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Abstract
Reconstruction of the lower extremity is a complex task that has evolved greatly in both technique and indication 
over the past century. Early advances in treating traumatic lower extremity injuries focused on primary amputation 
to avoid the high mortality of infection. The introduction of antibiotics improved surgical debridement and local 
reconstructive options, enhancing the viability of lower extremities with simple and proximal defects. With the 
advent of microvascular surgery, free tissue transfer techniques provided a means to reconstruct more distal and 
complex problems. As these surgical techniques have continued to evolve, so too have indications for 
reconstruction, patient management and post-operative care-now with a greater emphasis on patient quality of life 
and limb function. The purpose of this article is to outline the evolution of lower extremity reconstruction, and how 
the standard of practice has changed over time.

Keywords: Lower extremity, lower extremity reconstruction, limb salvage, free flap, perforator flap, vascularized 
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INTRODUCTION
Traumatic injuries of the lower extremity are complex in nature. Mechanism of injury often predisposes 
these wounds to contamination, with high rates of infection when not appropriately debrided[1-7]. Prior to 
the industrial revolution, injuries of the lower extremity were largely sustained on the battlefield secondary 
ballistic or blunt force trauma[8,9]. High mortality rates from infection made primary amputation the 
standard of care in treating lower extremity injuries[9,10]. The invention and increasing accessibility of 

https://creativecommons.org/licenses/by/4.0/
https://parjournal.net/
https://dx.doi.org/10.20517/2347-9264.2021.134
http://crossmark.crossref.org/dialog/?doi=10.20517/2347-9264.2021.134&domain=pdf


Page 2 of Evans et al. Plast Aesthet Res 2022;9:34 https://dx.doi.org/10.20517/2347-9264.2021.13414

penicillin in the 1940s ushered in a new era, greatly decreasing mortality rates secondary to infection and 
demonstrating promise for potential limb salvage[10]. As a result, amputation no longer became an obligatory 
life-saving measure, thus shifting surgical goals from primary amputation to limb salvage.

Methods of lower extremity reconstruction have evolved greatly over the past century, beginning with the 
understanding of muscle, axial and perforator flaps, as well as skeletal stabilization, and most importantly, 
microvascular surgery. The ability to transfer healthy vascularized tissue from distant anatomic locations to 
reconstruct severe trauma made limb salvage a realistic and pragmatic option for the most complex 
defects[1,3,4,11-19]. At the forefront of microvascular reconstruction was Dr. Marko Godina, who made 
numerous contributions in reconstructive surgery stemming from his early work in limb salvage 
management. Since Godina, refinements in technique and indications have continued to shape our 
understanding of how, when, and why to reconstruct lower extremity injuries.

CLASSIFICATION AND DECISION MAKING
Prior to reconstructive planning of the lower extremity, the surgeon must be able to effectively evaluate an 
injury and determine its candidacy for salvage. In 1976, Gustilo and Anderson developed the most widely 
used classification system for open fracture-comparing the force of impact, the extent of soft-tissue injury, 
and degree of wound contamination in a retrospective review of 1025 patients[6]. Fractures were then 
categorized into three types, with higher rates of infection and complications noted with increasing 
severity[5,6].

Management of lower extremity open fractures was widely adopted based on Gustilo’s original classification 
system in 1976. While Type I and II injuries demonstrated predicable outcomes, Gustilo observed varying 
degrees of prognosis in Type III injuries. In 1984, Gustilo further subdivided Type III injuries based on 
adequate soft tissue coverage (IIIA), periosteal stripping (IIIB), and limb ischemia necessitating vascular 
repair (IIIC)[20].

The varying complexity of lower extremity trauma has driven authors to expand on Gustilo’s work and 
refine their implications[21]. Many adaptations have since been proposed to better categorize injuries with 
portending worse outcomes based on the extent of vascular injury and degree of soft tissue deficit, notably > 
10 cm[1,22-27]. Concerted data has since demonstrated increasing rates of infection, non-union, and flap failure 
in injuries with worse vascular injuries, further emphasizing the importance of distal limb perfusion in 
functional limb salvage[24-26].

