensive training data set to train an ANN
that can almost fully explore the composition space of the Co-Cr-Ni medium entropy alloy (MEA)
system[123]. Figure 7C shows examples of different MD simulation models prepared for this study. The
predictions made by the ANN were shown to be highly accurate. This work highlights the potential for high
throughput MD simulations used in tandem with ML techniques to produce vast amounts of highly
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accurate data that can efficiently identify optimal compositions within a large composition space, thereby
overcoming the inherent weakness in each technique by leveraging the strengths of the other. Applying this
method to other combinations of computational techniques may offer researchers new opportunities to
expand the computational speed, size, and accuracy of future computational studies, which can accelerate
alloy discovery far beyond the current state-of-the-art results.

The use of combining MD simulations with ML techniques was also explored by Zhang et al. to explore the
non-equiatomic compositions within the Fe-Co-Cr-Ni-Mn alloy system[124]. In this case, the deformation of
100 compositions with a single-crystal structure was simulated in three different crystallographic directions,
[100], [110], and [111]. The simulated stress-strain responses of these compositions are shown in Figure 8A.
Three different ML techniques were then used to predict further the yield stress of non-equiatomic
compositions within the alloy system. Unlike other ML tasks, the authors of this work used ML techniques
to carry out binary classification of “Good” and “Weak” yield strength rather than quantitative prediction of
yield strength. The advantage of this method is that ML programs trained with simulations of single crystals
can be used to find optimized compositions that show promise as polycrystalline structures. Typically,
polycrystalline models are much larger than single-crystal ones, which can make them more
computationally expensive[125]. By leveraging the ability of ML classification techniques and the
computational efficiency of high-throughput MD simulations of single crystals, the authors can produce
highly efficient means to rapidly identify candidates for optimized compositions of HEA space. This
technique was used again by Zhang et al. to carry out similar classification predictions for the Cu-Fe-Cr-Co-
Ni alloy system[124]. It was again shown to be highly accurate and efficient at pointing out candidates with
optimal yield strength[126]. This approach significantly refines the potential compositional space that
experimentation needs to explore.

While MD simulations are useful in exploring the compositional space of a system, they can also be used to
study material performance within other design dimensions, such as application temperature. Jian et al.
used MD simulations to study the effect of aluminum concentration, temperature, and strain rate in
amorphous AlxCoCrFeNi HEAs to study their potential as low-density structural materials[127]. Figure 8B
shows the stress-strain curves of two of the three simulated compositions ranging from 300 K to 1,200 K.
For all three compositions, the yield strength and Young’s modulus both strongly depended on the
temperature rather than the Al content. The temperature dependence of the yield strength originated from
the high migration ability of atoms at higher temperatures, especially at 1,200 K, which was above the
simulated glass transition temperature of about 1,100 K. The authors also varied the strain rate from
108-1011/s and found that the yield strength and Young’s modulus increased with increasing the strain rate.
The authors explained that a higher strain rate leads to a larger free volume but that at high strain rates, the
times required for free volume rearrangement and atomic diffusion increase greatly. This relationship
between free volume and atomic diffusion causes the effective free volume conducive to atomic migration to
decrease. Thus, the atomic motion is impeded, which leads to increased strength. This study highlights the
flexibility of MD simulations to explore compositional space and various ambient and application
conditions that can provide a more holistic understanding of material performance.

CALPHAD calculations
Phase diagrams are geometric representations of alloy systems under thermal equilibrium and typically
denote the boundaries of composition and temperature where phase transformations are expected to
occur[14]. These diagrams form the basis for studying solidification, crystal growth, and solid-solid phase
transformations. Since the 1970s, the calculation of phase diagrams has become an integral part of alloy
design, specifically through CALPHAD technology[14]. The technique relies on the minimization of the total
Gibbs free energy of the system using the temperature, pressure, overall composition, and Gibbs energy
function stored in databases[128].
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Figure 8. (A) MD simulated stress-strain response of single-crystal Fe-Co-Cr-Ni HEA system with different compositions (all
elements are adjusted from 5 at. % to 35 at. %) loaded in different directions. This figure is quoted with permission from Zhang
et al.[124], copyright 2021, Elsevier; (B) MD simulated stress-strain response of amorphous AlxCoCrFeNi (x = 1.0 and x = 2.0)
HEAs at different temperatures. This figure is quoted with permission from Jiang et al.[127], copyright 2022, Elsevier. HEA: High-
entropy alloy; MD: molecular dynamics.

The selection of the appropriate database is crucial for accurate calculations as the database should at least
cover all the constituent binary and ternary sub-systems to provide accurate phase predictions for
complicated alloy systems[129]. It should be noted that a current bottleneck in the field is the lack of
comprehensive thermodynamic databases which cover large compositional and temperature spaces. Future
experimental works are needed to help fill this gap. Recently, even first principle calculations have shown
promise to build such databases with less effort than required for experimental characterization[129]. The
current section provides examples of works that take advantage of the computational efficiency of
CALPHAD methods to rapidly explore huge compositional spaces, which can reduce the large
compositional spaces to ones that can be feasibly explored by experimentation.

One of the pioneering works to tackle the issue of combinatorial high-throughput studies using CALPHAD
is carried out by Senkov et al.[130]. In this study, the authors used 9 different CALPHAD databases to
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calculate every equiatomic alloy containing 3-6 elements out of 26 elements[130]. This calculation resulted in
screening 130,000 different alloy compositions to predict the phases at both their melting temperatures and
600 °C. Interestingly, Senkov et al. found that the proportion of alloys with solid solution (SS)
microstructures decreased as the number of components increased, as seen in Figure 9A[130]. This
contradicts the general notion that increasing the number of elements would increase the configurational
entropy and thus promote SS formation. In order to investigate the cause of this discrepancy, Senkov et al.
calculated the entropy of mixing (ΔSmix) and enthalpy of mixing (ΔHmix) for each composition which
describes the Gibbs free energy for SS phases. They also calculated the entropy of formation (ΔSf) and
enthalpy of formation (ΔHf) for the intermetallic (IM) phases in each composition using CALPHAD. Then
they used the entropy and enthalpy change of the different predicted phases to calculate the minimized
Gibbs free energy to obtain quantitative predictions of the phase formation within each composition and
compare them to reported phases in the experimental literature.

Through the previous analysis, they explained that the configurational entropy increases with ln(N), where
N is the number of elements, while the possible binary interactions increase with (N/2)∙(N-1). Thus, the
number of binary interactions increases much faster than the configurational entropy, which increases the
likelihood that an IM phase with a highly negative enthalpy of formation exists within a HEA system. Thus,
the Gibbs free energy of possible IM phases decreases more rapidly than that of solid solution solutions as
the number of elements increases. This work highlights the ability of large computational datasets to allow
us to re-evaluate our fundamental assumptions of alloy design by providing large statistical datasets that
reveal trends that may not be obvious from experimental testing.

Although many HEAs have been reported to form SS phases at lower temperatures, these are often
metastable due to the inherent sluggish diffusion in HEAs. The fast computational speed of CALPHAD
methods allows researchers to rapidly screen the composition phase for compositions that maintain a SS as
the stable equilibrium phase even at low temperatures. Such methods have been utilized to predict the stable
phases of 3 million compositions in 4 different alloy systems of AlCrMnNbTiV, AlCrMoNbTiV, AlCrFeTiV
and AlCrMnMoTi[131]. This process was enabled by running approximately 100 calculations in parallel on
single CPU cores in a computing cluster. This study aimed to identify various compositions that form
single-phase solid solutions (SPSS) at low temperatures and then design compositions that are likely to
exhibit good oxidation resistance. By incrementally adjusting the contents of various elements, the authors
were able to investigate the effect of each element on the stability of SPSS. The alloy systems shown to have
the most significant number of SPSS compositions were the AlCrMnNbTiV and AlCrMoNbTiV systems.
Figure 9B shows the 2D projection of the compositional space explored in the AlCrMoNbTiV, where each
red dot represents a composition with a predicted single-phase BCC microstructure. It was found that
placing constraints to limit the Al and Cr contents can improve SPSS formation, as seen in the top 2 rows of
Figure 9B but lowers the oxidation resistance. Thus, the optimal compositions found near the center of the
high SPSS formation region and still maintaining a high oxidation resistance were Al25Cr7Mn25Nb1Ti1V41 or
Al21Cr7Mn21Nb1Ti9V41. This study highlights the ability of high throughput CALPHAD methods to reduce a
massive design space of over 3 million compositions down to a handful of promising candidates that can
feasibly be explored even using conventional manufacturing methods.

The equiatomic Cantor alloy (CoCrFeMnNi) has been studied extensively in the past, including its
deformation mechanism, phase formation, and mechanical properties at varying temperatures[132-134].
However, the non-equiatomic compositions have not been explored as deeply[135]. Assuming that a 1 at. %
increment in any element’s atomic fraction constitutes a new alloy then the compositional space for a
generic 5-element alloy system covers an excess of 106 unique compositions. Thus, CALPHAD or ML
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Figure 9. (A) Fractions of CALPHAD predicted single-phase solid solution, intermetallics, and solid solution and intermetallic
equimolar alloys in 3 to 6 component alloy systems at the melting temperature (Tm) and at 600 °C. This figure is quoted with

permission from Senkov et al.[130]; (B) two-dimensional projection of AlaCrbMocNbdTieV1-a-b-c-d-e phase diagram from CALPHAD
showing compositions within two-dimensional space where a BCC solid solution phase forms at 800K. This figure is quoted with
permission from Klaver et al.[131]. IM: Intermetallic; SS: solid solution.

models are the best methods to screen through the massive composition space. However, the experimental
databases on this system lack size and detail, and thus a ML approach cannot be adequately trained. For this
reason, Conway et al. used high throughput CALPHAD methods to design composition within the Cantor
alloy system (Co-Cr-Fe-Ni-Mn) that possesses a combination of high SPSS stability, good mechanical
properties, and low material cost[135]. The high-throughput screening analyzed 1.78 million compositions
where the elemental contents were gradually incremented by 1-2 at. % interval step. The phase fractions
were calculated every 50 K between 500 K to 2,500 K to screen for compositions that produced thermally
stable SPSS. Further constraints were applied to ensure every element was present in at least 10 at. %, and
the Co and Ni contents were limited to 15 and 20 at. % to reduce the cost of the alloys. Twinning-induced
plasticity (TWIP) and solid solution hardening (SSH) were fundamental strengthening mechanisms within
this system. Thus, the authors used parameters within the TC-HEA database for their CALPHAD
calculations of the SSH values and stacking fault energies (SFEs) for the screened compositions. Figure 10A
shows the SFE and SSH plots in a quaternary diagram where the Co content was assumed constant at 10
at. %. The red circle illustrates the composition chosen by the authors (Co10Cr12Fe43Mn18Ni17), while the red
stars indicate the optimal composition using only the SFE or SSH as the guiding parameter. The
composition explored showed only slightly lower yield strength than the equiatomic Cantor alloy at room
temperature but showed high strength and ductility at elevated temperatures and exhibited a 40% reduction
in cost compared to the equiatomic Cantor alloy. Based on these results, future thermodynamic screening
for alloys can incorporate the strengthening mechanisms and material cost into complex alloy design.

The process-structure-property-performance (PSPP) relationship is the central paradigm in materials
science. The fundamental goal of many materials scientists is to use computation, theory and
experimentation to establish causal trends between the individual elements of PSPP to systematically
achieve better material performance. To that end, Abu-Odeh et al. contextualized alloy design as an inverse
phase stability problem (IPSP)[136]. IPSP is defined as the need to identify the set of thermodynamic



Page 21 of Mooraj et al. J Mater Inf 2023;3:4 https://dx.doi.org/10.20517/jmi.2022.41 45

Figure 10. (A) Quaternary phase diagrams at fixed 10 at. % Co illustrating explored composition space. The red circle points out 
the composition that is experimentally tested, and the red stars indicate the target compositions to maximize hardness (left) and 
minimize stacking fault energy (right). This figure is quoted with permission from Conway et al.[135]; (B) CSA predicted single-phase 
solid solution compositional spaces for FCC and BCC at 1,400 K, 1,450 K, and 1,500 K. This figure is quoted with permission 
from Abu-Odeh et al.[136], copyright 2018, Elsevier. BCC: Body-centered cubic; CSA: constraint satisfaction algorithm; FCC: face-
centered cubic.

conditions that lead to the stabilization of desirable phases which produce high-performance materials. One
such example is to provide the coordinates composition and temperature space that result in SPSS for
HEAs. The approach Abu-Odeh et al. took to tackle this problem is described as a constraint satisfaction
algorithm (CSA) which involves the use of ML protocols executed in tandem with CALPHAD calculations
to satisfy specific material property criteria/constraints.

This method enables efficient exploration of a large composition region to identify regions of arbitrarily
complex phase constitution characteristics. This approach has the potential to design alloy compositions of
any phase fraction rather than just focusing on the discovery of SPSS, as previously shown in other works.
Abu-Odeh et al. applied their framework to the Cantor alloy (Co-Cr-Fe-Ni-Mn) system, where they
explored the regions of SPSS stability for both FCC and BCC phases. Figure 10B visually represents the
change in FCC and BCC stability with increasing temperature for a ternary sub-section of the compositions
explored. After confirming the outcomes of the SPSS regions in the quinary compositions of the system, the
approach was expanded to search for precipitation hardening compositions in the Al-CoCrFeNi system by
identifying composition regions that include minor secondary phases. It was expressed that the secondary
phase would only be considered if it did not form via spinodal decomposition, as this would not lead to any
significant precipitation hardening. With this technique, the authors could identify composition spaces
most likely to exhibit precipitation-hardening behavior. They highlighted that providing more detailed
constraints can further refine the predicted composition space to provide a target region that can be
practically explored via experimental methods.

Comparison of computational methods
The previous categories of computational methods all serve important functions in the process of predicting
and narrowing the huge compositional space of HEAs. To ensure efficient usage of computational resources
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and time, it is crucial for researchers to understand which method is most useful for their individual 
applications. This section offers a direct comparison between their individual strengths and weaknesses 
based on the previously discussed studies.

ML techniques have numerous advantages that researchers can use to explore many compositions at once. 
Firstly, the computational efficiency of most ML methods allows some studies to screen up to 105 
compositions in a reasonable time frame[90,137]. The faster computation speed of ML than other 
computational techniques makes it particularly suited to exploring large composition spaces. Additionally, 
the ability to select various combinations of features as input variables, such as composition, atomic radius, 
valence electron concentration etc., gives ML a significant advantage in versatility allowing for pattern 
recognition between features that would normally not be possible with the human mind[82,138,139]. Despite the 
impressive capabilities, ML techniques rely heavily on large robust datasets to generate useful models[81,90,139]. 
Unfortunately, the relatively young age of the field of HEAs and the vast composition space means that the 
relative size of the currently available datasets is still quite small[48]. The small datasets limit the 
compositional regions where accurate ML models can be trained and applied[81,82]. The other common 
criticism of ML models is their lack of interpretability. ML models essentially act as a computational black 
box, meaning that even when they provide accurate predictions, the underlying physics is obscured by the 
complicated statistical calculations that are performed, making it difficult to build useful intuition from such 
models[78,79,87,140].

