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Abstract
Neuroblastoma (NB) is the most common cancer of infancy and accounts for nearly one tenth of pediatric cancer 

deaths. This mortality rate has been attributed to the > 50% frequency of relapse despite intensive, multimodal clinical 

therapy in patients with progressive NB. Given the disease’s heterogeneity and developed resistance, attaining a cure 

after relapse of progressive NB is highly challenging. A rapid decrease in the timeline between successive recurrences is 

likely due to the ongoing acquisition of genetic rearrangements in undifferentiated NB-cancer stem cells (CSCs). In this 

review, we present the current understanding of NB-CSCs, their intrinsic role in tumorigenesis, their function in disease 

progression, and their influence on acquired therapy resistance and tumor evolution. In particular, this review focus 

on the intrinsic involvement of stem cells and signaling in the genesis of NB, the function of pre-existing CSCs in NB 

progression and therapy response, the formation and influence of induced CSCs (iCSCs) in drug resistance and tumor 

evolution, and the development of a CSC-targeted therapeutic approach. 
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INTRODUCTION
Neuroblastoma (NB), an extracranial solid tumor, is the most common cancer at infancy (28%)[1,2] 
and accounts for 6% of all pediatric cancers[3-5]. Clinically, NB disease progression is branded with 
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hematogenous metastasis and frequent relapses, with a rapidly decreasing survival timeline (1st relapse in 
18 months, 2nd relapse in 8.7 months, and 3rd relapse in 3.8 months)[6,7]. Given the disease’s heterogeneity 
and developed resistance, attaining a cure after relapse of progressive NB is highly challenging[3,4,8,9]. 
The rapid reduction in the timeline between successive recurrences[6,7] is likely due to the ongoing 
acquisition of genetic rearrangements in undifferentiated cancer stem cells (CSCs)[10-14] with intensive 
multi-modal clinical therapy (IMCT). The IMCT for high-risk NB comprises induction phase with 
alternating regimens of high-dose chemotherapeutic drugs [cyclophosphamide, cisplatin or carboplatin, 
vincristine, doxorubicin (adriamycin), etoposide, topotecan] and load reduction surgery; consolidation 
phase with more intensive chemotherapy (carboplatin, etoposide, topotecan, busulfan and melphalan, 
thiotepa) along with radiotherapy (external beam RT, MIBG RT) and stem cell transplant [autologous 
bone marrow transplantation (ABMT); peripheral blood stem cell reinfusion] and maintenance phase with 
retinoid drug treatment (13-cis-retinoic acid, isotretinoin), immunotherapy (dinutuximab), and immune-
activating cytokine (GM-CSF, IL-2) treatment (www.cancer.org/cancer/neuroblastoma/treating.html; 
www.childrensoncologygroup.org/index.php/in-treatment-for-neuroblastoma). Appropriately, current 
studies are focused on understanding the acquired resistance after IMCT, particularly in determining 
the ongoing acquisitions of genetic/molecular rearrangements in therapy-resistant clones, CSC clonal 
selection/enrichment, and epithelial-to-mesenchymal transition (EMT) and phenotypic switch endorsing 
de novo evolution of CSCs[15,16]. Nevertheless, studies have affirmed that the presence of NB-CSCs not 
only indicates the progressive state of the disease, but also dictates poor response to therapy and poor 
clinical outcomes[17,18]. In this review, we aim to present the current understanding of NB-CSCs in disease 
progression, principally in the context of orchestrated resistance to IMCT.
      
RELEVANCE OF STEM CELLS IN NB GENESIS
NB genesis, in general, is considered the accumulation of several mutations in actively dividing cells 
that form the nervous system during embryogenesis. The heterogeneity of NB indicates the presence of 
multipotent cells within the tumor, which could be the result of progenitor cell dedifferentiation under 
anomalous conditions or by accumulation of oncogenic mutations. Such an hypothesis took a definitive 
turn with the discovery of neural multipotent cells in the adult nervous system[19], recognizing that 
mutations accumulated in stem cells or in defined progenitors as the trigger points for tumorigenesis. 
Embryogenesis, in which a single cell evolves into billions, is regarded as the cancer-prone period; indeed, 
many neural cancers, including NB, are more frequent in infants/children than in adults[20,21]. During 
embryogenesis, programmed cross-talk between the ectodermal bone morphogenetic protein 4 (BMP4) and 
notochord noggin and chordin leads to neural tube development and neural crest cell (NCC) migration, 
which later forms the peripheral nervous system (discussed in detail by de Weille[22]). The downstream fate 
(peripheral autonomic ganglia, neurons, glia cells, Schwann cells, adrenal medulla, melanocytes, thyroid 
parafollicular cells, and smooth muscle cells) of NCCs is governed by the orchestrated interplay of sonic 
hedgehog, BMP, snail family transcriptional repressor 2 (Slug), Snail, fibroblast growth factor (FGF), and 
wingless-related integration site (Wnt) signaling[23]. 