While numerous studies have proposed modifications to the Gustilo classification system, it remains the 
most widely used open fracture classification system today. Its framework allows surgeons to effectively 
communicate across multidisciplinary teams and reasonably predict patient outcomes in lower extremity 
reconstruction.

MARKO GODINA’S METHOD
Marko Godina was a pioneer in reconstructive microsurgery, shaping the field with his many contributions 
despite his career being tragically cut short in 1986[2]. In his seminal work, Godina showed that with 
aggressive debridement and early soft tissue coverage (emergent free flap), reliable outcomes could be 
achieved. Additionally, Godina emphasized the correlation of successful limb salvage with surgeon 
experience and multidisciplinary care, noting an increase in his free flap success rate with increased 
experience and familiarity with his team[2,3,28,29].
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In his thesis, reviewing 826 free flaps, Godina found that only 1% of patients developed an infection when 
acutely debrided and reconstructed within 72 hours, with a flap failure rate of 0.75%. Conversely, when 
reconstruction was delayed beyond 72 hours, the flap failure rate was noted to be 8%-12%, with an infection 
rate of 9%-18%[2]. While optimal timing in extremity reconstruction has evolved throughout the years, 
Godina’s principle of early intervention survives as a principal tenet in extremity reconstruction.

Godina additionally emphasized the importance of preserving vascular patency to the distal extremity. 
While adequate perfusion can be met with a single vessel runoff in the lower extremity, Godina encouraged 
the use of end-to-side anastomoses in his reconstructions to ameliorate the risk of vascular 
insufficiency[28,30]. Although complications rates are equivalent between end-to-end and end-to-side 
anastomosis, Godina focused on preserving maximum perfusion when able[15,19].

While the plastic surgeon’s toolbox and flap selection have expanded largely since Godina’s time, Godina 
performed many of his free tissue transfers based on the subscapular axis[30]. The patient was placed in the 
lateral decubitus position, with posterior access utilized in dissecting out recipient vessels within the lower 
extremity. Godina advocated for beginning dissection of recipient vessels outside the zone of injury and 
dissecting distally to the first evidence of pathology. Although fallen out of favor for other modalities, 
Godina believed that all anastomoses should be done proximal to the zone of injury, and that an arterial 
autograft should be utilized to bridge gaps within the zone of injury[30-36].

Godina’s flap selection was limited by his time. Soft tissue coverage was typically achieved with free muscle 
flaps with skin grafting or, less frequently, myococutaneous flaps[3,37]. Moreover, muscle flaps were believed 
to be a highway for antibiotic therapy to bathe contaminated wounds, making them preferential in the 
reconstruction of traumatic injuries[12,16,17,38,39]. Today, fasciocutaneous and perforator flaps are exceptional 
flap options for reconstruction of the lower extremity and demonstrate less donor site morbidity when 
compared to muscle flaps[40-45]. Ultimately, as advancements in lower extremity reconstruction continue to 
emerge, it is evident that the “Godina Method” remains at the foundation of reconstructive 
microsurgery[46,47].

BUILDING ON GODINA’S FOUNDATION–INNOVATIONS IN LOWER EXTREMITY 
RECONSTRUCTION
While Godina advocated for early debridement and coverage of injuries within 72 hours, surgeons have 
continued to investigate optimal timing for extremity reconstruction. Time to coverage has since been 
refined, with multiple authors showing improved outcomes with early soft tissue coverage extending to 7-10 
days[1,2,23,48,49]. Overall improvements in infection rates, bony union and flap success have demonstrated the 
utility in delaying reconstruction to an urgent setting (7-10 days), emphasizing the importance of serial 
debridement of non-viable tissue and preparing an adequate wound bed prior to functional limb salvage.