In contrast to the ML models, both first-principles and MD simulation methods rely primarily on well-
known quantum mechanical and classical laws instead of statistical models[114,117,138]. This ensures that a 
strong fundamental understanding of the predicted properties can be extracted from such models. The 
reliance on fundamental physics also reduces the need for large training datasets as the required datasets are 
often already contained in readily available databases[125,141]. MD simulations also have the added benefit of 
illustrating the dynamic evolution of microstructures during an experiment, thereby providing atomic scale 
information on the phase transformation and deformation of materials during usage, which cannot be 
achieved using any other computational technique[127,142]. However, both first-principles and MD simulation 
methods are much more computationally expensive than ML and CALPHAD methods[138]. Thus, first-
principles and MD techniques cannot explore as many compositions as ML and CALPHAD methods as 
seen in Table 1, where first-principles and MD can screen up to 104 and 103 compositions, respectively.

Recent studies have attempted to overcome this flaw by combining first-principles calculations with ML to 
produce models that are computationally efficient and highly accurate and provide physical insight into 
chemical segregation and phase formation[143-145]. Leong et al. used a cluster expansion (CE) model, which 
expands the configurational energy of an alloy structure in terms of various atomic clusters[144]. This model 
was trained using data obtained through first-principles calculations. Once the configurational energy is 
calculated for the clusters in the test set, the authors calculate the probability of the nearest neighbor (NN) 
atomic pairing between the different atomic species in a Mo-V-Nb-Ti-Zr alloy system to predict the 
Warren-Cowley short-range order (SRO) parameters[144,146]. This SRO allows the authors to highlight the 
tendency of Zr to segregate and cluster leading to the formation of intermetallic phases below 1,400 K and 
single-phase solutions above 1,400 K.

Finally, CALPHAD methods are both computationally efficient and have sufficiently large databases to 
produce accurate predictions for many HEA compositions[147,148]. In fact, CALPHAD methods are able to 
screen more compositions than any of the other computational methods (up to 106 compositions) in a 
reasonable time span[135]. Despite this large computational efficiency, CALPHAD methods can only provide 
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Table 1. Comparison of pros, cons, and capabilities of various computational methods

Computational 
method

Predicted 
Properties Pros Cons Number of screened 

compositions References

Machine learning Elastic constants 
Phase formation 
Phase transformation 
temperature 
Hardness 
Tensile strength 
Compressive strength

High computational 
efficiency 
Versatility in predictive 
features

Requires large training 
sets 
Lack of physical 
interpretability 
Only gives statistical 
understanding

105 [48,78,79,81,82,87,
90,137-139]

First-principles Elastic constants 
Phase formation 
Phase transformation 
temperature

Low input information 
needed 
Provides fundamental 
understanding 
Atomic scale detail

Computationally 
expensive 
Time-consuming

104

Molecular dynamics Elastic constants 
Phase formation 
Phase transformation 
temperature 
Hardness 
Tensile strength 
Compressive strength

Provides fundamental 
understanding 
Atomic scale detail 
Dynamically simulate 
microstructure evolution

Computationally 
expensive 
Time-consuming 
Cannot provide 
macroscopic results

103 [114,115,125,127,141,
142]

CALPHAD Phase formation 
Phase transformation 
temperature

High computational 
efficiency 
High accuracy 
Easily interpretable

Only predicts 
equilibrium conditions 
No kinetic information

106

information about equilibrium phase formation and transformation temperatures which may not be 
representative of manufacturing or application conditions. This limitation is especially important for 
HEAs,c where sluggish diffusion limits the kinetics within the system, which can often lead to the formation 
of metastable phases that may not be expected under equilibrium conditions.

COMBINATORIAL ADDITIVE MANUFACTURING TO EXPLORE LARGE COMPOSITIONAL 
SPACE
After narrowing a target composition space using computational methods, the remaining candidate 
compositions are still too numerous to reasonably explore via traditional metallurgical techniques. Thus, 
high-throughput manufacturing techniques are needed to rapidly produce samples that cover the candidate 
composition region. Previous studies have utilized magnetron sputtering and diffusion multiples to produce 
combinatorial libraries[28,149-151]. However, as previously discussed, these techniques produce samples at 
micro- or nano-scale, which may not be representative of bulk materials.

Additionally, the cooling rates experienced during magnetron sputtering are orders of magnitude greater 
than the cooling rates in traditional manufacturing settings[35,36]. Thus, there is a need for a manufacturing 
technique that can produce vast compositional libraries at a bulk length scale with practically relevant 
cooling rates. Laser additive manufacturing (LAM) has shown great promise towards that end. Previously 
LAM has been used to produce alloys with improved properties compared to their conventionally 
manufactured counterparts[36,152-159]. Two main types of LAM are used in combinatorial studies, i.e., laser 
directed energy deposition (DED), also known as laser engineered net shaping (LENS), and laser powder-
bed fusion (L-PBF)[160]. The DED process utilizes a carrier gas that allows the powder to flow continuously 
while shielding it from oxidation during deposition. A laser source simultaneously heats the material upon 
contact with the printing substrate or previous layer[37]. In the case of L-PBF, a flatbed of powder is 
deposited on a substrate. A laser is then used to melt the particles in a pattern determined by design 
software to form a part layer by layer[161].
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Functionally graded materials
LAM can produce compositionally graded materials, making it a powerful tool for rapid combinatorial 
material exploration[160]. DED is the more common method used to produce graded materials, as the 
multiple nozzles can be coaxially aligned with the laser, ensuring that each nozzle’s flow rate can be 
individually adjusted to spatially control the deposited alloy composition[162,163]. By dynamically changing the 
flow rate during AM, a compositional gradient can be formed, allowing for the exploration of a large 
compositional space within the same sample [164,165]. This method is schematically illustrated in Figure 11A, 
where a compositionally graded wall is produced starting from pure Cantor alloy at the base and increasing 
the content of refractory metals with increasing the build height[166]. Pegues et al. used this method to add 
Nb, Ta, and Ti6Al4V to CoCrFeMnNi to produce 3 different materials libraries[166]. They explored the effect 
of these additions on the microstructure and mechanical properties of the resulting alloys. Utilizing this 
method allowed them to efficiently explore a large compositional space without producing large samples. 
Micro-hardness tests on all three libraries revealed that the addition of the refractory elements resulted in 
increased hardness, likely due to the formation of secondary intermetallic phases such as a Laves phase[166].

While DED is the most common method to produce gradient materials compositionally, Wen et al. used L-
PBF to produce a gradient material, as shown in Figure 11B[167]. Normally, L-PBF is considered undesirable 
for compositionally graded materials as the powder composition cannot be systematically controlled once 
loaded in a chamber. Wen et al. addressed this issue by adding a partition within the powder hopper so that 
two different powders could be loaded together. Then a mixer is placed below the hopper that mixes 
powders along the width of the mixer. This mixture forms a compositional gradient in the laser scan plane 
when the powder bed is deposited. Thus, a horizontal compositional gradient forms rather than the typical 
vertical gradients achieved in DED combinatorial studies[168-170]. Wen et al. used CoCrFe medium entropy 
alloy and Inconel 718 as the feedstock powders to prove this new technique’s concept. At the pure CoCrFe 
end of the alloy gradient, a pure FCC phase structure was formed and as the Ni content increased due to the 
addition of Inconel 718, a secondary HCP phase was formed. The HCP phase content increased with 
increasing Ni content. The decrease in hardness occurred with increasing Ni-content, which is likely due to 
the larger sub-grain size observed near the Inconel 718 end.

Li et al. used DED to explore the effects of compositional and cooling rate changes on the microstructure 
and mechanical properties of the Al-Co-Cr-Fe-Ni alloy system [171]. First, they produced a pure CoCrFeNi 
substrate via casting. Then, they deposited varying amounts of Al on the substrate using a LENS system 
which formed different compositions of AlxCoCrFeNi along the substrate surface, ranging from x = 0.51 to 
x = 1.25, as shown in Figure 11C. The laser was also used for remelting straight lines parallel to the 
compositional gradient with different laser powers and scan speeds which induced different cooling rates in 
the compositional library. Three compositions from the library were also chosen to produce casting 
counterparts to achieve cooling rates far below what is achievable through DED. This method allowed the 
cooling rate to be varied from 25-6,400 K/s. Their findings showed that the lowest Al-containing 
compositions exhibited a dual-phase FCC + BCC structure which transitioned to a pure BCC/B2 at near 
equiatomic compositions. Additionally, compositions with low Al content showed a primary FCC phase 
with a cellular microstructure. The cellular microstructure followed a power law of the form  

where λ is the cell size, A is a fitted parameter, and  is the cooling rate. The microstructure refinement 
resulted in hardening following the Hall-Petch relationship. This work illustrates the potential for laser-
based AM methods to rapidly and simultaneously explore the effects of composition and cooling rate on the 
phase evolution and mechanical properties of HEAs.
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Figure 11. (A) Schematic illustration of high-throughput manufacturing of HEAs in a graded material under laser-directed 
energy deposition (L-DED). This figure is quoted with permission from Pegues et al.[166], copyright 2021, Elsevier; (B) schematic 
illustration of manufacturing a graded material under laser powder bed fusion (L-PBF) conditions. This figure is quoted with 
permission from Wen et al.[167], copyright 2021, Elsevier; (C) graded material library produced via L-DED in AlxCoCrFeNi. The graded 
HEA library is remelted to investigate the effects of composition and cooling rate. This figure is quoted with permission from Li 
et al.[171], copyright 2020, Elsevier. HEA: High-entropy alloy.

Teh et al. used DED to produce compositionally graded pillars within the Co-Fe-Ni alloy system[172]. By 
adjusting the content of each element along the build direction, the phase fraction of FCC vs. BCC was 
varied from pure BCC at the base of the pillar to dual phase FCC + BCC to pure FCC at the top. The    
hardness also varied with build height due to changes in composition and grain size caused by increasing 
the Ni concentration. They characterized the functional properties of each composition in addition to the 
mechanical properties by measuring the saturation magnetization, coercivity, and electrical resistivity. After 
analyzing the combination of properties, the authors presented a radar chart comparing some promising 
compositions to pure Fe, as shown in Figure 12A.

Gwalani et al. varied the V content in an AlMoCrFeVx (from x = 0 to x = 1) HEA system [Figure 12B][173]. 
The addition of V led to solid solution hardening, increasing the hardness monotonically from 485 HV at 
x = 0 to 581 HV at x = 1. The microstructure remained purely BCC for all compositions and remained stable 
after annealing at 1,100 °C for 30 min. The grain size was also negligibly changed, which indicated high 
thermal stability. Zhao et al. blended Ti and CoCrFeNi powders in various compositions[174]. They then 
layered the different compositions within a powder supply bin to build a compositionally graded pillar by 
increasing the Ti content along the build direction[174]. All compositions showed an FCC structure primarily 
with minor BCC, Laves, and phases that contain Ti. Figure 12C shows a hardness map based on the results 
taken from the printed graded structure. As the secondary phase volume fractions increased, the hardness 
increased, and analysis of the various strengthening mechanisms suggested that the inclusion of the 
secondary phases was the main cause of the increase in strength. However, high Ti content layers also 
showed significant cracking. Thus, the authors concluded that 10 at. % was the maximum threshold of Ti
content to produce crack-free samples and parts in CoCrFeNiTix HEA system. 
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Figure 12. (A) Radar chart comparing properties of various promising compositions discovered from graded material library of the 
Co-Fe-Ni system. This figure is quoted with permission from Teh et al.[172], copyright 2022, Elsevier; (B) change in V concentration 
along the build direction for AlMoVxCrFe alloy. This figure is quoted with permission from Gwalani et al.[173], copyright 2019, 
Elsevier; (C) vickers hardness map of the side surface of graded CoCrFeNiTix HEA system. This figure is quoted with permission from 

Zhao et al.[174], copyright 2021, Elsevier. HEA: High-entropy alloy.

Bulk materials library
While graded materials provide a convenient means to explore multiple compositions within a single   
sample, they cannot give a full picture of material performance due to the possible mixing between layers 
during LAM, which can be difficult to control. In this sense, bulk materials libraries can produce individual 
samples to be studied in further detail while maintaining a high-throughput approach if rapid 
characterization techniques can be applied. One such example is illustrated in Figure 13A, where Yu et al. 
used DED to produce a library of bulk samples using elemental Al powder and Cu50Zr50 powder in separate 
powder hoppers, as seen in Figure 13A[175]. This work aimed to find the optimal compositions and 
processing conditions to produce bulk metallic glass composites (BMGC). BMGCs are materials formed by 
adding a crystalline phase into a glassy amorphous matrix[176].

The crystalline phase helps hinder the propagation of shear bands and dissipate fracture energy, which can 
significantly improve the room temperature ductility of BMGCs compared to monolithic bulk metallic 
glasses[155]. In their work, BMGC samples were deposited and then remelted to produce initially deposited 
melt pools with similar dimensions and different cooling rates. An 11 × 11 sample library was produced 
where the Al content was adjusted from 0 at. % to 10 at. % along the x-direction while the laser power was 
varied along the y-direction from 150 W to 400 W. Finite element modeling (FEM) was used to estimate the 
cooling rates and XRD analysis was used to confirm the phase constitution. After identifying phases with 
both amorphous and crystalline phases, the authors defined a uniformity coefficient to estimate the sample 
that would be expected to show the highest ductility. This criterion arose because ductility is closely related 
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Figure13.(A) Schematic of high-throughput fabrication and screening of combinatorial materials library and images of the printed
library of Cu-Zr-Al alloy system. This figure is quoted with permission from Yu et al.[175], copyright 2021, Elsevier; (B) schematic of
combinatorial material library fabrication and ultrasonic screening to rapidly estimate effective processing parameters of Zr51Ti5Ni10Cu25

Al9 bulk metallic glass (BMG), adapted from Zhai et al.[177]; (C) schematic illustration of materials library produced with discrete dots of
varying compositions. This figure is quoted with permission from Tsai et al.[178], copyright 2016, Elsevier; (D) schematic of DED
processing of Fe-Ni-Cr-Mo bulk materials library. This figure is quoted with permission from Islam et al.[180], copyright 2021, AIP
Publishing. DED: Directed energy deposition.

to the spatial distribution and uniformity of the crystalline dendrites within the glassy matrix. The optimal 
composition contained 4 at. % Al and used a remelting power of 175 W.