A select subset of NCCs in the trunk region shows a sympathoadrenal lineage that contributes to the 
formation of sympathetic ganglia and medullary region of the adrenal gland. These committed NCCs are 
designated as sympathoadrenal progenitors (SAPs) and are believed to be the origin of NB [Figure 1]. SAPs 
constantly undergo a Snail/Slug-dependent EMT augmenting NCCs’ migratory abilities, allowing them to 
migrate out of the neural tube. The prompted migration is accompanied by DNA repair gene regulation 
in SAPs, making them vulnerable to genomic alterations[24]. SAPs lose part of their multipotency, and 
more are designated for neural or melanocyte lineage[25]. Bmp/Notch signals induce differentiation of these 
cells to the sympathetic ganglion chain. The SAPs express Phox2a/b, which is required for the production 
of enzymes in catecholamine biosynthesis. Downstream differentiation of SAPs is effected by a complex 
interplay of FGF, Notch, Wnt, achaete-scute BHLH-transcription factor (ASCL1), paired-like homeobox 
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2a (Phox2a), and Phox2b[25]. Phox2b mutations cause congenital central hypoventilation syndrome[26], 
which serves as the predisposition for ganglioneuroma (GN), ganglioneuroblastoma (GNB), and NB. 
Since the morphologically more differentiated GN and GNB are lower grade with favorable outcomes, the 
genesis of aggressive NB depends on the stage of the sympathoadrenal progenitor (SAP), with un-/poorly-
differentiated SAPs causing more lethal tumors. Accordingly, neuroblastic tumors could be Schwannian 
stroma-poor (undifferentiated, poorly differentiated, and differentiating), GNB intermixed Schwannian 
stroma-rich, or GN. Although the presence of catecholamines in an infant’s urine serves as the diagnostic 
marker for NB, its presence in high levels with much higher frequency than that of NB diagnosis (Dx)[27,28] 
indicates a considerable spontaneous regression. In this regard, a mass screening study by Sawada assessing 
the levels of catecholamine metabolites, vanillylmandelic acid (VMA) and homovanillic acid (HVA), 
the sensitive diagnostic markers for NB in urine indicated that during the development of sympathetic 
neurons the incidence of in situ NB is higher than the incidence of sporadic cases[28]. Most of these in 
situ NBs spontaneously regress as the child ages. This is attributed to the VMA-to-HVA ratio where < 1 
corresponds to a more aggressive, biologically primitive type of NBL associated with a shorter survival[28]. 
At the molecular level, NCCs that undergo EMT are characterized by the loss of epithelial morphology, 
regulation of junctional (E-cadherin, cytokeratin, occludins, claudins) complexes, and induction of 
migratory ras homolog family member B and matrix [collagenase, matrilysin, urokinase, heparanase, 
matrix metalloproteinases (MMPs), N-Cadherin] proteins. Consistently, aggressive cells from progressive 
NB exhibit similar physiognomies[29]. NB of progressive stages have been shown to generate self-renewing 
and multipotent CSCs that develop into neurons, Schwann-like cells, and melanocytes [Figure 1][17,30]. 

Figure 1. Schematic representation of cellular and molecular events in embryogenesis and diverted signaling events leading to NB genesis. 
SAPs undergo a Snail/Slug-dependent EMT that augments NCCs’ migratory abilities, allowing them to migrate out of the neural tube. 
The prompted migration, accompanied by regulation of DNA repair genes in SAPs, makes them vulnerable to many genomic alterations 
leading to the genesis of NB. While embryogenesis is a sequential step-down process from pluripotency to differentiation, advancing 
disease stages of NB progress successively from differentiated to undifferentiated self-renewing multipotent CSCs. NB: neuroblastoma; 
SAPs: sympathoadrenal progenitors; EMT: epithelial-mesenchymal transition; CSCs: cancer stem cells 



The magnificent biogenetic heterogeneity of NB indicates an interplay of more than one gene in tumor 
initiation and evolution. Researchers have identified that NB could be transmitted as recessive trait at low 
penetrance (e.g., locus 2p)[31]. Further studies validated the 2p23‐24 locus with 104 genes, including v-myc 
avian myelocytomatosis viral oncogene NB derived homolog (MYCN)[32]. MYCN, the player in neurogenesis 
that is critical for expansion of progenitor cells, is overexpressed in NB[33]. Transgenic models of animal 
studies affirmed that overexpression of MYCN causes NB in their progeny[29]. In parallel, researchers also 
defined the association of the anaplastic lymphoma receptor tyrosine kinase (ALK) gene with the NB 
predisposition. Thus far, several germline and somatic ALK mutations have been identified (more frequent, 
R1275, F1174, F1245) in NB. These mutations promote receptor autophosphorylation in the kinase domain, 
leading to the activation of the ALK pathway. Likewise, genome wide association studies identified 
the association of BRCA1 associated RING domain 1 β (BARD1β) with high-risk NB[34]. Other studies 
indicated that polymorphisms at locus of LIM domain only 1 (LMO1) [single nucleotide polymorphism 
(SNP) rs 2168101][35] and Lin-28 homolog B (LIN28B) are significantly involved in the susceptibility to 
NB[36]. Loss of chromosome 1p36 region, 3p, 4p, 9p, 11q, and 14q together with gain of 1q, 2p24, 12p, 17q, 
and mutations of ALK and AXL receptor tyrosine kinase (AXL) and telomerase reverse transcriptase 
(TERT) re-arrangements may orchestrate the transformation of normal NCCs to NB cells. Recent genome 
profiling studies in relapsed NB indicated new and acquired recurrent mutations in cadherin 5 (CDH5), 
dedicator of cytokinesis 8 (DOCK8), protein tyrosine phosphatase non-receptor 14 (PTPN14), HRas proto-
oncogene (HRAS), and KRAS proto-oncogene (KRAS), signifying that these acquired mutations contribute 
to drug resistance and disease evolution[37]. However, it is not clear how and when the mutations occur, or 
whether these mutations occur in specific clones (e.g., CSCs) or enhance clonal selection and enrichment. 
In addition to the genetic causes, other factors, including manifestation of other neurocristopathies such 
as Hirshsprung’s disease[38,39], Klippel-Feil syndrome, Waardenburg’s syndrome[40], Ondine’s curse[39], 
Beckwith-Weidemann syndrome[41], Cushing’s syndrome[42,43], fetal alcohol syndrome[44-46], fetal hydantoin 
syndrome caused due to intake of anti-seizure drug phenylhydantoin[47,48], and exposure to products 
causing high blood pressure, sweating, headache, and abnormal heartbeats in mothers, have been 
associated with increased susceptibility to NB.