In 2000, Gopal et al.[4], introduced the “fix and flap” method in which lower extremity traumatic injuries 
were treated via a combined orthopedic and plastic surgery approach[50]. The authors suggested treating 
lower extremity injuries in a single stagged procedure in which early radical debridement, skeletal 
stabilization, and soft tissue coverage were performed. Results demonstrated favorable outcomes for 
surgeries performed within 72 hours of injury and comparable data compared to stagged reconstruction. 
Overall, timing in lower extremity reconstruction remains at the surgeon’s discretion. The literature appears 
concerted that early debridement in the acute setting is critical to decreasing complication rates, and 
reconstructive efforts should be ideally performed prior to 10-14 days[1,3-6,23,48,49,51].
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DEFINITIVE RECONSTRUCTION
Reconstructive efforts in unstable patients with traumatic lower extremity injuries are contraindicated until 
cleared by Advanced Trauma Life Support practice management.  In these patients, wounds can be 
temporized with devices such as negative pressure wound therapy (NPWT), dermal matrices, and external 
delayed primary closure devices (e.g., DermaClose, Jacob’s Ladder, Shoe-String Method)[50,52-60].

NPWT was introduced in 1996 as a method for delayed wound closure, in which an open-cell polymer 
foam is placed within a wound bed and subjected to negative pressure to promote wound contracture and 
granulation tissue formation[61]. Since its introduction, evidence has shown that NPWT can effectively 
temporize and shrinks wounds, as well as assist in converting full-thickness wounds with exposed bone or 
tendon into a granulated wound bed for skin grafting[18,53,62,63]. However, in the contaminated field or areas of 
severe soft tissue defects, indications are limited. While NPWT has been shown to improve overall wound 
hygiene, it does not definitively decrease bioburden or infection rates, and is not a substitute for early 
operative debridement when able[22,64,65]. Newer versions of NPWT include the instillation of irrigation to 
continually cleanse contaminated wounds[56-58,66-68]. Instillation solutions vary widely, with studies 
demonstrating comparable efficacy amongst solutions, suggesting a utility in the process of irrigation rather 
than the solution itself[67]. Overall, the adjuvant of an instilling NPWT can help change a static wound to a 
variable environment, which may ultimately help cleanse contaminated wound beds.

In addition to NPWT, the utilization of acellular dermal regenerative templates, such as Integra, has 
provided surgeons with an additional tool to temporize and close wounds secondarily. These dermal 
matrices are composed of a bilaminate sheet of cross-linked bovine tendon collagen and shark 
glycosaminoglycans, which serve as a collagen scaffolding for the growth of a neodermis[50,55,69]. Wounds of 
the lower extremity that would previously be treated with free flap reconstruction can now potentially be 
closed with Integra application and skin grafting following 3-4 weeks of neodermis development. While 
dermal matrices can be a useful tool in soft tissue reconstruction, their overall efficacy remains poor in 
contaminated wound beds[69].

ORTHOPEDIC ADVANCEMENTS IN SKELETAL STABILIZATION AND BONEY DEFECTS
Traumatic lower extremity wounds are inherently contaminated. Open fractures should be managed with 
the initiation of intravenous antibiotics and washout within 6 hours. Severe open fractures such as Gustilo 
IIIB or IIIC injuries, may result in large bony defects or a grossly contaminated wound in which immediate 
internal fixation with hardware is contraindicated. In these injuries, antibiotic-impregnated cement is 
commonly used as temporization[70-73]. While first described in the 1970s, antibiotic-impregnated cement 
continues to be routinely used to eliminate dead space and elute antibiotics at high local concentrations to 
decrease bacterial burden in contaminated wound beds[71,74]. Prior to definitive skeletal fixation, or flap 
coverage, the beads are removed.

Skeletal defects of the lower extremity offer a unique challenge. Autologous bone grafting can provide 
structural cortical bone and osteogenic potential to fill smaller defects. For larger defects, modalities such as 
limb shortening and distraction osteogenesis are effective but morbid and inherently complex[75]. By 
convention, bony defects greater than 6cm are largely reconstructed with vascularized bone graft. While this 
convention has been largely adopted, Allsopp et al.[76], determined that this indication is not evidence-based. 
Today, a variety of techniques have gained traction in reconstructing complex boney defects of the lower 
extremity.