The rapid cooling rates induced by laser-based AM techniques can encourage the formation of amorphous 
structures in additively manufactured alloys and hence offer a unique opportunity to study bulk metallic 
glass (BMG) formation[177]. Zhai et al. fabricated a library of one composition with varying processing 
conditions to rapidly determine the optimal conditions to produce a defect-free BMG[177]. The composition    
used was Zr51Ti5Ni10Cu25Al9. Using ultrasonic wave attenuation, they were able to rapidly determine the 
presence of defects, pores, or crystalline grain boundaries that may affect the performance of the BMG. This 
technique is schematically illustrated in Figure 13B. A laser power of 1,300 W and 600 mm/min was 
determined to provide the highest fraction of amorphous material while remaining defect-free. This work 
highlights the use of DED combined with ultrasonic wave attenuation to provide a non-destructive and easy 
way to rapidly investigate and verify the glass-forming ability of many compositions immediately after they 
are printed.

It is currently very difficult to predict the glass-forming ability (GFA) of an alloy composition. Thus, the 
current exploration of BMGs requires a high-throughput investigation similar to that of HEAs. For this 
reason, Tsai et al. deposited a combinatorial library of Cu-Zr-Ti to identify the composition with optimal 
GFA[178]. Figure 13C shows a schematic illustration of the construction of this library[178]. The library was 
built by depositing discrete hemispherical samples with varying Cu:Zr ratios between each row of samples. 
After the initial deposition, a layer of Ti was deposited with various feed rates and simultaneously melted 
onto the library. Each sample was remelted 2 more times to ensure the elements were fully melted and
incorporated into each sample. 
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Once the library was prepared, each sample was remelted with different laser powers of 200 W, 240 W, and 
280 W. Since a higher laser power leads to a lower cooling rate, compositions that maintain glassy 
microstructure with higher laser power should have higher GFA. Differential interference contrast (DIC) 
imaging under optical microscopy was used to screen for amorphous materials as samples with amorphous 
structures show a smooth liquid-like topography under DIC. At the same time, crystalline microstructures 
appear rough[179]. A total of 144 discrete samples were investigated, and 92 were identified as amorphous for 
the lowest power. Based on the previously mentioned criteria, the composition with the highest GFA was 
Cu51.7Zr36.7Ti11.6, as it showed a high fraction of amorphous microstructure and was located in the center of 
the region of compositions that exhibit an amorphous microstructure after remelting at 280 W. It was also 
pointed out that this method could be extended to alloy systems with even more components by using pre-
alloyed powders. Thus, the procedure laid out by Tsai et al. illustrates a means to rapidly identify BMGs 
with excellent GFA within a given alloy system. In addition to the optimal composition, combinatorial 
studies can also be used to rapidly determine optimal printing parameters for a given alloy system. Islam et 
al. carried out such a study on 25 different compositions in the Fe-Ni-Cr-Mo alloy system to and define a 
normalized dimensionless parameter based on the energy input density from the laser and the material 
properties of the constituent atoms[180]. A schematic illustration of their experimental method is illustrated 
in Figure 13D.

Eutectic HEAs (EHEAs) combine design concepts from both HEAs and eutectic alloys and show great 
potential for structural applications due to their impressive combination of strength and ductility[156,181]. This 
combination of properties arises from a hard and soft phase which help provide strength and ductility, 
respectively. However, further optimization is possible through minor composition adjustments to achieve 
near-eutectic HEAs. Joseph et al. produced a library of bulk AlxCoCrFeNi2.1 samples using the DED method 
to analyze the effect of Al-content on the microstructure and mechanical properties of alloys with near-
eutectic compositions[182]. Figure 14A presents the XRD peak patterns of the compositions explored and 
shows an increase in the B2 phase with increasing the Al content. Additionally, cast samples with the 
compositions of each phase were prepared. These allowed the authors to investigate samples with single-
phase microstructures that were either purely FCC or purely B2 phase. After analyses of the phase fractions 
and compressive properties of each composition, it was found that the alloys’ yield strength followed a rule 
of mixtures based on the yield strength of the individual phases. This work highlights the ability of DED to 
provide large sample sets that allow for rapid characterization of multiple compositions that can elucidate 
strengthening trends within a system to achieve an optimal composition.

When testing the radiation damage resistance of a material, it is imperative to use bulk samples as the 
damage layer thickness is typically on the order of microns, and the compositional gradient struggles to 
maintain chemical homogeneity over large length scales. Additionally, thin-film-based materials typically 
form nano-grain microstructures, which artificially increase the radiation damage resistance of a material, 
making the results misleading compared to application conditions. Moorehead et al. printed a 
compositional library of Cr-Fe-Mn-Ni alloys to assess their irradiation properties[183]. It was found that Cr-
rich compositions showed an increase in BCC phase fraction, while Fe and Ni-rich compositions showed 
higher FCC content, and Cr and Ni tended to segregate together preferentially. This trend can be seen in 
Figure 14B, where the compositions with a higher Cr content show more severe segregation. 
Nanoindentation was utilized as a high-throughput means to measure the effect of ion irradiation on the 
hardness of each composition. Radiation-induced hardening was found in all compositions with FCC, BCC, 
and FCC + BCC phases. The increase in hardness was consistently shown to be 1-1.5 GPa, with BCC-rich 
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Figure 14. (A) X-ray diffraction profiles of AlxCoCrFeNi2.1 showing the change in FCC and BCC phase fractions with changing Al 

content. The inset shows an image of material library. This figure is quoted with permission from Joseph et al.[182], copyright 2020, 
Elsevier; (B) SEM images and EDS maps of Cr19Fe31Mn11Ni 39, Cr28Fe23Mn20Ni 29, and Cr42Fe17Mn20Ni 21, from left to right. This figure is 

quoted with permission from Moorehead et al.[183], copyright 2021, Elsevier; (C) SEM images of the as-deposited CoCrFeNiNbx
parallel to the build direction: (i) CoCrFeNiNb0; (ii) CoCrFeNiNb0.1; (iii) CoCrFeNiNb0.15; (iv) CoCrFeNiNb0.2; and perpendicular to 
the build direction: (v) CoCrFeNiNb0; (vi) CoCrFeNiNb0.1; (vii) CoCrFeNiNb0.15; and (viii) CoCrFeNiNb0.2. This figure is quoted with 

permission from Zhou et al.[9], copyright 2019, Elsevier. BCC: Body-centered cubic; FCC: face-centered cubic.

compositions showing the least increase in hardness. Additionally, Moorehead et al. found that 
compositions with a high Mn content may have a large amount of Mn depletion after homogenization due 
to the depressed melting point of high Mn-content alloys. Thus, the authors laid out a guideline to keep the 
Mn-content below 25 at. %. Finally, the time saved using the high throughput AM approach is highlighted 
compared to the traditional metallurgical approach of melting and casting. The authors state that traditional 
melting and casting could take up to 1-2 hours per composition compared to the 10 min per composition    
required by the DED method.

Zhou et al. utilized DED to rapidly produce samples with compositions CoCrFeNiNbx (referred to here as 
Nbx)[9]. The authors investigated the mechanical properties of each alloy composition and its correlation to 
the phase and microstructures present. Figure 14C shows SEM images of 4 compositions (Nb0, Nb0.1, Nb0.15, 
Nb0.2) prepared by DED. The top row shows images taken parallel to the building direction, while the 
bottom row shows images taken perpendicular to the building direction. The authors concluded that the 
addition of Nb to the CoCrFeNi system led to a transition from a columnar to an equiaxed structure due to 
the formation of a secondary Laves phase in addition to the primary FCC phase. The Laves phase also 
caused an increase in yield strength in the Nb0.2 composition more than three times that of the Nb-free 
composition while maintaining a ductility above 10%.

HIGH-THROUGHPUT CHARACTERIZATION TECHNIQUES
While high-throughput computational methods can narrow down the alloy design space and high-
throughput manufacturing methods enable rapid fabrication of samples within the design space, high-
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throughput experimental methods are needed to characterize the manufactured materials’ properties to 
experimentally verify which set of composition and processing conditions ultimately leads to the target 
performance. This section focuses primarily on the different high-throughput methods which can rapidly 
characterize important material properties such as hardness, strength, ductility, phase and composition, 
magnetic hysteresis, saturation magnetization, and corrosion resistance.

Mechanical property characterization
Mechanical properties such as strength and ductility are crucial to assess the performance of a material for 
structural applications[184]. A few important criteria exist for a mechanical test considered to be useful for 
screening HEAs. First, the sample size and microstructure must represent bulk-like conditions[185]. Second, 
the test should include a dominant tensile component, as real application conditions often include some 
tensile stresses[185]. Microhardness and nanoindentation tests are the most common approach towards high-
throughput screening of structural materials. These methods can quickly and accurately estimate bulk yield 
strength[185]. Nanoindentation can also offer broad insights into the post-yielding attributes through analysis 
of the stress-strain curves it produces[186]. The local nature of these two techniques also makes them highly 
useful in graded materials libraries where many compositions and microstructures can be manufactured in 
a single sample for rapid screening.

Here two example studies are provided that use microhardness testing to investigate the effect of 
composition on hardness. Jiang et al. produced various compositions of CoFeNixVMoy alloys to test the 
effects of composition and microstructure on the hardness[187]. This work concluded that an increase in the 
Mo content led to increased precipitation of the CoMo2Ni-type intermetallic phase. An increase in Ni 
content increased the FCC solid solution phase and decreased the hardness. Figure 15A depicts the hardness 
of the various compositions showing that the peak hardness was reached at the composition equiatomic 
CoFeNiVMo. Pegues et al. also used micro-hardness indentation to build a hardness map of a graded Tax

CoCrFeMnNi sample, as shown in Figure 15B[166]. This map allowed them to rapidly determine the effect of 
Ta addition on the hardness of this Cantor alloy-based system. Higher Ta contents encouraged the 
formation of TaNi-rich intermetallic in the interdendritic region, which caused significant increases in 
hardness.

Although micro-indentation methods can provide reasonable data for screening materials, the most reliable 
method to investigate material properties is a lab-scale tension test with samples that conform to either the 
ASTM E8 standard or another equivalent internationally recognized standard. Here the authors of this 
review present one example from the literature and their own unpublished data to illustrate the typical 
results that can be achieved in a combinatorial HEA library. Ma et al. added Nb to the AlCoCrFeNi system, 
which led to the formation of Laves phase that increased the strength of the alloy while decreasing the 
ductility[188]. Tuning the Nb content allowed them to tune the compressive properties [Figure 15C]. This 
result indicates that the addition of intermetallic forming elements can be used to achieve a wide array of 
properties that can be optimized for application-specific uses. Following this design philosophy, the authors 
of this review recently used DED to produce CoCrFeNiTix alloys to achieve a composition with improved 
mechanical properties. The tensile stress-strain curves of our investigated CoCrFeNiTix HEAs are shown in 
Figure 15D. These results show that adding Ti to the base quaternary alloy increases the yield strength while 
decreasing the ductility until x = 0.2. Beyond this threshold, the yield strength and the ductility of the alloy 
drop simultaneously. It has been well established that the introduction of Ti into the CoCrFeNi system leads 
to the formation of brittle intermetallic phases that causes decreased ductility and increased hardness and 
yield strength[189-191]. The drop in yield strength from x = 0.2 to x = 0.25 is likely a result of defects that 
occurred during printing due to a higher fraction of brittle phases.
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Figure 15. (A) Effects of Ni and Mo on Vickers hardness of CoFeNixVmo y. This figure is quoted with permission from Jiang et al.
[187], copyright 2015, Elsevier; (B) TaxCoCrFeMnNi hardness map with associated elemental distribution. This figure is quoted

with permission from Pegues et al.[166], copyright 2021, Elsevier; (C) compressive stress-strain curves of CoCrFeNiNbx samples. This
figure is quoted with permission from Ma et al.[188], copyright 2012, Elsevier; (D) tensile stress-strain curves of CoCrFeNiTix HEAs
printed in the authors’ lab. HEA: High-entropy alloy.

In order to fulfill the rapid testing needs of high-throughput experiments, a high degree of automation must 
be integrated into the characterization process to decouple experimental progress from the number of hours 
available to human researchers. To that end, Huang et al. developed a high-throughput tensile testing 
platform to automate the tensile testing procedure and increase the rate and which specimens can be    
characterized[192]. This method uses a large grip that is held onto the bottom of many dog-bone samples, and 
this grip is attached to a motorized table that moves the grip laterally into position. A top grip is aligned in 
the direction of travel, allowing for automated testing of many samples in a small-time frame. In the case of 
their work, Huang et al. tested many samples of 316L stainless steel printed through a combinatorial study 
of different printing conditions by L-PBF. This platform may also show great potential for combinatorial 
studies related to the compositions of HEAs by automating tensile testing of compositional libraries 
produced by laser-based AM.

Phase and composition analysis
XRD is a common tool used to analyze the phases present in a material. The following paragraph illustrates 
some examples of typical data extracted from XRD analysis in combinatorial studies. Chen et al. studied the 
phase evolution in (AlCoCrFeNi)100-xNix and (CoCrCuFeNi)100-xMox HEAs[193]. XRD analysis shows that 
when x is between 0 and 4 at. %, both alloys exhibited single-phase solid solution structure where the 
(AlCoCrFeNi)100-xNix alloy shows a BCC structure and the (CoCrCuFeNi)100-xMox alloy shows an FCC 
structure. As the Ni content increases, a dual-phase FCC/BCC structure forms, and the FCC phase fraction 
increases. On the other hand, when the Mo content increases beyond 4 at. %, the FCC/BCC structure also 
forms, and the BCC phase fraction increases with the Mo content. The XRD patterns of the Ni- and Mo-
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doped samples are shown in Figure 16A and B. Moorehead et al. used DED to produce a library of Mo-Nb-
Ta-W HEAs, which were then examined via XRD[194]. The XRD patterns are shown in Figure 16C. In this 
case, all the compositions tested showed a full BCC phase.

However, energy dispersive spectroscopy (EDS) analysis showed that Nb was segregated to the 
interdendritic region. In order to tune the phase structure in a CoCrFeNiNbx alloy system, our group used 
DED by placing pre-alloyed CoCrFeNi powder in one powder feeder and pure Nb powder in another. 
Then, the feed rates from each feeder were adjusted to produce a graded material with increasing Nb along 
the build direction. The CoCrFeNiNbx compositions were selected as going from x = 0 to x = 1, where x was 
increased by about 0.1 for every 1 mm increase in height. Synchrotron XRD (SXRD) at the Cornell High 
Energy Synchrotron Source was then performed along the build direction to analyze the phase composition 
in each region. The beam size was maintained as 0.5 × 0.5 mm such that the measured phase compositions 
correspond accurately to the designed compositions. As the Nb content increased, an FCC/Laves dual-
phase structure formed with the Laves phase volume fraction increased from 0% to 57% as the Nb content 
increased from 0 to 20 at. %. Figure 16D shows the SXRD results taken for each composition.