NB-CSCS IN THERAPY RESISTANCE AND DISEASE EVOLUTION 
Tumor heterogeneity, in general, has been explained by two models: the stochastic model, in which each 
cancer cell has the ability to contribute to the tumor evolution, and a more accepted CSC model, in which 
a small subset of cells within the tumor has high tumorigenic potential and can give rise to all other 
cells of the tumor[49]. Over the last two decades, the functional significance of CSCs in tumor initiation, 
progression, response to therapy, and poor clinical outcomes has been recognized in different types of 
tumors, including pancreatic cancer[50], liver cancer[51,52], lung cancer[53], breast cancer[54], head and neck 
squamous cell carcinoma[55], colon cancer[56,57], brain tumors[58], leukemia[59], and NB[18,60,61]. By definition, 
CSCs are the indefinitely proliferating subpopulation within the tumor, exhibiting stem-like properties 
that include self-renewal, multipotency and/or pluripotency maintenance, tumorigenic potential, an 
unparalleled metastatic state, and anti-apoptotic ability. CSCs are known to play roles in induced 
resistance to chemotherapy and radiation, resulting in an increased risk of tumor progression, relapse, 
and recurrence[62-64]. This function is attributed to the possession of multiple mechanisms, including 
repression of apoptosis, increased DNA damage repair, conserved dormancy, and altered drug response[65]. 
Traditional treatment modalities, i.e., conventional chemotherapy and radiotherapy, are adopted based 
on the stochastic model, with a focus on killing all cancer cells[49]. However, later studies indicated that 
the limitations of such a strategy are mainly attributed to the intrinsic resistance of the CSCs within the 
tumor[16,66,67]. The current understanding of the role of CSCs in therapy response, tumor evolution, and the 
development of CSC-targeted therapeutic strategies for various tumors was extensively reviewed [Table 1] 
and provided a strong basis for similar biology in NB.  
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In the context of progressive NB, several studies have identified that CSCs play a crucial and definite role in 
disease progression, relapse, and poor prognosis[61]. High-risk NBs consist of small populations of cells with 
preserved stemness characteristics. These clones exhibit the ability to form highly resistant tumorospheres 
and have high metastatic potential[60]. NB-CSCs are identified based on morphology, cell efflux property, 
cell surface markers, and tumorosphere formation in in vitro conditions. On a morphological basis, 
NB cells can be classified as neuroblastic [neuroblastic type cells (N-type), immature, tumorigenic], 
Schwann-like (S-type, non-tumorigenic with limited lifespan), and intermediate (I) type cells[30,68]. The 
malignant NCC-like intermediate type NB cells (I-type) cells are multipotent and can self-renew, as well 
as differentiate into N and S type morphologies[69]. Beyond the self-renewal and differentiation capabilities, 
I-type cells are associated with tumor relapse/metastasis[69], possess high tumor-forming capacity in vivo[70], 
and are characterized by overexpression of stemness-related molecules, including cluster of differentiation 
133 (CD133), cKIT, NOTCH 1, GPCR class C group 5 member C (GPRC5C), and tropomyosin receptor 
kinase B (TRKB)[71]. In addition, the role of NOTCH 1 in maintaining the stem cell phenotype has been 
recognized. However, I-type cells are only regarded as aggressive NB cells with relatively high plasticity, 
and hence do not fully meet the criteria for categorization as CSCs.  

Drug efflux pumps and chemoresistance
Identification and characterization of NB-CSCs that could be useful for precisely assessing NB Dx/
prognosis, therapy response, and clinical outcomes have been continuously evolving over the last two 
decades. Nestin and ABC subfamily G member 2 (ABCG2) are 2 markers that were regarded as NB-
CSC markers very early on. The NB cells presented with drug eff lux pumps (that exclude Hoescht dye) 
that confer multi-drug resistance (MDR) have been consistently identified as a “side-population” (SP). 
These cells were found to have high expression of ABCG2 and ABC subfamily A member 3 (ABCA3), 
and are highly [Table 1]. Documented reviews on the role of CSCs in therapy response, tumor evolution, 

Table 1. Documented reviews on the role of CSCs in therapy response, tumor evolution, and the development 
of CSC-targeted therapeutic strategies for diverse human tumors, including NB. These compilations clearly 
define the identification of CSC surface markers, orchestrated signaling events, influence of ECM and TME; 
portray the functions of CSCs in induced/acquired therapy resistance; and recognize the possibility and 
benefit of CSC-targeted therapies in cancer treatment

Title Ref.
Chemoresistance, cancer stem cells, and miRNA influences: The case for neuroblastoma Buhagiar and Ayers[72]

p53, stem cell biology and childhood blastomas Oh et al. [73]

Cancer stem cells and pediatric solid tumors Friedman and Gillespie[74]

Cancer stem cells and their interaction with the tumor microenvironment in neuroblastoma Garner and Beierle[75]

Multidrug resistance and cancer stem cells in neuroblastoma and hepatoblastoma Alisi et al. [16]

CD133: A stem cell biomarker and beyond Li[76]

Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment Phi et al. [77]

Cancer stem cells revisited Batlle and Clevers[78]

Mechanisms of chemoresistance in cancer stem cells Abdullah and Chow[15]

Cancer stem cell metabolism Pages et al. [62]

Cancer stem cells: Implications for cancer therapy Dawood et al. [79]

Cancer stem cell surface markers on normal stem cells Kim and Ryu[80]

Cancer stem cell signaling pathways Matsui[81]

Cancer stem cells: Basic concepts and therapeutic implications Nassar and Blanpain[82]

Cancer stem cells and tumorigenesis Zhu and Fan[64]

The therapeutic promise of the cancer stem cell concept Frank et al. [83]

Drug resistance driven by cancer stem cells and their niche Vila et al. [63]

How to hit mesenchymal stromal cells and make the tumor microenvironment immunostimulant 
rather than immunosuppressive

Poggi et al. [84]

Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications Ishiguro et al. [85]

Therapeutic strategies targeting cancer stem cells Yoshida and Saya[86]

Therapies targeting cancer stem cells: Current trends and future challenges Dragu et al. [49]

Stem cell theory of carcinogenesis Trosko and Chang[87]
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and the development of CSC-targeted therapeutic strategies for diverse human tumors, including NB. 
These compilations clearly define the identification of CSC surface markers, orchestrated signaling events, 
influence of extracellular matrix (ECM) and tumor microenvironment (TME); portray the functions of 
CSCs in induced/acquired therapy resistance; and recognize the possibility and benefit of CSC-targeted 
therapies in cancer treatment [Table 1].