WOUND TEMPORIZATION - DEVELOPMENTS IN SUBACUTE THERAPY UNTIL 
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Distraction osteogenesis has proven to be a reliable method for repairing segmental bony defects measuring 
up to 10 cm[75]. In the Ilizarov technique, first described in the 1950s, distraction is achieved via placing an 
external fixation device with carefully planned corticotomies to preserve blood supply[77]. Following an 
initial latency phase of 3-10 days, gradual distraction of the proximal and distal segments is achieved at an 
average gain in length of 1cm every 30 days. Upon completion of distraction, the newly formed bone within 
the distraction gap is allowed to bridge and corticalize via a consolidation phase. Numerous frames and 
external fixation devices have since been described to improve techniques in distraction osteogenesis. The 
Taylor spatial frame is a modern modification to the traditional Ilizarov technique, in which a multiplanar 
external hexapod frame is used to improve versatility in correcting rotation, angulation and translation of 
bony deformities[75,78].

Autologous nonvascularized bone grafting is largely considered the gold standard in repairing small bony 
defects of the lower extremity. Cancellous bone can be accessibly harvested from iliac crest, femur, or tibia, 
and grafted into the defect for repair[75]. Additionally, smaller corticocancellous bone flaps, such as the 
medial femoral condyle flap, have also demonstrated efficacy in repairing small defects in post-traumatic 
non-unions[79-82] [Figure 1]. In the reconstruction of large bony defects, significant structural and weight-
bearing support is needed for functional limb salvage[75,83]. Historically, these defects were reconstructed with 
large cadaveric allografts, as vascularized bone flaps were associated with prolonged immobilization and 
early fracture. While allograft reconstruction has proven successful in limb salvage, it is associated with a 
higher incidence of infection and non-union when compared to vascularized bone grafts[75,84-88]. The first 
vascularized bone grafting was described in 1905 when a pedicled fibular graft was utilized to fill a large 
tibial defect[85]. In 1975, the first microsurgical vascularized bone graft was performed, using a fibula to fill a 
large tibial defect in the contralateral leg[88]. While the fibula remains one of the most commonly used 
vascularized bone flaps for repairing large bony defects, multiple adaptations have contributed to its success 
in lower extremity reconstruction. One of these adaptations is the Capanna Technique, which was first 
described in 1993. The Capanna technique combines the advantages of allograft structural support and 
vascularized bone graft osteogenesis. In this technique, the free fibula acts as an intramedullary rod within 
an allograft conduit, and is used to reconstruct large boney defects to provide early structural integrity and 
decreased rates of non-union and infection[75,83,89,90].

In addition to reconstruction with bone grafting, several autologous and allograft products are available to 
help augment fracture healing[75]. Platelet-rich plasma, bone marrow mesenchymal stem cells, and adipose-
derived stem cells, are examples of autologous therapies that can be used to promote wound healing in areas 
of traumatic injury. These therapies work similarly to polarize M2 macrophages and upregulate key growth 
factors such as transforming growth factor β (TGFβ), vascular endothelial growth factor, and fibroblast 
growth factor within the wound bed[91]. The newly polarized M2 macrophages and increased levels of 
growth factors work synergistically to augment wound healing by reducing inflammation, inducing collagen 
synthesis, and promoting angiogenesis. Similar to autologous options, allograft material such as bone 
morphogenic protein (BMP), demineralized bone matrix, and ViviGen are additional adjuvant therapies 
that can be used to promote fracture healing. BMP contains functional growth factors to promote bone 
regeneration via osteoinduction, whereas demineralized bone matrix acts as a scaffold to promote bone 
formation via osteoconduction[90]. Vivigen is a unique cellular allograft made up of three components to 
promote bone formation: Lineage committed bone cells to induce osteogenesis, a natural bone scaffolding 
to promote osteoconduction, and growth factors to promote osteoinduction. Overall, advancements in 
these adjuvant therapies may help further decrease complication and non-union rates following lower 
extremity trauma fixation.
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Figure 1. Vascularized bone flaps for lower extremity reconstruction of bony defects. (A) free fibula osteocutaneous flap. (B) in situ 
medial femoral condyle flap isolated on descending geniculate vessels for the reconstruction of a small bony defect.