In addition to XRD analysis, EBSD can offer a means to probe phases at higher spatial resolution (around 
200 nm for EBSD vs. about 1 mm for XRD), which may be especially important for gradient compositional 
libraries where the compositional change can be quite drastic over small length scales[185]. EBSD also has the 
advantage of being equipped onto SEM facilities. Thus, EDS analysis can often be carried out in parallel 
such that phase and composition can be resolved almost simultaneously. For experiments that include many 
phases and samples, there is a need to automate the phase analysis process to make the process more 
efficient[195,29]. Many groups have used high-throughput SXRD to rapidly identify phases in combinatorial 
material libraries[196]. The majority of these studies used thin films produced by magnetron 
sputtering[29,195,197,198]. However, there are almost no studies of large bulk materials that used similar high-
throughput methods for phase structure analysis.

It should be noted that a bottleneck for the previously mentioned methods is the human intervention 
needed during data analysis. This analysis can require impractical time commitments when the number of 
compositions reaches hundreds or thousands. Thus, the development of automated systems for analyzing 
XRD, EBSD, and EDS data is crucial to ensure that experimental results of high-throughput experiments 
can be achieved in a timely manner. Machine learning has recently shown impressive results in this field by 
correctly indexing phases within an EBSD pattern without requiring human input to guess at the present 
phases[199]. Although this process has not been attempted for HEAs, it shows great promise to be applied to 
new materials. Extending this practice further to carry out more in-depth analysis, such as Rietveld 
refinement for XRD patterns, will greatly accelerate the development of future HEAs.

Magnetic property measurement
Tang et al. added Ho to a FeCoNi(CuAl)0.8 alloy to investigate the effect of the addition of rare earth (RE) 
element on the magnetic properties of this system[200]. The initial parent alloy showed a fully FCC structure, 
and adding Ho led to the formation of a secondary BCC phase. Increasing the atomic fraction of Ho led to 
an increase in the volume fraction of the BCC phase fraction and no change in the lattice parameter of the 
FCC phase. As shown in Figure 17A, increasing the Ho content led to lower energy losses via eddy currents 
and hysteresis until x = 0.05. Once x = 0.07, the energy losses increased substantially. The decrease in 
hysteresis loss is due to lower Cu segregation at the BCC-FCC phase boundaries with increasing Ho. This 
segregation leads to a lower magnetic domain pining effect, decreasing hysteresis losses[200]. At x = 0.07, the 
Cu and Ho tend to segregate heavily to phase boundaries, leading to higher hysteresis losses. The BCC 
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Figure 16. (A) XRD patterns of (AlCoCrFeNi)100-xNi x. This figure is quoted with permission from Chen et al.[193], copyright 2018, Elsevier; 
(B) XRD patterns of (CoCrCuFeNi)100-xMo x. This figure is quoted with permission from Chen et al.[193], copyright 2018, Elsevier; (C) XRD 
patterns of 31 samples fabricated by L-DED in the Mo-Ta-Nb-W alloy system. This figure is quoted with permission from Moorehead 
et al.[194]; (D) XRD patterns of CoCrFeNiNbx printed in the authors’ lab.

phase shows thinner magnetic stripe domains than the FCC phase, which leads to lower eddy losses as the 
BCC phase fraction increases.

Zhang et al. studied the effect of composition and phase fraction in a FeCoNi(CuAl)x alloy system on the    
magnetic and mechanical properties[201]. The general trend from Figure 17B shows that the saturation 
magnetization (Ms) decreases with increasing Cu and Al content and shows a slight increase from x = 0.8 to 
x = 0.9. Fe, Co, and Ni are all ferromagnetic elements, while Cu and Al are not, so the authors rationalize the 
decrease in Ms originating from the increase in non-ferromagnetic components. Borkar et al. also studied 
the effect of the Co/Cr ratio on the microstructure and magnetic properties of AlCoxCr1-xFeNi[202]. Increasing 
the Co/Cr ratio leads to increased Ms as the magnetization depends heavily on the composition, as shown in 
Figure 17C.
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Figure 17. (A) Effect of Ho addition to FeCoNi(CuAl)0.8 on magnetic hysteresis response of this alloy measured at room temperature. 
This figure is quoted with permission from Tang et al.[200], copyright 2021, Elsevier; (B) saturation magnetization of FeCoNi(CuAl)x 
alloys as CuAl is added. This figure is quoted with permission from Zhang et al.[201], copyright 2017, Elsevier; (C) magnetization curves 
of NiAlFeCoxCr 1-x. This figure is quoted with permission from Borkar et al.[202], copyright 2017, John Wiley and Sons; (D) magnetization 
curves of FeCoNi(MnAl) x. This figure is quoted with permission from Li et al.[203], copyright 2017, Elsevier.

Li et al. adjusted the composition of a FeCoNi(MnAl)x to study the effect of composition on the magnetic 
properties of this material[203]. The results presented in Figure 17D show that the saturation magnetization 
decreases as the Cu and Al content increases to x = 0.5 and then increases as the Cu, and Al content 
increases further. The FeCoNi alloy shows a fully FCC structure, while the FeCoNi(MnAl)0.5 and 
FeCoNi(MnAl)0.75 show an FCC + BCC dual-phase structure, and the FeCoNi(MnAl) composition shows a 
nearly fully BCC structure. Also, the lattice parameter of the FCC phase increases as Mn and Al are added, 
and the lattice parameter of the BCC phase decreases. The authors explain that the magnetization of the 
BCC phase decreases with decreasing lattice parameters and the magnetization of the FCC phase decreases 
with increasing lattice parameters[203]. Thus, the FeCoNi(MnAl)0.5 composition shows the lowest magnetic 
performance because both phases show their lowest performance at that composition.

Corrosion resistance
Corrosion resistance is a crucial property when selecting materials for real-life applications. The 
degradation of materials due to corrosion leads to over $500 billion in repair and maintenance costs in the 
US alone[204]. The corrosion process is highly complicated and includes various mechanisms that depend on 
the type and concentration of the corrosive electrolyte, the composition and microstructure of the chosen 
material, the ambient temperature, and the time spent in service[185]. Due to the complexity of corrosion 
phenomena, there is currently no unifying computational model to predict corrosion resistance, and there 
are limited empirical models for certain systems. This challenge forces researchers to rely on experimental 
results to screen materials for corrosion resistance. Thus, high-throughput corrosion resistance methods are 
extremely important to characterize and screen HEAs for future applications. Typical high-throughput 
screening methods utilize multi-electrode arrays placed in a common electrolyte to allow multiple materials 
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to be tested simultaneously[205,206]. Rapid characterization via wire resistance to indicate a reduction in the 
cross-sectional area has shown great potential to accelerate the analysis of corrosion resistance[207]. 
Additionally, optical characterization of the color change of a corroded substance can be correlated well 
with traditional polarization curves. It can thus provide an easy screening method without the need for in-
depth analysis[208,209]. The remainder of this section will summarize the results of combinatorial studies on 
HEAs taken from the literature that illustrate the improvements in corrosion resistance achieved so far.

It is well known that Cr is a useful element to improve corrosion resistance, and this result has also been 
verified for many HEA systems[210]. Thus, a Cr-containing HEA system with elements that show a low 
thermal neutron absorption cross-section is a prime candidate for nuclear applications[210]. Xiang et al. 
studied the effect of Cr addition in a Mo0.5VNbTi system on the microstructure and properties, including 
corrosion resistance[210]. The corrosion resistance tests for the Mo0.5VNbTiCrx HEAs (x = 0, 0.25, 0.5, 0.75, 
1.0, 1.5, and 2.0, denoted as Cr0, Cr0.25, Cr0.5, Cr0.75, Cr1.0, Cr1.5, and Cr2.0, respectively) was carried out in 
superheated steam at 400 °C at 10.3 MPa in a static autoclave which is in accordance with ASTM G2/G2M 
guidelines. The weight gain per unit surface area was measured after 10, 20, 30, 40, 50, 60, and 70 days. The 
weight gain for each sample was compared to that of Zr-4 alloy (Zr-1.41Sn-0.21Fe-0.10Cr), which is 
commonly used as fuel rod cladding in nuclear reactors due to its excellent corrosion resistance[210,211]. The 
results are depicted in Figure 18A, where the weight gain decreases with adding Cr, except for the Cr1.5 alloy, 
which may be due to defects. All the compositions outperform the Zr-4 alloy showing much lower weight 
gain. This HEA system shows significantly improved corrosion resistance compared to a state-of-the-art 
alloy used in current applications, illustrating the potential of HEAs to achieve incredible improvements in 
corrosion resistance properties.

Q235 steel is a common structural steel used in many applications, but it often requires a coating to be used 
in corrosive environments[212]. A HEA coating with good corrosion resistance can offer protection to the 
Q235 steel without degradation to its mechanical properties[212]. Qiu et al. explored the effect of composition 
on corrosion resistance in the Al2CrFeCoxCuNiTi[212]. The addition of Co to the system leads to a more 
positive corrosion potential which implies a higher corrosion resistance especially compared to the control 
Q235 steel, as seen in Figure 18B. The authors mention that severe elemental segregation can lead to the 
formation of micro-potentials during potentiodynamic polarization tests which can lead to micro-corrosion 
and accelerate the corrosion process. The authors also note that the equiaxed grain structure observed in the 
HEAs also leads to improved corrosion resistance. Qiu et al. also conducted a similar study on Al2

CrFeCoCuNixTi[213]. Their results are illustrated in Figure 18C. It was also found that the corrosion 
resistance increased with increasing Ni content and then decreased. The increase in corrosion resistance is 
because the Ni element has a high corrosion resistance which contributes to the improved corrosion 
resistance of the alloy. However, as the Ni content increases further beyond Ni1.0, the elemental segregation 
increases greatly, which leads to the formation of micro-potentials that accelerate the corrosion process.

Ti-Zr-based HEAs have been suggested as potential biomedical implant materials[214]. These implants 
invariably undergo friction wear over long periods, and the complex chemical environment of the human 
body also leads to corrosion. Thus, a comprehensive understanding of the corrosion and wear resistance of 
such HEAs is needed to assess their viability for use as implants. Hua et al. studied the corrosion resistance 
of TixZrNbTaMo HEAs and compared it to Ti-6Al-4V, which has long been favored for biomedical 
applications[215]. The corrosion resistance on these alloys is depicted through the potentiodynamic 
polarization curves in Figure 18D. The Ti0.5ZrNbTaMo composition shows the highest corrosion 
resistance[214]. SEM image analysis of all the tested compositions showed that no pitting occurred after the 
potentiodynamic polarization tests, which points to the high corrosion resistance of these alloys. Further 
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Figure 18. (A) Weight gain of Mo0.5VNbTiCrx after corrosion test in superheated steam at 400 °C at 10.3 MPa pressure for 70 days,

Zr-4 alloy is provided for comparison. This figure is quoted with permission from Xiang et al.[210], copyright 2020, Elsevier;
(B) potentiodynamic polarization curves of Al2CrFeCoxCuNiTi HEA compared to Q235 steel. This figure is quoted with permission from

Qiu et al.[212], copyright 2019, Elsevier; (C) potentiodynamic polarization curves of Al2CrFeCoCuTiNix HEAs and Q235 steel substrate.
This figure is quoted with permission from Qiu et al.[213], copyright 2013, Elsevier; (D) potentiodynamic polarization curves of
TixZrNbTaMo HEAs and Ti6Al4V. This figure is quoted with permission from Hua et al.[214], copyright 2021, Elsevier.

surface analysis via XPS showed that the surface film of the HEAs is mainly composed of the Ti4+, Zr4+, Nb5+,
Ta5+, Mo4+, and Mo6+ oxides, which indicates the formation of a passivation layer that protected the alloys
from severe corrosion.

CONCLUSIONS AND FUTURE OUTLOOK
HEAs present abundant opportunities to search for new materials with properties and performance that can 
exceed traditional dilute alloys. While the potential for this new class of materials is promising, the vast 
composition and microstructure space is too large to explore efficiently via traditional metallurgical 
techniques based on trial-and-error approaches. This review article highlights important advances in 
combinatorial studies that either present high-throughput methods to rapidly filter out undesirable 
materials or provide insights into general rules of thumb to allow researchers to design high-performance 
materials more efficiently.

The ultimate goal is to ensure that researchers spend more time understanding how to design and 
manufacture high-performance HEAs for industrial applications and less time on repetitive sample 
preparation and characterization methods. Implementing efficient high-throughput methods can minimize 
the time spent studying sub-optimal alloy compositions, which maximizes the resources spent on 
improving the most promising alloys. First, this review explores the high-throughput computational 
techniques that can down-select the design space before experimental characterization is even attempted. 
Then, it presents works that use additive manufacturing as a solution to produce large combinatorial 
libraries of bulk sample materials at length scales comparable to those expected during service and 



Page 37 of Mooraj et al. J Mater Inf 2023;3:4 https://dx.doi.org/10.20517/jmi.2022.41 45

applications. Finally, high-throughput material characterization is highlighted for rapid understanding of 
the relationships between composition, microstructure, and material properties. This review article serves as 
a guideline for developing workflows that can efficiently discover new high-performance HEAs. To this end, 
several research frontiers in the field are put forward:

1. Machine learning (ML) techniques can provide predictions of massive design space, but there currently 
exists a shortage of robust training sets for HEA compositions. Further investment in high-throughput 
computational techniques that can produce these robust databases, such as CALPHAD, first-principles 
calculations, and molecular dynamics simulation, is needed. Once these databases are sufficiently 
established, ML techniques can provide highly reliable predictions of the phase constitution for unknown 
compositions. They can even predict bulk properties such as yield strength and density.

2. Additive manufacturing provides a means to rapidly produce bulk samples of varying compositions and 
microstructures. However, AM materials are prone to defects that can significantly deteriorate performance. 
Further studies, including in-situ characterization during 3D printing, are needed to better characterize the 
small-scale physics, in-situ alloying chemistry, and macroscale defect formation to reduce the work needed 
in preliminary optimization.

3. Data collection and analysis of material characterization techniques need to be further automated to 
enable high-throughput characterization of enormous materials libraries without significant time 
investments from researchers. Such techniques as phase, composition and microstructure characterization 
may need to be carried out in parallel to maximize the efficient use of equipment with overlapping 
functionalities, such as SEM with EBSD capabilities. Additionally, data processing automation is critically 
needed to rapidly characterize the vast number of compositions that are explored in high-throughput 
experiments.