Concentrated in post-IMCT relapsed tumors (vs. pretreatment controls)[88]. ATP binding cassette (ABC) 
transporters are the transmembrane proteins that drive eff lux of many chemotherapeutic drugs and 
hence dictate chemoresistance[89,90]. Newton et al.[88] compared the Side populations derived from the 
same patients at diagnosis and at relapse after IMCT. Their findings showed significantly increased Side 
populations in post-IMCT relapsed NB (vs. at diagnosis), heightened proliferation and clonal expansion of 
drug-resistant Side populations, and acquired gain of pluripotency maintaining factors [nanog homeobox 
(Nanog), POU class 5 homeobox 1 (Oct3/4)] in drug-resistant Side populations. Such critical information 
clearly indicated the acquired stemness-related genetic alterations in Side populations, their selection and 
clonal expansion, that subsequently played a crucial role in chemoresistance and tumor relapse[88]. ABCG2, 
an ABC protein associated with neural stem and progenitor cells, has been shown to influence stemness 
maintenance. Nestin, on the other hand, is a neuronal stem cell protein that also serves as a putative 
marker for CSC[91]. In neural stem/progenitor cells, ABCG2 and Nestin exhibits heightened colocalization 
and in particular the ABCG2+ and Nestin+ cells mimic each other in their ability to form tumorospheres[90]. 
Consistently, number of studies designated them as putative CSC markers for various tumors including 
NB[61,91,92]. Similarly, the NB Side population cells expressing high levels of ABCG2 and ABCA3 transporter 
genes have been shown to possess high capabilities to expel chemotherapy drugs (e.g., mitoxantrone) and 
promote proliferation[16]. ABCG2 have also been shown to transport a number of common chemotherapy 
drugs, including anthracyclins, imatinib, and Topoisomerase I and II inhibitors[16].   
 
Cell surface CSC markers and therapy resistance 
Identifying the surface expression of select CSC markers clearly provides the basis of the CSC composition 
in NB as such and for drug response. Recognizing specific surface markers is useful for characterization 
of CSCs, examining NB biology/evolution, and therapeutic targeting. To date, a number of markers, 
including CD133, frizzled class receptor 6 (FZD6), leucine rich repeat containing GPCR 5 (LGR5), aldehyde 
dehydrogenase (ALDH), ALDH1A2, ALDH1A3, cluster of differentiation 114 (CD114), and cluster of 
differentiation 117 (C-kit), have been used in NB[93]. 

CD133
NB-CSCs have been shown to pose a genetic profile different from that of non-stem tumor cells, including 
gains of 16p13.3, 19p13.3, and 19q13.33. Interestingly, the gain in 16p13 is significantly associated with the 
expression of CD133 in NB[94]. CD133 (Prominin-1), a pentaspan transmembrane protein expressed in 
neural stem cells, has been indicated as a marker for tumor-initiating cells[76]. CD133 levels were inversely 
correlated with overall survival (OS) of NB patients[95]. It has been shown that the poor association occurs 
through Serine/Threonine kinase (AKT) pathway-mediated chemoresistance[96]. Muting CD133 decreases 
NB cell colony formation and proliferation, increases differentiation in vitro, and decreases tumor burden 
in vivo[97]. On a therapy response note, studies have shown that CD133+ NB cells efficiently develop 
tumorospheres, which exhibited high resistance to doxorubicin (DOX) treatment with upmodulation 
of ABCG2[61]. Conversely, DOX treatment resulted in increased CD133- and ABCG2-expressing Side 
populations and the ability of these Side populations to generate non-Side population cells[61] exhibiting: 
(1) drug resistance in CD133-expressing Side populations; (2) clonal selection and enrichment of drug-
resistant CSCs; and (3) drug resistance and disease evolution mediated by CSCs. Consistently, studies have 
indicated the criticality of CD133-expressing Side populations in NB progression and therapy response. 
For instance, studies demonstrated that (1) non-adherent clumps of tumor cells that express CD133, OCT4, 
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pAKT could grow in a serum-free medium with higher colony and neurosphere formation[98]; (2) CD133 
levels were directly associated with NB advanced disease stages and inversely correlated with postoperative 
survival time[95]; and (3) CD133+ NB cells were more resistant to cisplatin, carboplatin, DOX, and etoposide 
(vs. CD133- cells) and presented with increased phosphorylation of extracellular signal-regulated kinases 
(ERK) and P38 mitogen-activated protein kinases (P38)[99]. Consistently, an independent study showed that 
targeted inhibition of CD133 in NB cells produced increased RET expression and NB differentiation and, 
this response is mediated through the regulation of the p38 MAPK and phosphoinositide-3-kinase (PI3K)/
AKT pathways[97]. 

CD133+ NB-CSCs exhibit inhibited levels of mitogen-activated protein kinase phosphatase 1 (MKP1) and 
increased phosphorylation of ERK and P38[99]. The influence of these MAPKs in cell cycle progression, 
differentiation, and cell death has been extensively documented. It has been realized that chemotherapy 
drugs such as cisplatin activate JNK, ERK, and other MAPKs through multitude mechanisms that dictate 
the development of drug resistance[100]. Since MKP1 regulation leads to the phosphorylation of these 
kinases, the low levels of MKP1 in CD133+ cells directly relate to the induced drug resistance in NB[99]. 
However, CD133-targeted therapeutic measures for NB warrant in-depth investigation. For instance, 
although valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has been shown to induce cell 
death in NB cells and overcome hypoxia-induced resistance to cisplatin[101], it has also been reported that 
VPA treatment increases the percentage of CD133+ NB-CSCs and does not induce apoptosis in these cells. 
Similarly, decitabine, a hypomethylating drug, and trichostatin A, a HDAC inhibitor, have been shown to 
induce surface expression of CD133 in CD133- cancer cells[66]. Detailed insights on the regulation of CD133 
expression and its role in self renewal, tumorigenesis, metastasis, chemo/radio-resistance, metabolism, 
dedifferentiation, and autophagy have been well documented[76]. Although CD133 is highly regarded as 
a CSC marker in NB settings, it is pertinent to note that CD133 is only expressed in ~40% of primary 
tumors, which precludes its use as a stand-alone NB-CSC marker.
 