THE EVOLUTION OF OPERATIVE PLANNING AND FLAP SELECTION 
Early reconstructive options in lower extremity trauma relied heavily on physical exam and duplex Doppler 
ultrasound for surgical planning. Formal arteriography was utilized to evaluate vascular patency in lower 
extremities injuries concerning ischemia, however, not routinely used for surgical planning[20,92]. Upon 
surgical exploration, the traumatic nature of these injuries often distorts soft tissue planes and anatomic 
landmarks, making the determination of adequate recipient vessels difficult within the zone of injury. 
Today, computed tomography (CT) angiography is routinely used as a minimally invasive way to evaluate 
distal limb perfusion and target recipient vessels[92]. In early reconstructive efforts, it was believed that flap 
anastomoses should be performed with a recipient vessel proximal to the zone of injury[3,28,32,92]. 
Kolker et al.[31], determined that there was no difference in complication rates for flaps based on vessels 
proximal, or distal to the zone of injury. With the knowledge that distal vessels can be adequate targets in 
lower extremity reconstruction, CT angiography allows the surgeon to effectively look at distal patency in 
vessels that pass through the zone of injury.

Flap selection in lower extremity reconstruction had changed considerably since 1854, when Hamilton first 
described the use of a cross-leg flap for the treatment of chronic lower extremity wounds[8]. In the late 1890s 
and early 1900s, pedicled muscle flaps and vascularized bone flaps began to emerge as a useful tool in 
reconstructing soft tissue and boney defects[85,93,94]. In the 1960s-1970s, microsurgical options in extremity 
reconstruction emerged, with the first successful lower extremity free tissue transfer performed by Daniel 
and Taylor in 1971[95].

With the emergence of microsurgical techniques, free muscle transfers with skin grafting and myocutaneous 
free flaps soon became the gold standard for lower extremity reconstruction[2,3,12-14,31,44,46,51]. Severe soft tissue 
deficits of the lower extremity that were once considered too distal, or too large for pedicled flap 
reconstruction, could now be covered with free tissue transfer.

In the late 1980s, the advent of the perforasome theory and perforator flaps further expanded flap options 
for lower extremity reconstruction. New fasciocutaneous and muscle-sparing myocutaneous flaps proved 
not only reliable in covering soft tissue deficits, but also demonstrated decreased donor site morbidity and 
improved cosmesis[12,40,41,43] [Figure 2].
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Figure 2. Perforator flap for lower extremity reconstruction. (A) Pre-operative markings of an anterior lateral thigh (ALT) flap based on 
three perforating vessels from the descending lateral femoral circumflex pedicle. (B) ALT fasciocutaneous flap with dissected 
perforating vessels. (C) Large skin paddles can be successfully elevated based on perforators for the reconstruction of soft tissue 
defects in the lower extremity. (D) ALT flap inset with preferential end-to-side anastomosis.

As a result of the perforasome theory, vascular mapping of perforators has developed numerous additional 
options for free tissue transfer and local tissue rearrangements in the lower extremity[43,46,96,97]. Perforator-
based local flaps have gained favor in reconstructing small soft tissue defects of the lower extremity. 
Numerous perforators exist within the lower limb for flap harvest, with a study by Morris et al.[98], 
demonstrating 93 perforators in 21 distinct territories for use. Increasing understanding of vascular 
perforators in the lower extremity has allowed local perforator flaps, such as the propeller and keystone flap, 
to not only replace like with like, but also reconstruct soft tissue defects that would previously require free 
tissue transfer[99,100] [Figure 3].

Advances in microsurgery have placed a greater emphasis on the importance of decreasing donor site 
morbidity and reducing patient harm. In addition to utilizing perforasomes and fasciocutaneous flaps, 
peripheral nerve blocks, epidurals and local anesthesia have proven to be effective alternatives to general 
anesthesia for select patients[101-103]. Reconstruction of the lower extremity often necessitates multiple surgical 
procedures and long operative times for patients. Successful free tissue transfer and local flaps under nerve 
block may provide reconstructive options for patients who would otherwise be unable to tolerate general 
anesthesia. Additionally, without the need for endotracheal intubation, and airway protection, utilization of 
nerve blocks may allow for patients to maintain adequate nutrition, which is often interrupted with serial 
debridement and reconstructive efforts in traumatic injuries [Figure 4].
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Although innovations in microsurgery and skeletal stabilization have allowed surgeons to reconstruct 
injuries that would otherwise be amputated, outcomes are not always favorable. Limb salvage often requires 
several surgeries and prolonged physical therapy, often plagued by high cost, infection, and functional 
complications[104-108]. In an effort to evaluate patient outcomes following limb salvage, literature has 
demonstrated substantial physical, mental, and financial hardships that can follow these heroic attempts. 
Thus, while early management of lower extremity injuries emphasized reconstructive options, the paradigm 
has now shifted to focus on maximizing quality of life.