DECLARATIONS
Acknowledgments
This work is based upon research conducted at the Center for High Energy X-ray Sciences (CHESS), which 
is supported by the National Science Foundation under award (DMR-1829070). The authors are grateful to 
Katharine Shanks at CHESS for her support in data acquisition and analysis at the ID3A beamline.

Authors’ contributions
Writing: Mooraj S
Manuscript supervision and editing: Chen W

Availability of Data and Materials
Not applicable.

Financial support and sponsorship
Chen W acknowledges the support from National Science Foundation (DMR-2004429) and UMass 
Amherst Faculty Startup Fund.

Conflicts of interest
All authors declare that there are no conflicts of interest.



Page 38 of Mooraj et al. J Mater Inf 2023;3:4 https://dx.doi.org/10.20517/jmi.2022.4145

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2023.

REFERENCES
Oh HS, Kim SJ, Odbadrakh K, et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nat 
Commun 2019;10:2090.  DOI  PubMed  PMC

1.     

Cantor B. Multicomponent and high entropy alloys. Entropy 2014;16:4749.  DOI2.     
Cantor B, Chang I, Knight P, Vincent A. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 
2004;375-377:213-8.  DOI

3.     

Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and 
outcomes. Adv Eng Mater 2004;6:299-303.  DOI

4.     

George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater 2019;4:515-34.  DOI5.     
Wu Q, Wang Z, Hu X, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system. Acta 
Mater 2020;182:278-86.  DOI

6.     

Chanda B, Verma A, Das J. Nano-/ultrafine eutectic in CoCrFeNi(Nb/Ta) high-entropy alloys. Trans Indian Inst Met 2018;71:2717-
23.  DOI

7.     

Zhang H, Liu P, Hou J, Qiao J, Wu Y. Prediction of strength and ductility in partially recrystallized CoCrFeNiTi0.2 high-entropy alloy. 
Entropy 2019;21:389.  DOI  PubMed  PMC

8.     

Zhou K, Li J, Wang L, Yang H, Wang Z, Wang J. Direct laser deposited bulk CoCrFeNiNbx high entropy alloys. Intermetallics 
2019;114:106592.  DOI

9.     

Poletti MG, Fiore G, Gili F, Mangherini D, Battezzati L. Development of a new high entropy alloy for wear resistance: 
FeCoCrNiW0.3 and FeCoCrNiW0.3 + 5 at.% of C. Mater Design 2017;115:247-54.  DOI

10.     

Xiao J, Tan H, Chen J, Martini A, Zhang C. Effect of carbon content on microstructure, hardness and wear resistance of 
CoCrFeMnNiCx high-entropy alloys. J Alloys Compd 2020;847:156533.  DOI

11.     

Cui Y, Shen J, Manladan SM, Geng K, Hu S. Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature. 
Appl Surf Sci 2020;512:145736.  DOI

12.     

Shi Y, Yang B, Liaw P. Corrosion-resistant high-entropy alloys: a review. Metals 2017;7:43.  DOI13.     
Li R, Xie L, Wang WY, Liaw PK, Zhang Y. High-throughput calculations for high-entropy alloys: a brief review. Front Mater 
2020;7:290.  DOI

14.     

Yin Y, Chen Z, Mo N, et al. High-temperature age-hardening of a novel cost-effective Fe45Ni25Cr25Mo5 high entropy alloy. Mater Sci 
Eng A 2020;788:139580.  DOI

15.     

Ma Y, Wu S, Jia Y, et al. Hexagonal closed-packed precipitation enhancement in a NbTiHfZr refractory high-entropy alloy. Metals 
2019;9:485.  DOI

16.     

Liu Z, Zhao D, Wang P, et al. Additive manufacturing of metals: microstructure evolution and multistage control. J Mater Sci 
Technol 2022;100:224-36.  DOI

17.     

Fu C, Li J, Bai J, et al. Effect of helium bubbles on irradiation hardening of additive manufacturing 316L stainless steel under high 
temperature He ions irradiation. J Nucl Mater 2021;550:152948.  DOI

18.     

Farshidianfar MH, Khajepour A, Gerlich A. Real-time control of microstructure in laser additive manufacturing. Int J Adv Manuf 
Technol 2016;82:1173-86.  DOI

19.     

Shamsaei N, Yadollahi A, Bian L, Thompson SM. An overview of Direct Laser Deposition for additive manufacturing; Part II: 
mechanical behavior, process parameter optimization and control. Addit Manuf 2015;8:12-35.  DOI

20.     

Derimow N, Clark T, Abbaschian R. Solidification processing and cooling rate effects on hexagonal Co22Cr18Cu20Mn16Ti24 high-
entropy alloys. Mater Chem Phys 2020;240:122188.  DOI

21.     

Xu X, Guo S, Nieh T, Liu C, Hirata A, Chen M. Effects of mixing enthalpy and cooling rate on phase formation of AlxCoCrCuFeNi 
high-entropy alloys. Materialia 2019;6:100292.  DOI

22.     

Kube SA, Schroers J. Metastability in high entropy alloys. Scr Mater 2020;186:392-400.  DOI23.     
Braeckman B, Boydens F, Hidalgo H, et al. High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin 
Solid Films 2015;580:71-6.  DOI

24.     

Al Hasan NM, Hou H, Sarkar S, et al. Combinatorial synthesis and high-throughput characterization of microstructure and phase 
transformation in Ni-Ti-Cu-V quaternary thin-film library. Engineering 2020;6:637-43.  DOI

25.     

Liu X, Zou P, Song L, et al. Combinatorial high-throughput methods for designing hydrogen evolution reaction catalysts. ACS Catal 26.     

https://dx.doi.org/10.1038/s41467-019-10012-7
http://www.ncbi.nlm.nih.gov/pubmed/31064988
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504951
https://dx.doi.org/10.3390/e16094749
https://dx.doi.org/10.1016/j.msea.2003.10.257
https://dx.doi.org/10.1002/adem.200300567
https://dx.doi.org/10.1038/s41578-019-0121-4
https://dx.doi.org/10.1016/j.actamat.2019.10.043
https://dx.doi.org/10.1007/s12666-018-1408-7
https://dx.doi.org/10.3390/e21040389
http://www.ncbi.nlm.nih.gov/pubmed/33267103
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514873
https://dx.doi.org/10.1016/j.intermet.2019.106592
https://dx.doi.org/10.1016/j.matdes.2016.11.027
https://dx.doi.org/10.1016/j.jallcom.2020.156533
https://dx.doi.org/10.1016/j.apsusc.2020.145736
https://dx.doi.org/10.3390/met7020043
https://dx.doi.org/10.3389/fmats.2020.00290
https://dx.doi.org/10.1016/j.msea.2020.139580
https://dx.doi.org/10.3390/met9050485
https://dx.doi.org/10.1016/j.jmst.2021.06.011
https://dx.doi.org/10.1016/j.jnucmat.2021.152948
https://dx.doi.org/10.1007/s00170-015-7423-5
https://dx.doi.org/10.1016/j.addma.2015.07.002
https://dx.doi.org/10.1016/j.matchemphys.2019.122188
https://dx.doi.org/10.1016/j.mtla.2019.100292
https://dx.doi.org/10.1016/j.scriptamat.2020.05.049
https://dx.doi.org/10.1016/j.tsf.2015.02.070
https://dx.doi.org/10.1016/j.eng.2020.05.003


Page 39 of Mooraj et al. J Mater Inf 2023;3:4 https://dx.doi.org/10.20517/jmi.2022.41 45

2022;12:3789-96.  DOI
Ludwig A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials 
libraries combined with computational methods. NPJ Comput Mater 2019;5:70.  DOI

27.     

Shi Y, Yang B, Rack PD, Guo S, Liaw PK, Zhao Y. High-throughput synthesis and corrosion behavior of sputter-deposited 
nanocrystalline Al (CoCrFeNi)100- combinatorial high-entropy alloys. Mater Design 2020;195:109018.  DOI

28.     

Kube SA, Sohn S, Uhl D, Datye A, Mehta A, Schroers J. Phase selection motifs in high entropy alloys revealed through 
combinatorial methods: large atomic size difference favors BCC over FCC. Acta Mater 2019;166:677-86.  DOI

29.     

Keil T, Utt D, Bruder E, Stukowski A, Albe K, Durst K. Solid solution hardening in CrMnFeCoNi-based high entropy alloy systems 
studied by a combinatorial approach. J Mater Res 2021;36:2558-70.  DOI

30.     

Geuser FD. High-throughput in-situ characterization and modeling of precipitation kinetics in compositionally graded alloys. Acta 
Mater 2015;101:1-9.  DOI

31.     

Zhang X, Xiang Y. Combinatorial approaches for high-throughput characterization of mechanical properties. J Materiomics 
2017;3:209-20.  DOI

32.     

Wang Z, Zhang L, Li W, et al. A high-throughput approach to explore the multi-component alloy space: a case study of nickel-based 
superalloys. J Alloys Compd 2021;858:158100.  DOI

33.     

Zhu C, Li C, Wu D, et al. A titanium alloys design method based on high-throughput experiments and machine learning. J Mater Res 
Technol 2021;11:2336-53.  DOI

34.     

Liu YH, Fujita T, Aji DP, Matsuura M, Chen MW. Structural origins of Johari-Goldstein relaxation in a metallic glass. Nat Commun 
2014;5:3238.  DOI  PubMed

35.     

Li MX, Zhao SF, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods. Nature 2019;569:99-103.  
DOI  PubMed

36.     

Frazier WE. Metal additive manufacturing: a review. J Materi Eng Perform 2014;23:1917-28.  DOI37.     
Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing (3D printing): a review of materials, methods, 
applications and challenges. Compos B Eng 2018;143:172-96.  DOI

38.     

Snow Z, Nassar AR, Reutzel EW. Invited review article: review of the formation and impact of flaws in powder bed fusion additive 
manufacturing. Addit Manuf 2020;36:101457.  DOI

39.     

Clare A, Mishra R, Merklein M, et al. Alloy design and adaptation for additive manufacture. J Mater Process Technol 
2022;299:117358.  DOI

40.     

Bandyopadhyay A, Traxel KD. Invited review article: metal-additive manufacturing - Modeling strategies for application-optimized 
designs. Addit Manuf 2018;22:758-74.  DOI  PubMed  PMC

41.     

Zhang C, Ouyang D, Pauly S, Liu L. 3D printing of bulk metallic glasses. Mater Sci Eng R Rep 2021;145:100625.  DOI42.     
Silva LJ, Souza DM, de Araújo DB, Reis RP, Scotti A. Concept and validation of an active cooling technique to mitigate heat 
accumulation in WAAM. Int J Adv Manuf Technol 2020;107:2513-23.  DOI

43.     

Dhinakaran V, Ajith J, Fathima Yasin Fahmidha A, Jagadeesha T, Sathish T, Stalin B. Wire arc additive manufacturing (WAAM) 
process of nickel based superalloys - a review. Mater Today 2020;21:920-5.  DOI

44.     

Kozamernik N, Bračun D, Klobčar D. WAAM system with interpass temperature control and forced cooling for near-net-shape 
printing of small metal components. Int J Adv Manuf Technol 2020;110:1955-68.  DOI

45.     

Hou P, Mooraj S, Champagne VK, et al. Effect of build height on temperature evolution and thermally induced residual stresses in 
plasma arc additively manufactured stainless steel. Metall Mater Trans A 2022;53:627-39.  DOI

46.     

Borkar T, Gwalani B, Choudhuri D, et al. A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: 
microstructure, microhardness, and magnetic properties. Acta Mater 2016;116:63-76.  DOI

47.     

Miracle D, Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater 2017;122:448-511.  DOI48.     
Li Z, Raabe D. Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties. 
JOM 2017;69:2099-106.  DOI  PubMed  PMC

49.     

Choi W, Jung S, Jo YH, Lee S, Lee B. Design of new face-centered cubic high entropy alloys by thermodynamic calculation. Met 
Mater Int 2017;23:839-47.  DOI

50.     

Yeh JW. Recent progress in high-entropy alloys. Available from: https://www.researchgate.net/profile/Jien-Wei-Yeh/publication/
245440481_Recent_progress_in_high-entropy_alloys/links/02e7e52456c6fbaec9000000/Recent-progress-in-high-entropy-alloys.pdf 
[Last accessed on 16 Mar 2023].

51.     

Li H, Lai J, Li Z, Wang L. Multi-sites electrocatalysis in high-entropy alloys. Adv Funct Mater 2021;31:2106715.  DOI52.     
Marshal A, Pradeep K, Music D, Zaefferer S, De P, Schneider J. Combinatorial synthesis of high entropy alloys: introduction of a 
novel, single phase, body-centered-cubic FeMnCoCrAl solid solution. J Alloys Compd 2017;691:683-9.  DOI

53.     

Yao H, Qiao J, Hawk J, Zhou H, Chen M, Gao M. Mechanical properties of refractory high-entropy alloys: experiments and 
modeling. J Alloys Compd 2017;696:1139-50.  DOI

54.     

Zhang Y, Zhou Y, Lin J, Chen G, Liaw P. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 
2008;10:534-8.  DOI

55.     

Bao N, Zuo J, Du Z, Yang M, Jiang G, Zhang L. Computational characterization of the structural and mechanical properties of Alx

CoCrFeNiTi1-x high entropy alloys. Mater Res Express 2019;6:096519.  DOI
56.     