FZD6, LGR5 and ALDH 
Surface marker FZD6, a WNT receptor, is inversely associated with OS in patients with NB[102]. It has 
been shown that FZD6+ Side populations were selectively enriched in hypoxic regions, and such Side 
populations can readily form tumorospheres and develop more aggressive tumors. Likewise, LGR5, a 
WNT-responsive G-protein-coupled receptors (GPCR) protein, significantly correlates with poor event-
free survival (EFS) in high-risk NB subsets[103]. LGR5 is specifically expressed in CSCs, is known to 
brace WNT/β-catenin signaling as an R-spondins receptor, and drives oncogenesis[104]. Elevated levels of 
LGR5 in IMCT-resistant cells were associated with aggressive phenotype, and cells presented with high 
LGR5 levels were highly chemoresistant[104]. Activation of LGR5 with WNT3a ligands promotes WNT-
pathway-dependent proliferation. However, muting LRG5 has been shown to mediate apoptosis through 
mitogen-activated protein kinase (MEK)/ERK signaling, independent of the WNT pathway. Moreover, 
upmodulation of ALDHs was associated with retinoic acid (RA) tolerance[105]. Consistently, ALDH1A2 
and ALDH1A3 showed an inverse relationship with OS in high-risk NB patients. Independent studies 
have demonstrated that silencing ALDH1A2 or ALDH1A3 reduced clonal expansion of tumor-initiating 
cells and tumorosphere formation[106,107]. Hartomo et al.[106] assessed the activity and expression of 19 
isoforms of ALDH, and identified that ALDH1A2, ALDH1L1, and ALDH3B2 expression consistently 
induced tumorosphere and colony formation. However, they also recognized that ALDH1A2 is the only 
candidate to show a significant association with poor prognosis of patients with NB. More importantly, 
high levels of ALDH1A2 expression correlated with the growth and dedifferentiation of NB xenografts, as 
well as RA treatment resistance, in NB cells[106]. It is critical to note that there is thus far no definitive in 
vivo evidence documented for FZD6-, LGR5-, or ALDH1A3-positive Side populations in terms of tumor 
evolution or drug-response in NB. However, the role of these candidates as drivers, players, or enhancers in 
acquired disease resistance and disease progression is possible and warrants further investigation. A study by 
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Kuo et al.[108] identified the role of jumonji, AT-rich interactive domain 1 (JARID1B) (KDM5B) a histone 
lysine demethylase, in modulating stemness-related signaling. High levels of JARID1B were associated with 
high levels of ALDH activity, and this upmodulation was associated with enriched NB tumorospheres. 
JARID1B-enriched SP showed the strongest sphere-forming capacity and also presented with high levels 
of Nestin colocalization. While JARID1B-expressing NB-CSCs have been shown to be less responsive to 
DOX, etoposide, and cisplatin, silencing JARID1B resulted in decreased invasiveness, CSC phenotype, 
EMT process, and compromised NOTCH signaling[108]. 

CD114
Recent studies, identified the surface expression of CD114, a G-CSF receptor, as a putative marker for 
NB-CSCs. Unlike other surface markers, the CD114-expressing SP is < 1% and exhibit several CSC 
characteristics with 10 times more tumorigenic capacity[109]. More importantly, incidence of CD114+ 
Side populations has been reported in all NB cell lines, patient samples, and PDXs tested to date, with 
a frequency ranging from 0.01%-3%. A drift toward clonal selection and enrichment of CD114+ SP after 
IMCT in relapsed tumor and in metastases demonstrates the intrinsic chemoresistant capabilities of this 
SP[109,110]. Growing evidence has documented the characteristics of the CD114+ SP, including the near-
identical gene profile [e.g., Sox10, twist family BHLH transcription (TWIST), vimentin (VIM), MMPs] to 
that of pre-/early migratory NCCs that maintain multipotent capacity[111]. Furthermore, studies have shown 
that NB pathogenesis and dissemination are dependent on CD114+ SP through downstream activation 
of signal transducer and activator of transcription 3 (STAT3) target genes[110]. In normal neural tissue, 
CD114 (G-CSFR) promotes neurogenesis and survival and expansion of the neural stem cells[112,113]. G-CSF 
activates STAT3 in these receptor-positive CSCs; this signaling promotes stemness maintenance, clonal 
expansion, tumor formation and dissemination, and chemoresistance[109]. The existence of a granulocyte 
colony-stimulating factor (GCSF)→STAT3→GCSF positive feedback cycle has also been recognized. 
Targeted deregulation of this feedback loop with STAT3 inhibitors not only depletes the CSC-SP within 
tumors, but also prompts tumor regression and profound chemosensitization[110].

Other CSC markers involved in resistance
CFC1, a member of the epidermal growth factor-Cripto/FRL-1/Cryptic (EGF-CFC) family, with designated 
functions in embryonic development, has been recently recognized as a CSC marker for NB[114]. CFC1, is 
strongly expressed in sphere-forming CSCs and is associated with unfavorable prognosis in NB patients. 
In addition, the functional role of CFC1 in NB tumorosphere formation has been realized and further 
identified that CFC1 directly targets activin-A induced cell differentiation and Smad phosphorylation, 
resulting in tumor progression. Analysis of activin-A signaling further identified the inhibition of 
differentiation-inducing [BMP-4, transforming growth factor beta (TGFβ)-1, and TGFβ-3] and tumor 
suppressor [cyclin dependent kinase 4 (CDK4), cyclin dependent kinase inhibitor 2A (CDKN2A), p14-
ARF, and p16-INK4A] molecules in CFC1-overexpressing cells[114]. Naiditch et al.[67] assessed the differential 
regulation of genes in DOX-resistant NB cells compared with their wild-type counterparts. The high-
throughput whole genome approach identified chemotherapy resistance-associated differential regulation 
of > 1500 candidates. With the network analysis, this study clearly identified the deregulation of EMT 
pathway, stemness maintenance, and tumor progression signaling. The regulation/deregulation of 
neuronal, epithelial, mesenchymal, and pluripotency maintenance markers in these DOX-resistant, highly 
invasive cells illustrates the role of acquired mesenchymal change in induced drug resistance. 