One of the most influential series investigating limb salvage versus primary amputation is the Lower 
Extremity Assessment Project (LEAP)[107]. As part of this multi-institutional series, a study published in 2009 
demonstrated primary amputation after lower extremity trauma resulted in lower complication rates 
compared to limb salvage, with no statistically significant difference in self-reported health status and 
functional outcomes between both groups[106]. A portion of the limb salvage group (4%) went on to 
amputation as a result of complications (e.g., infection, osteomyelitis, non-union, etc.), compared to 5.4% of 
patients in the primary amputation group that required a revision amputation surgery.

In analyzing long-term outcomes for these patients, a 7-year follow-up demonstrated no statistically 
significant difference in return to work for primary amputation versus limb salvage patients. Moreover, 
patients who received soft tissue only reconstruction and primary below-knee amputations reported lower 
severity scores of their injuries than those who underwent both bone and soft tissue reconstruction for limb 
salvage[109].

While the LEAP series does not objectively outline which patient should receive limb salvage versus primary 
amputation, it does present comparable functional outcomes and subjective injury severity scores between 
both groups[104,108-110]. Overall, it is evident that severe lower extremity trauma is debilitating for patients 
regardless of attempted limb salvage or amputation. These injuries are often met with poor functional 
outcomes, complication rates, and chronic pain. Reconstructive options have greatly improved in functional 
limb salvage; however, it is apparent that greater emphasis is needed on post-operative care and patient 
rehabilitation.

In addition to analyzing the quality of life for primary amputation versus limb salvage, healthcare-associated 
costs should also be considered prior to reconstruction. In a study by MacKenzie et al.[111], it was estimated 
that the cost of the first two years following injury was comparable between primary amputation ($91,105) 
versus limb salvage ($81,996). In analyzing life-time cost, MacKenzie et al.[111] determined primary 
amputation costs to be substantially higher than limb salvage when factoring in costs for a new prosthesis, 
maintenance, and medical care ($509,275 versus $162,28, respectively). Chung et al.[112], demonstrated 
similar findings, with 40 years of life remaining cost estimated to be $350,465 for primary amputation and 
$133,704 for limb salvage.

CONCLUSION
Lower extremity reconstruction has evolved tremendously in a short few decades. Innovations in 
microvascular surgery, skeletal fixation, and patient management have contributed greatly to the ability to 
care for patients with traumatic injuries. While operative techniques continue to expand, a greater emphasis 
is needed on improving long-term outcomes in these patients. The authors believe that future efforts to 
improve physical rehabilitation, chronic pain, and minimize costs, are key factors in preserving limb 
function and patient quality of life following lower extremity trauma.

NOT ALL LIMBS NEED SALVAGE-A FOCUS ON FUNCTIONAL OUTCOMES AND PATIENT
QUALITY OF LIFE
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Figure 3. Propeller flap for local flap reconstruction of a lower extremity soft tissue defect. (A) Isolated propeller flap based on a 
perforator from the posterior tibial vessels for the reconstruction of an anteromedial soft tissue defect. (B) Raised propellor flap with 
isolated perforating vessels. (C) 90-degree rotation of flap with a successful inset for coverage of anteromedial defect. The donor site 
can be covered with a split-thickness skin graft or dermal matrix at the time of inset.

Figure 4. Flap selection algorithm for lower extremity reconstruction: Simple defects defined as wounds with healthy wound beds, 
sufficient tissue laxity, and absence of exposed hardware, tendon, bone, or neurovascular structures. Complex defects defined as open 
fractures, wounds with soft tissue deficit not amendable to primary closure, and wounds with gross contamination, exposed hardware, 
bone, tendon, or neurovascular structures.
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