Dong Y, Chen QS, Lu YP, Zhang PC, Li TJ. Effect of aging temperature on microstructure and hardness of CoCrFeNiTi0.5 high 57.     

https://dx.doi.org/10.1021/acscatal.2c00869
https://dx.doi.org/10.1038/s41524-019-0205-0
https://dx.doi.org/10.1016/j.matdes.2020.109018
https://dx.doi.org/10.1016/j.actamat.2019.01.023
https://dx.doi.org/10.1557/s43578-021-00205-6
https://dx.doi.org/10.1016/j.actamat.2015.08.061
https://dx.doi.org/10.1016/j.jmat.2017.07.002
https://dx.doi.org/10.1016/j.jallcom.2020.158100
https://dx.doi.org/10.1016/j.jmrt.2021.02.055
https://dx.doi.org/10.1038/ncomms4238
http://www.ncbi.nlm.nih.gov/pubmed/24488115
https://dx.doi.org/10.1038/s41586-019-1145-z
http://www.ncbi.nlm.nih.gov/pubmed/31043727
https://dx.doi.org/10.1007/s11665-014-0958-z
https://dx.doi.org/10.1016/j.compositesb.2018.02.012
https://dx.doi.org/10.1016/j.addma.2020.101457
https://dx.doi.org/10.1016/j.jmatprotec.2021.117358
https://dx.doi.org/10.1016/j.addma.2018.06.024
http://www.ncbi.nlm.nih.gov/pubmed/30746332
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368101
https://dx.doi.org/10.1016/j.mser.2021.100625
https://dx.doi.org/10.1007/s00170-020-05201-4
https://dx.doi.org/10.1016/j.matpr.2019.08.159
https://dx.doi.org/10.1007/s00170-020-05958-8
https://dx.doi.org/10.1007/s11661-021-06538-5
https://dx.doi.org/10.1016/j.actamat.2016.06.025
https://dx.doi.org/10.1016/j.actamat.2016.08.081
https://dx.doi.org/10.1007/s11837-017-2540-2
http://www.ncbi.nlm.nih.gov/pubmed/31983864
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954013
https://dx.doi.org/10.1007/s12540-017-6701-1
https://www.researchgate.net/profile/Jien-Wei-Yeh/publication/245440481_Recent_progress_in_high-entropy_alloys/links/02e7e52456c6fbaec9000000/Recent-progress-in-high-entropy-alloys.pdf
https://www.researchgate.net/profile/Jien-Wei-Yeh/publication/245440481_Recent_progress_in_high-entropy_alloys/links/02e7e52456c6fbaec9000000/Recent-progress-in-high-entropy-alloys.pdf
https://dx.doi.org/10.1002/adfm.202106715
https://dx.doi.org/10.1016/j.jallcom.2016.08.326
https://dx.doi.org/10.1016/j.jallcom.2016.11.188
https://dx.doi.org/10.1002/adem.200700240
https://dx.doi.org/10.1088/2053-1591/ab2b77


Page 40 of Mooraj et al. J Mater Inf 2023;3:4 https://dx.doi.org/10.20517/jmi.2022.4145

entropy alloy. Mater Sci Forum 2014;789:48-53.  DOI
Guo S, Ng C, Liu C. Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J Alloys Compd 
2013;557:77-81.  DOI

58.     

Chen J, Zhou X, Wang W, et al. A review on fundamental of high entropy alloys with promising high-temperature properties. J 
Alloys Compd 2018;760:15-30.  DOI

59.     

Stepanov N, Shaysultanov D, Ozerov M, Zherebtsov S, Salishchev G. Second phase formation in the CoCrFeNiMn high entropy 
alloy after recrystallization annealing. Mater Lett 2016;185:1-4.  DOI

60.     

Toda-caraballo I, Rivera-díaz-del-castillo PE. Modelling solid solution hardening in high entropy alloys. Acta Mater 2015;85:14-23.  
DOI

61.     

He Q, Yang Y. On lattice distortion in high entropy alloys. Front Mater 2018;5:42.  DOI62.     
Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy. Adv Mater 
2020;32:e2004029.  DOI  PubMed

63.     

Lee C, Song G, Gao MC, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater 2018;160:158-72.  
DOI

64.     

Dirras G, Lilensten L, Djemia P, et al. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater Sci 
Eng A 2016;654:30-8.  DOI

65.     

Owen L, Pickering E, Playford H, Stone H, Tucker M, Jones N. An assessment of the lattice strain in the CrMnFeCoNi high-entropy 
alloy. Acta Mater 2017;122:11-8.  DOI

66.     

Senkov O, Scott J, Senkova S, Miracle D, Woodward C. Microstructure and room temperature properties of a high-entropy 
TaNbHfZrTi alloy. J Alloys Compd 2011;509:6043-8.  DOI

67.     

Guo S. Phase selection rules for cast high entropy alloys: an overview. Mater Sci Technol 2015;31:1223-30.  DOI68.     
Zhang Y, Lu ZP, Ma SG, et al. Guidelines in predicting phase formation of high-entropy alloys. MRS Commun 2014;4:57-62.  DOI69.     
Kottke J, Laurent-brocq M, Fareed A, et al. Tracer diffusion in the Ni-CoCrFeMn system: transition from a dilute solid solution to a 
high entropy alloy. Scr Mater 2019;159:94-8.  DOI

70.     

Mehta A, Sohn Y. Investigation of sluggish diffusion in FCC Al0.25CoCrFeNi high-entropy alloy. Mate Res Lett 2021;9:239-46.  DOI71.     
Dąbrowa J, Danielewski M. State-of-the-art diffusion studies in the high entropy alloys. Metals 2020;10:347.  DOI72.     
Sathiaraj G, Ahmed M, Bhattacharjee P. Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to 
high entropy alloys. J Alloys Compd 2016;664:109-19.  DOI

73.     

Bhattacharjee P, Sathiaraj G, Zaid M, et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-
entropy alloy. J Alloys Compd 2014;587:544-52.  DOI

74.     

Sathiaraj G, Bhattacharjee P. Effect of starting grain size on the evolution of microstructure and texture during thermo-mechanical 
processing of CoCrFeMnNi high entropy alloy. J Alloys Compd 2015;647:82-96.  DOI

75.     

Ranganathan S. Alloyed pleasures: multimetallic cocktails. Available from: http://eprints.iisc.ac.in/6189/1/Alloyed_pleasures.pdf 
[Last accessed on 16 Mar 2023].

76.     

Qiao L, Liu Y, Zhu J. A focused review on machine learning aided high-throughput methods in high entropy alloy. J Alloys Compd 
2021;877:160295.  DOI

77.     

Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 
2018;559:547-55.  DOI  PubMed

78.     

Yang C, Ren C, Jia Y, Wang G, Li M, Lu W. A machine learning-based alloy design system to facilitate the rational design of high 
entropy alloys with enhanced hardness. Acta Mater 2022;222:117431.  DOI

79.     

Krishna YV, Jaiswal UK, Rahul RM. Machine learning approach to predict new multiphase high entropy alloys. Scr Mater 
2021;197:113804.  DOI

80.     

Zhou T, Song Z, Sundmacher K. Big data creates new opportunities for materials research: a review on methods and applications of 
machine learning for materials design. Engineering 2019;5:1017-26.  DOI

81.     

Liu X, Xu P, Zhao J, Lu W, Li M, Wang G. Material machine learning for alloys: Applications, challenges and perspectives. J Alloys 
Compd 2022;921:165984.  DOI

82.     

Liu S, Kappes BB, Amin-ahmadi B, Benafan O, Zhang X, Stebner AP. Physics-informed machine learning for composition - process 
- property design: shape memory alloy demonstration. Appl Mater Today 2021;22:100898.  DOI

83.     

Yi W, Liu G, Lu Z, Gao J, Zhang L. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and 
machine learning. J Mater Sci Technol 2022;112:277-90.  DOI

84.     

White AD. Deep learning for molecules and materials. LiveCoMS 2022:3.  DOI85.     
Nassar A, Mullis A. Rapid screening of high-entropy alloys using neural networks and constituent elements. Comput Mater Sci 
2021;199:110755.  DOI

86.     

Risal S, Zhu W, Guillen P, Sun L. Improving phase prediction accuracy for high entropy alloys with machine learning. Comput Mater 
Sci 2021;192:110389.  DOI

87.     

Montavon G, Samek W, Müller K. Methods for interpreting and understanding deep neural networks. Digit Signal Process 
2018;73:1-15.  DOI

88.     

Zhang Y, Wen C, Wang C, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and 
machine learning models. Acta Mater 2020;185:528-39.  DOI

89.     

https://dx.doi.org/10.4028/www.scientific.net/msf.789.48
https://dx.doi.org/10.1016/j.jallcom.2013.01.007
https://dx.doi.org/10.1016/j.jallcom.2018.05.067
https://dx.doi.org/10.1016/j.matlet.2016.08.088
https://dx.doi.org/10.1016/j.actamat.2014.11.014
https://dx.doi.org/10.3389/fmats.2018.00042
https://dx.doi.org/10.1002/adma.202004029
http://www.ncbi.nlm.nih.gov/pubmed/33135322
https://dx.doi.org/10.1016/j.actamat.2018.08.053
https://dx.doi.org/10.1016/j.msea.2015.12.017
https://dx.doi.org/10.1016/j.actamat.2016.09.032
https://dx.doi.org/10.1016/j.jallcom.2011.02.171
https://dx.doi.org/10.1179/1743284715y.0000000018
https://dx.doi.org/10.1557/mrc.2014.11
https://dx.doi.org/10.1016/j.scriptamat.2018.09.011
https://dx.doi.org/10.1080/21663831.2021.1878475
https://dx.doi.org/10.3390/met10030347
https://dx.doi.org/10.1016/j.jallcom.2015.12.172
https://dx.doi.org/10.1016/j.jallcom.2013.10.237
https://dx.doi.org/10.1016/j.jallcom.2015.06.009
http://eprints.iisc.ac.in/6189/1/Alloyed_pleasures.pdf
https://dx.doi.org/10.1016/j.jallcom.2021.160295
https://dx.doi.org/10.1038/s41586-018-0337-2
http://www.ncbi.nlm.nih.gov/pubmed/30046072
https://dx.doi.org/10.1016/j.actamat.2021.117431
https://dx.doi.org/10.1016/j.scriptamat.2021.113804
https://dx.doi.org/10.1016/j.eng.2019.02.011
https://dx.doi.org/10.1016/j.jallcom.2022.165984
https://dx.doi.org/10.1016/j.apmt.2020.100898
https://dx.doi.org/10.1016/j.jmst.2021.09.061
https://dx.doi.org/10.33011/livecoms.3.1.1499
https://dx.doi.org/10.1016/j.commatsci.2021.110755
https://dx.doi.org/10.1016/j.commatsci.2021.110389
https://dx.doi.org/10.1016/j.dsp.2017.10.011
https://dx.doi.org/10.1016/j.actamat.2019.11.067


Page 41 of Mooraj et al. J Mater Inf 2023;3:4 https://dx.doi.org/10.20517/jmi.2022.41 45

Vazquez G, Singh P, Sauceda D, et al. Efficient machine-learning model for fast assessment of elastic properties of high-entropy 
alloys. Acta Mater 2022;232:117924.  DOI

90.     

Purcell TAR, Scheffler M, Carbogno C, Ghiringhelli LM. SISSO++: A C++ implementation of the sure-independence screening and 
sparsifying operator approach. J Open Res Softw 2022;7:3960.  DOI

91.     

Sorkin V, Yu ZG, Chen S, Tan TL, Aitken ZH, Zhang YW. A first-principles-based high fidelity, high throughput approach for the 
design of high entropy alloys. Sci Rep 2022;12:11894.  DOI  PubMed  PMC

92.     

Hautier G, Jain A, Ong SP. From the computer to the laboratory: materials discovery and design using first-principles calculations. J 
Mater Sci 2012;47:7317-40.  DOI

93.     

Ikeda Y, Grabowski B, Körmann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive 
review for high entropy alloys and compositionally complex alloys. Mater Charact 2019;147:464-511.  DOI

94.     

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965;140:A1133-8.  DOI95.     
Ceperley DM, Alder BJ. Ground state of the electron gas by a stochastic method. Phys Rev Lett 1980;45:566-9.  DOI96.     
Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B Condens 
Matter 1986;33:8822-4.  DOI

97.     

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.  DOI  PubMed98.     
Perdew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient 
approximation for exchange and correlation. Phys Rev B Condens Matter 1992;46:6671-87.  DOI

99.     

Kim G, Diao H, Lee C, et al. First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy 
alloys with experimental validation. Acta Mater 2019;181:124-38.  DOI

100.     

Rittiruam M, Noppakhun J, Setasuban S, et al. High-throughput materials screening algorithm based on first-principles density 
functional theory and artificial neural network for high-entropy alloys. Sci Rep 2022;12:16653.  DOI  PubMed  PMC

101.     

Bellaiche L, Vanderbilt D. Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of 
perovskites. Phys Rev B 2000;61:7877-82.  DOI

102.     

Ramer N, Rappe A. Application of a new virtual crystal approach for the study of disordered perovskites. J Phys Chem Solids 
2000;61:315-20.  DOI

103.     

Chen L, Hao X, Wang Y, Zhang X, Liu H. First-principles calculation of the effect of Ti content on the structure and properties of 
TiVNbMo refractory high-entropy alloy. Mater Res Express 2020;7:106516.  DOI

104.     

Lederer Y, Toher C, Vecchio KS, Curtarolo S. The search for high entropy alloys: a high-throughput ab-initio approach. Acta Mater 
2018;159:364-83.  DOI

105.     

Curtarolo S, Setyawan W, Hart GL, et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater 
Sci 2012;58:218-26.  DOI

106.     

Sanchez J, Ducastelle F, Gratias D. Generalized cluster description of multicomponent systems. Physica A 1984;128:334-50.  DOI107.     
de Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: a user guide. Calphad 2002;26:539-53.  DOI108.     
Berding MA, Sher A. Electronic quasichemical formalism: application to arsenic deactivation in silicon. Phys Rev B 1998;58:3853-
64.  DOI

109.     

Jiang L, Lu Y, Jiang H, et al. Formation rules of single phase solid solution in high entropy alloys. Mater Sci Technol 2015.  DOI110.     
Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl 
Phys 2011;109:103505.  DOI

111.     

Yang S, Liu G, Zhong Y. Revisit the VEC criterion in high entropy alloys (HEAs) with high-throughput ab initio calculations: a case 
study with Al-Co-Cr-Fe-Ni system. J Alloys Compd 2022;916:165477.  DOI

112.     

Zhou K & Liu B. Molecular dynamics simulation: fundamentals and applications. Academic Press; 2022.  DOI113.     
Car R, de Angelis F, Giannozzi P, Marzari N. First-principles molecular dynamics. In: Yip S, editor. Handbook of Materials 
Modeling. Dordrecht: Springer; 2005. pp. 59-76.  DOI

114.     

Tang Y, Li D. Nano-tribological behavior of high-entropy alloys CrMnFeCoNi and CrFeCoNi under different conditions: a molecular 
dynamics study. Wear 2021;476:203583.  DOI

115.     

Yin S, Zuo Y, Abu-Odeh A, et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of 
chemical short-range order. Nat Commun 2021;12:4873.  DOI  PubMed  PMC

116.     

Fan Y, Wang W, Hao Z, Zhan C. Work hardening mechanism based on molecular dynamics simulation in cutting Ni-Fe-Cr series of 
Ni-based alloy. J Alloys Compd 2020;819:153331.  DOI

117.     

Li J, Fang Q, Liu B, Liu Y, Liu Y. Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular 
dynamics simulation. RSC Adv 2016;6:76409-19.  DOI

118.     

Trong DN, Long VC, Ţălu Ş. Effects of number of atoms and doping concentration on the structure, phase transition, and 
crystallization process of Fe1-x-yNixCoy alloy: a molecular dynamic study. Appl Sci 2022;12:8473.  DOI

119.     

Xie L, Brault P, Thomann A, Yang X, Zhang Y, Shang G. Molecular dynamics simulation of Al-Co-Cr-Cu-Fe-Ni high entropy alloy 
thin film growth. Intermetallics 2016;68:78-86.  DOI

120.     