B cell-specific Moloney murine leukemia virus integration site 1 (BMI1), a polycomb protein has been 
shown to have critical roles in stem cell self-renewal, initiation of cancer and chemoresistance in many 
human malignancies including NB[115-117]. BMI1 has been shown to be highly expressed in NB[117] and is 
essential for the pathogenesis of the disease[115]. The binding of E2F-1 and MYCN[118] to BMI1 promoter and 
its activation were documented[117]. It has been shown that BMI1 inflicts NB progression and contributes to 
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therapy resistance/disease evolution through modulating key players in tumorigenesis including Cyclin E1, 
KIF1Bβ, TSLC1 and others[119,120]. More importantly, the role of BMI1 in the regulation self-renewal capacity 
and differentiation of I-type NB CSCs has been realized[116]. Consistently, Melone et al.[121] indicated the 
clinical relevance of BMI1 in NB and defined its association to advanced disease stages. Though the direct 
role of BMI1+ NB-CSCs in orchestrating therapy resistance is currently unknown, targeting BMI1+ CSCs 
has been shown to overcome chemoresistance[122-125] and radio-resistance[126-128] in many human cancers.  

Induced CSCs and therapy resistance 
As discussed above, drug resistance and cancer recurrence are majorly affected by the preexisting CSCs 
(tumor-initiating cells) that are derived from normal stem cells under certain environments. The overall 
hypothesis is that these preexisting CSCs cause therapy resistance and/or disease relapse with their unique 
abilities of clonal selection, self-renewal, clonal expansion, stemness maintenance, and plasticity. In parallel, 
recent findings indicated that CSCs can be formed from non-stem cancer cells exposed to radiation or 
chemotherapeutic drugs, creating an SP of induced-CSCs (iCSCs)[129]. The transformation of non-stem 
cancer cells into iCSCs involves reprogramming factors [OCT4, SOX2, myelocytomatosis viral oncogene 
homolog (C-MYC), kruppel like factor 4 (KLF4)][130-133] depended dedifferentiation. Such transformation 
always displays significant CSC properties, sphere formation, drug resistance, and tumorigenicity[134,135]. In 
addition to radiation and chemotherapy drugs, many other driving factors, including temperature, external 
cytokines/transformation factors, inhibitor of DNA binding 4 (ID4), and interleukins 6 (IL6) have been 
causally linked to dedifferentiation of non-stem cancer cells[136-138]. In NB, epigenetic modifiers have been 
shown to endorse iCSCs formation and maintenance[139]. With regard to the role of CSCs in induced drug 
resistance, studies across human tumors, including NB, widely agreed that CSCs are inherently resistant to 
radiotherapy and/or chemotherapy[140-143]. However, the understanding of the acquired genetic alterations 
in non-stem cancer cells and their transformation into iCSCs after radiochemotherapy is recently on an 
upsurge (reviewed in detail elsewhere[144]). ICSCs formation was documented with common chemotherapy 
drugs [fluorouracil (5-FU), DOX] and with various qualities of radiation. Assessment of the mechanism(s) 
involved in the formation of iCSCs revealed that a complex interplay of multiple signaling pathways, small 
non-coding RNAs (microRNAs), and the appropriate TME facilitates dedifferentiation. Interestingly, both 
the transformation of normal stem cells in to CSCs and dedifferentiation of non-stem cancer cells into 
iCSCs employ near-identical pathways (e.g., NFkB, Notch, Wnt, Hedgehog). During the formation of iCSCs 
from non-stem cancer cells exposed to radiotherapy, these signaling events have been shown to coincide 
with other complementary pathways, including pluripotency maintenance reprogramming (SOX-2, OCT4, 
NANOG) and plasticity, and to configure iCSCs.

Expressional deregulation of many other proteins are also causally linked to the dedifferentiation of non-
stem cancer cells and formation of iCSCs[118,145-147]. For instance, Lamin A/C, the type V intermediate 
filaments of nuclear lamina, is often reduced or absent in proliferative cells of various tumors[148,149]. 
Lack of lamin A/C predisposes cells towards an immature phenotype and inf luences the presence of 
tumor-initiating cells in NB[150]. Selective silencing of lamin A/C triggers the formation of NB-iCSCs 
with self-renewing ability. Loss of lamin A/C is also MYCN expression-dependent[150]. SOX2, a member 
of the SRY-related high mobility group box, is a transcription factor that is mostly expressed during 
embryonic development. It has been shown to affect cell fate and differentiation[151], self-renewal, and 
proliferation[152-156]. In NB, SOX2 levels were heightened and its expression correlated with advanced 
disease stage[157]. Studies with SOX2 stably over-expressed NB cells not only recognized amplified 
tumorigenicity, but also showed clonal selection and expansion of stem-like cells (with loss of N and S 
type). Selective silencing of SOX2 in highly malignant I-type CSCs greatly reduced its tumorigenicity and 
enriched N and S type cells[158]. Targeting SOX2 resulted in cell-cycle arrest at G0/G1 phase and hence 
drove decreased cell proliferation. Similarly, tailless-like receptors (TLX), which is a nuclear receptor and a 
transcription factor, plays a critical role in self-renewing, undifferentiated, and proliferative states of neural 
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stem cells[159]. During NB genesis, PHOX2B dictates dedifferentiation of SAPs by upmodulating T cell 
leukemia homeobox 3 (TLX3) and neurotrophin receptor P75 (P75). TLX has been causally linked to NB 
dedifferentiation, resulting in tumorigenesis by activating MMP2 and MMP9. Consistently, TLX has been 
identified to be overexpressed in NB, involved in progression of tumorigenesis and correlated with shorter 
survival rates[160].