Pan Z, Fu Y, Wei Y, Yan X, Luo H, Li X. Deformation mechanisms of TRIP-TWIP medium-entropy alloys via molecular dynamics 
simulations. Int J Mech Sci 2022;219:107098.  DOI

121.     

Jarlöv A, Ji W, Zhu Z, et al. Molecular dynamics study on the strengthening mechanisms of Cr-Fe-Co-Ni high-entropy alloys based 
on the generalized stacking fault energy. J Alloys Compd 2022;905:164137.  DOI

122.     

https://dx.doi.org/10.1016/j.actamat.2022.117924
https://dx.doi.org/10.21105/joss.03960
https://dx.doi.org/10.1038/s41598-022-16082-w
http://www.ncbi.nlm.nih.gov/pubmed/35831390
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279411
https://dx.doi.org/10.1007/s10853-012-6424-0
https://dx.doi.org/10.1016/j.matchar.2018.06.019
https://dx.doi.org/10.1103/physrev.140.a1133
https://dx.doi.org/10.1103/physrevlett.45.566
https://dx.doi.org/10.1103/PhysRevB.33.8822
https://dx.doi.org/10.1103/PhysRevLett.77.3865
http://www.ncbi.nlm.nih.gov/pubmed/10062328
https://dx.doi.org/10.1103/PhysRevB.46.6671
https://dx.doi.org/10.1016/j.actamat.2019.09.026
https://dx.doi.org/10.1038/s41598-022-21209-0
http://www.ncbi.nlm.nih.gov/pubmed/36198732
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534987
https://dx.doi.org/10.1103/physrevb.61.7877
https://dx.doi.org/10.1016/s0022-3697(99)00300-5
https://dx.doi.org/10.1088/2053-1591/abbf11
https://dx.doi.org/10.1016/j.actamat.2018.07.042
https://dx.doi.org/10.1016/j.commatsci.2012.02.005
https://dx.doi.org/10.1016/0378-4371(84)90096-7
https://dx.doi.org/10.1016/s0364-5916(02)80006-2
https://dx.doi.org/10.1103/physrevb.58.3853
https://dx.doi.org/10.1179/1743284715y.0000000130
https://dx.doi.org/10.1063/1.3587228
https://dx.doi.org/10.1016/j.jallcom.2022.165477
https://dx.doi.org/10.1016/b978-0-12-816419-8.00006-4
https://dx.doi.org/10.1007/978-1-4020-3286-8_5
https://dx.doi.org/10.1016/j.wear.2020.203583
https://dx.doi.org/10.1038/s41467-021-25134-0
http://www.ncbi.nlm.nih.gov/pubmed/34381027
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357793
https://dx.doi.org/10.1016/j.jallcom.2019.153331
https://dx.doi.org/10.1039/c6ra16503f
https://dx.doi.org/10.3390/app12178473
https://dx.doi.org/10.1016/j.intermet.2015.09.008
https://dx.doi.org/10.1016/j.ijmecsci.2022.107098
https://dx.doi.org/10.1016/j.jallcom.2022.164137


Page 42 of Mooraj et al. J Mater Inf 2023;3:4 https://dx.doi.org/10.20517/jmi.2022.4145

Li J, Xie B, Fang Q, Liu B, Liu Y, Liaw PK. High-throughput simulation combined machine learning search for optimum elemental 
composition in medium entropy alloy. J Mater Sci Technol 2021;68:70-5.  DOI

123.     

Zhang L, Qian K, Huang J, Liu M, Shibuta Y. Molecular dynamics simulation and machine learning of mechanical response in non-
equiatomic FeCrNiCoMn high-entropy alloy. J Mater Res Technol 2021;13:2043-54.  DOI

124.     

Morrissey LS, Nakhla S. Considerations when calculating the mechanical properties of single crystals and bulk polycrystals from 
molecular dynamics simulations. Mol Simul 2020;46:1433-42.  DOI

125.     

Zhang L, Qian K, Schuller BW, Shibuta Y. Prediction on mechanical properties of non-equiatomic high-entropy alloy by atomistic 
simulation and machine learning. Metals 2021;11:922.  DOI

126.     

Jiang J, Sun W, Luo N. Molecular dynamics study of microscopic deformation mechanism and tensile properties in AlxCoCrFeNi 
amorphous high-entropy alloys. Mater Today Commun 2022;31:103861.  DOI

127.     

Guruvidyathri K, Hari Kumar KC, Yeh JW, Murty BS. Topologically close-packed phase formation in high entropy alloys: a review 
of calphad and experimental results. JOM 2017;69:2113-24.  DOI

128.     

Gao MC. Design of high-entropy alloys. In: Gao MC, Yeh J, Liaw PK, Zhang Y, editors. High-entropy alloys. Cham: Springer 
International Publishing; 2016. pp. 369-98.  DOI

129.     

Senkov ON, Miller JD, Miracle DB, Woodward C. Accelerated exploration of multi-principal element alloys with solid solution 
phases. Nat Commun 2015;6:6529.  DOI  PubMed  PMC

130.     

Klaver TPC, Simonovic D, Sluiter MHF. Brute force composition scanning with a CALPHAD database to find low temperature body 
centered cubic high entropy alloys. Entropy 2018;20:911.  DOI  PubMed  PMC

131.     

Thurston KV, Gludovatz B, Hohenwarter A, Laplanche G, George EP, Ritchie RO. Effect of temperature on the fatigue-crack growth 
behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics 2017;88:65-72.  DOI

132.     

Li YJ, Savan A, Ludwig A. Atomic scale understanding of phase stability and decomposition of a nanocrystalline CrMnFeCoNi 
Cantor alloy. Appl Phys Lett 2021;119:201910.  DOI

133.     

Zeng Z, Xiang M, Zhang D, et al. Mechanical properties of Cantor alloys driven by additional elements: a review. J Mater Res 
Technol 2021;15:1920-34.  DOI

134.     

Conway PL, Klaver T, Steggo J, Ghassemali E. High entropy alloys towards industrial applications: high-throughput screening and 
experimental investigation. Mater Sci Eng A 2022;830:142297.  DOI

135.     

Abu-odeh A, Galvan E, Kirk T, et al. Efficient exploration of the high entropy alloy composition-phase space. Acta Mater 
2018;152:41-57.  DOI

136.     

Zhao DQ, Pan SP, Zhang Y, Liaw PK, Qiao JW. Structure prediction in high-entropy alloys with machine learning. Appl Phys Lett 
2021;118:231904.  DOI

137.     

Schleder GR, Padilha ACM, Acosta CM, Costa M, Fazzio A. From DFT to machine learning: recent approaches to materials science-
a review. J Phys Mater 2019;2:032001.  DOI

138.     

Zhou Z, Zhou Y, He Q, Ding Z, Li F, Yang Y. Machine learning guided appraisal and exploration of phase design for high entropy 
alloys. NPJ Comput Mater 2019:5.  DOI

139.     

Davydov AV, Kattner UR. Predicting synthesizability. J Phys D Appl Phys 2019;52:013001.  DOI  PubMed  PMC140.     
Jiang J, Chen P, Qiu J, et al. Microstructural evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys under uniaxial 
tension: a molecular dynamics simulations study. Mater Today Commun 2021;28:102525.  DOI

141.     

Wang L, Liu W, Zhu B, et al. Influences of strain rate, Al concentration and grain heterogeneity on mechanical behavior of 
CoNiFeAlxCu1-x high-entropy alloys: a molecular dynamics simulation. J Mater Res Technol 2021;14:2071-84.  DOI

142.     

Leong Z, Tan TL. Robust cluster expansion of multicomponent systems using structured sparsity. Phys Rev B 2019:100.  DOI143.     
Leong Z, Ramamurty U, Tan TL. Microstructural and compositional design principles for Mo-V-Nb-Ti-Zr multi-principal element 
alloys: a high-throughput first-principles study. Acta Mater 2021;213:116958.  DOI

144.     

Fernández-caballero A, Wróbel JS, Mummery PM, Nguyen-manh D. Short-range order in high entropy alloys: theoretical 
formulation and application to Mo-Nb-Ta-V-W system. J Phase Equilib Diffus 2017;38:391-403.  DOI

145.     

Fontaine D. The number of independent pair-correlation functions in multicomponent systems. J Appl Crystallogr 1971;4:15-9.  DOI146.     
Kattner UR. The calphad method and its role in material and process development. Tecnol Metal Mater Min 2016;13:3-15.  DOI  
PubMed  PMC

147.     

Zeng Y, Man M, Bai K, Zhang Y. Revealing high-fidelity phase selection rules for high entropy alloys: a combined CALPHAD and 
machine learning study. Mater Design 2021;202:109532.  DOI

148.     

Wu D, Tian Y, Zhang L, et al. Optimal design of high-strength Ti-Al-V-Zr alloys through a combinatorial approach. Materials 
2018;11:1603.  DOI  PubMed  PMC

149.     

Gumbmann E, De Geuser F, Deschamps A, Lefebvre W, Robaut F, Sigli C. A combinatorial approach for studying the effect of Mg 
concentration on precipitation in an Al-Cu-Li alloy. Scr Mater 2016;110:44-7.  DOI

150.     

Li Y, Jensen KE, Liu Y, et al. Combinatorial strategies for synthesis and characterization of alloy microstructures over large 
compositional ranges. ACS Comb Sci 2016;18:630-7.  DOI  PubMed

151.     

Tang M, Pistorius PC, Narra S, Beuth JL. Rapid solidification: selective laser melting of AlSi10Mg. JOM 2016;68:960-6.  DOI152.     
Aboutaleb AM, Mahtabi MJ, Tschopp MA, Bian L. Multi-objective accelerated process optimization of mechanical properties in 
laser-based additive manufacturing: case study on Selective Laser Melting (SLM) Ti-6Al-4V. J Manuf Process 2019;38:432-44.  DOI

153.     

Jung HY, Peter NJ, Gärtner E, Dehm G, Uhlenwinkel V, Jägle EA. Bulk nanostructured AlCoCrFeMnNi chemically complex alloy 154.     

https://dx.doi.org/10.1016/j.jmst.2020.08.008
https://dx.doi.org/10.1016/j.jmrt.2021.06.021
https://dx.doi.org/10.1080/08927022.2020.1836370
https://dx.doi.org/10.3390/met11060922
https://dx.doi.org/10.1016/j.mtcomm.2022.103861
https://dx.doi.org/10.1007/s11837-017-2566-5
https://dx.doi.org/10.1007/978-3-319-27013-5_11
https://dx.doi.org/10.1038/ncomms7529
http://www.ncbi.nlm.nih.gov/pubmed/25739749
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366518
https://dx.doi.org/10.3390/e20120911
http://www.ncbi.nlm.nih.gov/pubmed/33266635
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512495
https://dx.doi.org/10.1016/j.intermet.2017.05.009
https://dx.doi.org/10.1063/5.0069107
https://dx.doi.org/10.1016/j.jmrt.2021.09.019
https://dx.doi.org/10.1016/j.msea.2021.142297
https://dx.doi.org/10.1016/j.actamat.2018.04.012
https://dx.doi.org/10.1063/5.0051307
https://dx.doi.org/10.1088/2515-7639/ab084b
https://dx.doi.org/10.1038/s41524-019-0265-1
https://dx.doi.org/10.1088/1361-6463/aad926
http://www.ncbi.nlm.nih.gov/pubmed/31555014
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760004
https://dx.doi.org/10.1016/j.mtcomm.2021.102525
https://dx.doi.org/10.1016/j.jmrt.2021.07.116
https://dx.doi.org/10.1103/physrevb.100.134108
https://dx.doi.org/10.1016/j.actamat.2021.116958
https://dx.doi.org/10.1007/s11669-017-0582-3
https://dx.doi.org/10.1107/s0021889871006174
https://dx.doi.org/10.4322/2176-1523.1059
http://www.ncbi.nlm.nih.gov/pubmed/27330879
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912057
https://dx.doi.org/10.1016/j.matdes.2021.109532
https://dx.doi.org/10.3390/ma11091603
http://www.ncbi.nlm.nih.gov/pubmed/30181434
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164444
https://dx.doi.org/10.1016/j.scriptamat.2015.07.042
https://dx.doi.org/10.1021/acscombsci.6b00040
http://www.ncbi.nlm.nih.gov/pubmed/27557440
https://dx.doi.org/10.1007/s11837-015-1763-3
https://dx.doi.org/10.1016/j.jmapro.2018.12.040


Page 43 of Mooraj et al. J Mater Inf 2023;3:4 https://dx.doi.org/10.20517/jmi.2022.41 45

synthesized by laser-powder bed fusion. Addit Manuf 2020;35:101337.  DOI
Lu Y, Su S, Zhang S, et al. Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and 
tensile ductility. Acta Mater 2021;206:116632.  DOI

155.     

Ren J, Zhang Y, Zhao D, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature 2022;608:62-8.  
DOI  PubMed

156.     

Zhang S, Hou P, Mooraj S, Chen W. Printability of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass on steel by laser additive manufacturing: 
a single-track study. Surf Coat Technol 2021;428:127882.  DOI

157.     

Wang YM, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat 
Mater 2018;17:63-71.  DOI  PubMed

158.     

Chen W, Voisin T, Zhang Y, et al. Microscale residual stresses in additively manufactured stainless steel. Nat Commun 
2019;10:4338.  DOI

159.     

Li Z, Ludwig A, Savan A, Springer H, Raabe D. Combinatorial metallurgical synthesis and processing of high-entropy alloys. J 
Mater Res 2018;33:3156-69.  DOI

160.     

Santa-aho S, Kiviluoma M, Jokiaho T, et al. Additive manufactured 316L stainless-steel samples: microstructure, residual stress and 
corrosion characteristics after post-processing. Metals 2021;11:182.  DOI

161.     

Zhang C, Chen F, Huang Z, et al. Additive manufacturing of functionally graded materials: a review. Mater Sci Eng A 
2019;764:138209.  DOI

162.     

del Val J, Arias-gonzález F, Barro O, et al. Functionally graded 3D structures produced by laser cladding. Procedia Manuf 
2017;13:169-76.  DOI

163.     

Gwalani B, Gangireddy S, Shukla S, et al. Compositionally graded high entropy alloy with a strong front and ductile back. Mater 
Today Commun 2019;20:100602.  DOI

164.     

Li L, Wang J, Lin P, Liu H. Microstructure and mechanical properties of functionally graded TiCp/Ti6Al4V composite fabricated by 
laser melting deposition. Ceram Int 2017;43:16638-51.  DOI

165.     