Role of TME in influencing CSC status and therapy resistance  
The TME also serves as a critical regulator of stem cell differentiation, dedifferentiation of non-stem 
cancer cells, and tumorigenesis[161,162]. The TME contributes hypoxia, inflammation, acidic stress (pH), and 
remodeling of ECM, coordinates CSC self-renewal, and inhibits differentiation. For instance, NB exposure 
to hypoxia led to the upmodulation of NCC markers (C-Kit, Notch1) and hypoxia-induced response genes 
[hypoxia inducible factor (HIF)-1α , HIF-2α][163,164]. Similarly, studies have showed a greater concentration 
of tumor associated macrophages (TAMs) in metastatic NB than in locoregional disease[165]. The role and 
functions of these microenvironmental factors are reviewed in detail elsewhere[75]. With regard to their 
function in orchestrated drug resistance and NB evolution, mesenchymal stromal cell-derived cancer-
associated fibroblasts (CAF) contributed significantly to clonal expansion and chemoresistance. Once 
induced, CAFs maintain their activated state; increased CAFs were linked with induced microvascular 
proliferation and Schwannian stroma-poor histology. This study showed that the pro-tumorigenic activity 
of mesenchymal stem cells (MSC)-CAF occurs through the co-activation of the janus kinase 2 (JAK2)/
STAT3 and MEK/ERK1/2 pathways. Further, treatment with Ruxolitinib (JAK2/STAT3 inhibitor) or 
Trametinib (MEK/ERK1/2 inhibitor) significantly enhanced the response of NB tumors to etoposide[166]. 
The ECM small leucine-rich proteoglycans (SLRPs), including decorin (DCN) and lumican (LUM), 
exhibited acquired upmodulation during NB-CSC enrichment[146]. Further, these small leucine rich 
proteoglycans (SLRP)-positive NB-CSCs were highly resistant to temozolomide (TMZ), demonstrating 
that (1) CSCs promote huge quantities of DCN and LUM; and (2) increased SLRPs promote acquired TMZ 
resistance, cellular heterogeneity, and a quiescent phenotype. The outcomes of this study clearly identified 
the pivotal role of SLRPs in drug resistance, the cell plasticity of NB-CSCs that dictates cell survival, and 
ECM/ TME modulation potential[146]. 

CSC-targeted therapy
Considering the significance of targeting CSCs or the formation of iCSCs in countering acquired therapy 
resistance and in the treatment of high-risk aggressive NB [Figure 2], recent studies are appropriately 
focused on developing improved therapeutic strategies. These proposed strategies include targeting 
specific surface markers, modulation of signaling pathways, adjustment of the microenvironment signals, 
inhibition of drug-eff lux pumps, manipulation of miRNA expression, and induction of CSCs apoptosis 
and differentiation. Immunotherapy is often used in combination with chemotherapy and radiotherapy. 
It involves the use of antibodies that target specific cancer stem cell markers[49]. However, the limitations 
must be considered when selecting the appropriate target surface markers, as most of the documented 
markers are (1) not ubiquitously expressed in all (100%) NB-CSCs; and (2) many CSC markers are also 
expressed in normal stem cells[60,74,167]. Researchers have focused in identifying and characterizing agents 
[Rapamycin, dequalinium analogue, C-14 linker (DECA-14)] that could selectively target CSCs while 
sparing normal stem cells. Differentiating agents, such as RA alone or in combination with proteasome 
inhibitor (MG132), have been shown to decrease stem cell markers (Nestin, Sox2, Oct3/4) and suppress 
spheroid formation[168,169]. Recently, Bahmad et al.[170] showed that targeting AKT/MTOR signaling in NB-
CSCs could be beneficial. They reported that triciribine and rapamycin, which inhibit at 2 different points 
of the AKT/MTOR pathway, decrease cell survival and tumorosphere formation. Further, virotherapy 
can be an effective approach to kill CSCs. A study by Mahller et al.[61] showed that engineered oncolytic 
virus Nestin-targeted oHSV significantly killed DOX-resistant CD133+ NB-SP. Interestingly in this study 
authors demonstrated the existence of CD34 and CD133 double positive cells within all patient derived 
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cell-lines. The tumorospheres derived from these cells exhibited CD133 and ABCG2 enrichment, multi-
lineage potential and are resistant to Doxorubicin. In an attempt to kill both the differentiated and tumor 
initiating NB cells, this study demonstrated that a nestin targeted engineered clinically safe oncolytic virus 
(rQNestin34.5) promoted a profound cell death of both bulk and tumor initiating tumorsphere-derived NB 
cells. More importantly, this study showed new virus production within in tumorsphere, and prompted 
a significant delay in tumor formation in vivo[61]. Induced telomerase activity (TA) also directly relates to 
clinical management of NB. Interestingly, studies found that the TA is selectively confined to the CSC-SP 
(CD15+) and is not detectable in most of the non-stem cancer cells and normal tissue stem cells[171]. Such a 
finding designates the TA as highly specific, and it could serve as a suitable candidate for anti-CSC therapy. 

Figure 2. A: Cartoon showing the models of NB-CSCs-associated tumor resistance and tumor relapse. Pre-existing NB-CSCs survive 
IMCT and undergo self-renewal, clonal expansion and development of non-stem tumor cells, resulting in tumor relapse. In parallel, the 
non-stem tumor cells that survive IMCT under unique circumstances undergo extensive genetic and molecular rearrangements that lead 
to their transformation into induced CSCs (iCSCs). Generation of iCSCs with unique stem-cell characteristics of self-renewal and expansion 
results in tumor maintenance and relapse. B: Schematic representation of the molecular characteristics of NB-CSCs (pre-existing NB-
CSCs and induced iCSCs) and their signaling flow-through that dictates therapy resistance and NB disease evolution. IMCT: intensive 
multi-modal clinical therapy; NB: neuroblastoma; CSCs: cancer stem cells; iCSCs: induced cancer stem cells; N-Type: neuroblastic type 
cells; I-Type: intermediate type neuroblastoma cells; S-Type: Schwann-type cells 
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It has also been shown that telomerase inhibition with Imetelstat will result in CSC exhaustion through its 
ability to irreversibly alter self-renewal capacity and cell growth[171]. 