Pegues JW, Melia MA, Puckett R, Whetten SR, Argibay N, Kustas AB. Exploring additive manufacturing as a high-throughput 
screening tool for multiphase high entropy alloys. Addit Manuf 2021;37:101598.  DOI

166.     

Wen Y, Zhang B, Narayan RL, et al. Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718. Addit Manuf 
2021;40:101926.  DOI

167.     

Shishkovsky I, Kakovkina N, Scherbakov V. Rapid TMC laser prototyping: Compositional and phase-structural sustainability via 
combinatorial design of titanium-based gradient alloy reinforced by nano-sized TiC or TiB2 ceramics. SPIE 2018;10523:172-7.  DOI

168.     

Traxel KD, Bandyopadhyay A. Influence of in situ ceramic reinforcement towards tailoring titanium matrix composites using laser-
based additive manufacturing. Addit Manuf 2020;31:101004.  DOI  PubMed  PMC

169.     

Gong X, Yabansu YC, Collins PC, Kalidindi SR. Evaluation of Ti-Mn alloys for additive manufacturing using high-throughput 
experimental assays and gaussian process regression. Materials 2020;13:4641.  DOI  PubMed  PMC

170.     

Li M, Flores KM. Laser processing as a high-throughput method to investigate microstructure-processing-property relationships in 
multiprincipal element alloys. J Alloys Compd 2020;825:154025.  DOI

171.     

Teh WH, Chaudhary V, Chen S, et al. High throughput multi-property evaluation of additively manufactured Co-Fe-Ni materials 
libraries. Addit Manuf 2022;58:102983.  DOI

172.     

Gwalani B, Soni V, Waseem OA, Mantri SA, Banerjee R. Laser additive manufacturing of compositionally graded AlCrFeMoVx (x = 
 0 to 1) high-entropy alloy system. Opt Laser Technol 2019;113:330-7.  DOI

173.     

Zhao Y, Lau KB, Teh WH, et al. Compositionally graded CoCrFeNiTi high-entropy alloys manufactured by laser powder bed fusion: 
a combinatorial assessment. J Alloys Compd 2021;883:160825.  DOI

174.     

Yu Z, Zheng W, Li Z, et al. Accelerated exploration of TRIP metallic glass composite by laser additive manufacturing. J Mater Sci 
Technol 2021;78:68-73.  DOI

175.     

Wu Y, Wang H, Liu X, et al. Designing bulk metallic glass composites with enhanced formability and plasticity. J Mater Sci Technol 
2014;30:566-75.  DOI

176.     

Zhai L, Lu Y, Zhao X, Wang L, Lu X. High-throughput screening of laser additive manufactured metallic glass via ultrasonic wave. 
Sci Rep 2019;9:17660.  DOI  PubMed  PMC

177.     

Tsai P, Flores KM. High-throughput discovery and characterization of multicomponent bulk metallic glass alloys. Acta Mater 
2016;120:426-34.  DOI

178.     

Tsai P, Flores KM. A combinatorial strategy for metallic glass design via laser deposition. Intermetallics 2014;55:162-6.  DOI179.     
Islam Z, Nelaturu P, Thoma DJ. A dimensionless number for high-throughput design of multi-principal element alloys in directed 
energy deposition. Appl Phys Lett 2021;119:231901.  DOI

180.     

Zhang W, Liu L, Peng S, et al. The tensile property and notch sensitivity of AlCoCrFeNi2.1 high entropy alloy with a novel “steel-
frame” eutectic microstructure. J Alloys Compd 2021;863:158747.  DOI

181.     

Joseph J, Imran M, Hodgson P, Barnett M, Fabijanic D. Towards the large-scale production and strength prediction of near-eutectic 
AlxCoCrFeNi2.1 alloys by additive manufacturing. Manuf Lett 2020;25:16-20.  DOI

182.     

Moorehead M, Nelaturu P, Elbakhshwan M, et al. High-throughput ion irradiation of additively manufactured compositionally 
complex alloys. J Nucl Mater 2021;547:152782.  DOI

183.     

Miracle D, Majumdar B, Wertz K, Gorsse S. New strategies and tests to accelerate discovery and development of multi-principal 184.     

https://dx.doi.org/10.1016/j.addma.2020.101337
https://dx.doi.org/10.1016/j.actamat.2021.116632
https://dx.doi.org/10.1038/s41586-022-04914-8
http://www.ncbi.nlm.nih.gov/pubmed/35922499
https://dx.doi.org/10.1016/j.surfcoat.2021.127882
https://dx.doi.org/10.1038/nmat5021
http://www.ncbi.nlm.nih.gov/pubmed/29115290
https://dx.doi.org/10.1038/s41467-019-12265-8
https://dx.doi.org/10.1557/jmr.2018.214
https://dx.doi.org/10.3390/met11020182
https://dx.doi.org/10.1016/j.msea.2019.138209
https://dx.doi.org/10.1016/j.promfg.2017.09.029
https://dx.doi.org/10.1016/j.mtcomm.2019.100602
https://dx.doi.org/10.1016/j.ceramint.2017.09.054
https://dx.doi.org/10.1016/j.addma.2020.101598
https://dx.doi.org/10.1016/j.addma.2021.101926
https://dx.doi.org/10.1117/12.2288260
https://dx.doi.org/10.1016/j.addma.2019.101004
http://www.ncbi.nlm.nih.gov/pubmed/32864348
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453613
https://dx.doi.org/10.3390/ma13204641
http://www.ncbi.nlm.nih.gov/pubmed/33080910
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603277
https://dx.doi.org/10.1016/j.jallcom.2020.154025
https://dx.doi.org/10.1016/j.addma.2022.102983
https://dx.doi.org/10.1016/j.optlastec.2019.01.009
https://dx.doi.org/10.1016/j.jallcom.2021.160825
https://dx.doi.org/10.1016/j.jmst.2020.10.057
https://dx.doi.org/10.1016/j.jmst.2014.03.028
https://dx.doi.org/10.1038/s41598-019-54293-w
http://www.ncbi.nlm.nih.gov/pubmed/31776422
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881406
https://dx.doi.org/10.1016/j.actamat.2016.08.068
https://dx.doi.org/10.1016/j.intermet.2014.07.017
https://dx.doi.org/10.1063/5.0069384
https://dx.doi.org/10.1016/j.jallcom.2021.158747
https://dx.doi.org/10.1016/j.mfglet.2020.06.002
https://dx.doi.org/10.1016/j.jnucmat.2021.152782


Page 44 of Mooraj et al. J Mater Inf 2023;3:4 https://dx.doi.org/10.20517/jmi.2022.4145

element structural alloys. Scr Mater 2017;127:195-200.  DOI
Miracle DB, Li M, Zhang Z, Mishra R, Flores KM. Emerging capabilities for the high-throughput characterization of structural 
materials. Annu Rev Mater Res 2021;51:131-64.  DOI

185.     

Pathak S, Kalidindi SR. Spherical nanoindentation stress-strain curves. Mater Sci Eng R Rep 2015;91:1-36.  DOI186.     
Jiang L, Cao Z, Jie J, et al. Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy 
high entropy alloys. J Alloys Compd 2015;649:585-90.  DOI

187.     

Ma S, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng A 
2012;532:480-6.  DOI

188.     

Wang X, Liu Q, Huang Y, Xie L, Xu Q, Zhao T. Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTix 
high entropy alloys prepared by laser cladding. Materials 2020;13:2209.  DOI  PubMed  PMC

189.     

Shun T, Chang L, Shiu M. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater Sci 
Eng A 2012;556:170-4.  DOI

190.     

Tong Y, Chen D, Han B, et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at 
room and cryogenic temperatures. Acta Mater 2019;165:228-40.  DOI

191.     

Huang K, Kain C, Diaz-vallejo N, Sohn Y, Zhou L. High throughput mechanical testing platform and application in metal additive 
manufacturing and process optimization. J Manuf Process 2021;66:494-505.  DOI

192.     

Chen R, Qin G, Zheng H, et al. Composition design of high entropy alloys using the valence electron concentration to balance 
strength and ductility. Acta Mater 2018;144:129-37.  DOI

193.     

Moorehead M, Bertsch K, Niezgoda M, et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive 
manufacturing. Mater Design 2020;187:108358.  DOI

194.     

Ren F, Pandolfi R, Van Campen D, Hexemer A, Mehta A. On-the-fly data assessment for high-throughput X-ray diffraction 
measurements. ACS Comb Sci 2017;19:377-85.  DOI  PubMed

195.     

Long CJ, Bunker D, Li X, Karen VL, Takeuchi I. Rapid identification of structural phases in combinatorial thin-film libraries using 
X-ray diffraction and non-negative matrix factorization. Rev Sci Instrum 2009;80:103902.  DOI  PubMed

196.     

Datye A, Alexander Kube S, Verma D, Schroers J, Schwarz UD. Accelerated discovery and mechanical property characterization of 
bioresorbable amorphous alloys in the Mg-Zn-Ca and the Fe-Mg-Zn systems using high-throughput methods. J Mater Chem B 
2019;7:5392-400.  DOI  PubMed

197.     

Zhao L, Jiang L, Yang L, et al. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys. J Mater Sci 
Technol 2022;110:269-82.  DOI

198.     

Kaufmann K, Zhu C, Rosengarten AS, Maryanovsky D, Wang H, Vecchio KS. Phase mapping in EBSD using convolutional neural 
networks. Microsc Microanal 2020;26:458-68.  DOI  PubMed

199.     

Tang Y, Sun S, Lv M, et al. Effect of Ho addition on AC soft magnetic property, microstructure and magnetic domain of 
FeCoNi(CuAl)0.8Hox (x = 0-0.07) high-entropy alloys. Intermetallics 2021;135:107216.  DOI

200.     

Zhang Q, Xu H, Tan X, et al. The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl) (x = 0-1.2) 
high-entropy alloys. J Alloys Compd 2017;693:1061-7.  DOI

201.     

Borkar T, Chaudhary V, Gwalani B, et al. A combinatorial approach for assessing the magnetic properties of high entropy alloys: role 
of Cr in AlCoxCr1-xFeNi. Adv Eng Mater 2017;19:1700048.  DOI

202.     

Li P, Wang A, Liu C. Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)x high entropy 
alloys. Intermetallics 2017;87:21-6.  DOI

203.     

Taylor CD, Lu P, Saal J, Frankel GS, Scully JR. Integrated computational materials engineering of corrosion resistant alloys. NPJ 
Mater Degrad 2018:2.  DOI

204.     

Taylor SR. The investigation of corrosion phenomena with high throughput methods: a review. Corros Rev 2011;29:135-51.  DOI205.     
Muster T, Trinchi A, Markley T, et al. A review of high throughput and combinatorial electrochemistry. Electrochim Acta 
2011;56:9679-99.  DOI

206.     

Whitfield MJ, Bono D, Wei L, Van Vliet KJ. High-throughput corrosion quantification in varied microenvironments. Corros Sci 
2014;88:481-6.  DOI

207.     

White P, Smith G, Harvey T, et al. A new high-throughput method for corrosion testing. Corros Sci 2012;58:327-31.  DOI208.     
Liu J, Liu N, Sun M, Li J, Sohn S, Schroers J. Fast screening of corrosion trends in metallic glasses. ACS Comb Sci 2019;21:666-74.  
DOI  PubMed

209.     

Xiang C, Fu H, Zhang Z, et al. Effect of Cr content on microstructure and properties of Mo0.5VNbTiCrx high-entropy alloys. J Alloys 
Compd 2020;818:153352.  DOI

210.     

Renčiuková V, Macák J, Sajdl P, Novotný R, Krausová A. Corrosion of zirconium alloys demonstrated by using impedance 
spectroscopy. J Nucl Mater 2018;510:312-21.  DOI

211.     

Qiu X. Corrosion behavior of Al2CrFeCoxCuNiTi high-entropy alloy coating in alkaline solution and salt solution. Results Phys 
2019;12:1737-41.  DOI

212.     

Qiu X, Liu C. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J Alloys Compd 
2013;553:216-20.  DOI

213.     

Hua N, Wang W, Wang Q, et al. Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys. J 
Alloys Compd 2021;861:157997.  DOI

214.     

https://dx.doi.org/10.1016/j.scriptamat.2016.08.001
https://dx.doi.org/10.1146/annurev-matsci-080619-022100
https://dx.doi.org/10.1016/j.actamat.2008.03.036
https://dx.doi.org/10.1016/j.jallcom.2015.07.185
https://dx.doi.org/10.1016/j.msea.2011.10.110
https://dx.doi.org/10.3390/ma13102209
http://www.ncbi.nlm.nih.gov/pubmed/32408503
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287792
https://dx.doi.org/10.1016/j.msea.2012.06.075
https://dx.doi.org/10.1016/j.actamat.2018.11.049
https://dx.doi.org/10.1016/j.jmapro.2021.04.027
https://dx.doi.org/10.1016/j.actamat.2017.10.058
https://dx.doi.org/10.1016/j.matdes.2019.108358
https://dx.doi.org/10.1021/acscombsci.7b00015
http://www.ncbi.nlm.nih.gov/pubmed/28463477
https://dx.doi.org/10.1063/1.3216809
http://www.ncbi.nlm.nih.gov/pubmed/19895071
https://dx.doi.org/10.1039/c9tb01302d
http://www.ncbi.nlm.nih.gov/pubmed/31411619
https://dx.doi.org/10.1016/j.jmst.2021.09.031
https://dx.doi.org/10.1017/S1431927620001488
http://www.ncbi.nlm.nih.gov/pubmed/32390590
https://dx.doi.org/10.1016/j.intermet.2021.107216
https://dx.doi.org/10.1016/j.jallcom.2016.09.271
https://dx.doi.org/10.1002/adem.201700048
https://dx.doi.org/10.1016/j.intermet.2017.04.007
https://dx.doi.org/10.1038/s41529-018-0027-4
https://dx.doi.org/10.1515/corrrev.2011.024
https://dx.doi.org/10.1016/j.electacta.2011.09.003
https://dx.doi.org/10.1016/j.corsci.2014.07.045
https://dx.doi.org/10.1016/j.corsci.2012.01.016
https://dx.doi.org/10.1021/acscombsci.9b00073
http://www.ncbi.nlm.nih.gov/pubmed/31525903
https://dx.doi.org/10.1016/j.jallcom.2019.153352
https://dx.doi.org/10.1016/j.jnucmat.2018.08.005
https://dx.doi.org/10.1016/j.rinp.2019.01.090
https://dx.doi.org/10.1016/j.jallcom.2012.11.100
https://dx.doi.org/10.1016/j.jallcom.2020.157997


Page 45 of Mooraj et al. J Mater Inf 2023;3:4 https://dx.doi.org/10.20517/jmi.2022.41 45

Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM 2008;60:46-9.  DOI215.     

https://dx.doi.org/10.1007/s11837-008-0031-1