The FDA approved drug vorinostat (histone deacetylase inhibitor) increases chemosensitization, inhibits 
NB-CSCs’ tumorosphere formation capacity, reduced tumor cell invasion and deplete SP[172]. Further in 
doxorubicin-resistant NB-CSCs, vorinostat treatment resulted in the regulation of stemness maintenance 
and drug-resistance candidates including ABCB1, ABCC4, LMO2, SOX2, ERCC5, S100A10, IGFBP3, 
TCF3, and VIM[172]. Like-wise, the inhibition of L1-Cam (CD171), the driver for tumorigenic invasion and 
motility[173] in CD133+ cells showed reduced cell survival, tumorosphere formation, self-renewal capacity, 
increased apoptosis and, suppressed tumor growth in vivo[174]. It was indicated that the effect is through 
Olig2 regulation and parallel activation of the tumor suppressor, p21 (WAF1/CIP1). In NB, studies have 
documented that CE7 epitope of L1-CAM is an useful tool in CAR-T targeted therapy[175,176]. The safety of 
targeting the CE7 epitope CD171 with CE7-CAR T cells has also been realized and, more importantly the 
potential to generate bioactive CAR-T cells from patients with recurrent/refractory disease after current 
IMCT[176]. Small molecule kinase inhibitor screening by Grinshtein et al.[177] identified Polo-like kinase 
1 (PLK-1) as the potential target for NB tumor initiating cells. To that end, a study by Pajtler et al.[178] 
demonstrated that imidazotriazine (GSK461364), a competitive inhibitor for ATP binding to PLK1 which is 
in clinical development promoted cell death, inhibited clonal expansion and exerted anti-tumoral activity 
in vivo.    

Along the line of targeting select CSC markers for NB cure, number of potential drug candidates are in the 
developmental stages and/or undergoing functional (molecular) characterization. For instance, Naveen et al.[179] 
recognized the potential of Berberine, a plant alkaloid in EMT reversal, inhibiting cancer stemness, 
and prompting the neuronal differentiation. In NB, Berberine exerts programmed (DAXX, p53, etc., 
dependent) cell death and inhibits tumor cell growth[180-182]. Berberine has been shown to revert EMT by 
inhibiting vimentin and fibronectin (mesenchymal markers) and restore E-cadherin, laminin and Smad[179]. 
Further this study identified the Berberine associated EMT reversal is through the downregulation of PI3/
Akt and Ras-Raf-ERK signalling and subsequent upregulation of p38-MAPK. More importantly Berberine 
promotes neuronal differentiation as evidenced with upmodulation of MAP2, β-III tubulin and NCAM. 
In another study, Tian et al.[183] recognized the clonal enrichment of NB-CSCs (CD133+) with chemodrug 
(etoposide) identified the potential of XAV939 a small molecule tankyrase (TNKS) inhibitor in alleviating 
the stemness physiognomy and migration of NB-CSCs. Cyclopamine (11-deoxojervine), a steroidal alkaloid 
(teratogen) derived from corn lily exerted a dramatic decrease in the CD133 and CD15 double positive 
populations that preserve more stemness characteristics[184]. Further, it has been shown that cyclopamine 
targets autocrine activation of hedgehog signaling and hence affect survival, clonal expansion and 
tumorosphere formation[184]. Like-wise, CD114+ NB-CSCs that exhibit high tumorigenicity, self-renewal 
capacity, and evasive phenotype has always remained as an attractive therapeutic candidate for stem-
cell targeted therapy. In this regard, it has been shown that CD114 anti-body therapy and/or targeting 
its downstream driver STAT3 depletes CSC subpopulation within NB and corresponded with reduced 
metastatic state, increased chemosensitization and decreased tumor growth[110]. Targeting STAT3 has been 
considered for NB cure by many investigators and numerous promising candidates were investigated. For 
instance, a study from Goel and Aggarwal[185] indicated that curcumin, a natural STAT3 inhibitor from 
turmeric promoted chemosensitization in multifarious tumors including NB. In addition, Cucurbitacin I, 
a triterpenoid that acts as a potent inhibitor of the STAT3/JAK has been shown to exert anti-tumor effect 
in NB[186]. Similarly, Honokiol, a biphenolic compound derived from the magnolia bark has been shown to 
target STAT3 signaling pathway and inhibit NB growth[187]. Owing to the criticality of developing effective 
drug deliverables in targeting tumor initiating CSCs, their clonal enrichment, resistance to current IMCT, 
the acquired formation of iCSCs with IMCT, investigations around the globe are appropriately focused 
in identifying/characterizing promising drug candidates. See Table 2 for the summation of a list of such 
candidates in the pipeline and are characterized. Identifying novel adjuvants that selectively deplete CSCs 
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or target the formation of iCSCs could lead to the development of improved therapeutic strategies for the 
cure NB. 

On the current clinical perspective for NB CSC-targeted therapy, autologous stem-cell rescue after 
myeloablative chemotherapy with/without radiotherapy has been shown to relatively improve patient 
survival[192,193]. Further, studies have indicated the effectiveness of high-dose therapy with tandem or triple 
autologous stem-cell rescue in treating high-risk NB, with encouraging long-term survival, slashed CNS 
relapse and secondary malignancies[194,195]. The benefit of such a major therapeutic advancement is limited 
by the risk of reinfusing NB cancer cells that could lead to and/or attributable to the post-transplant 
relapse[196,197]. However, significant number of strategies are currently under consideration or revisited 
to betterment the purging efficacy that could benefit in long-term clinical outcome for NB. The strategy, 
effect, clinical practice, modifications and pitfalls are adequately documented/reviewed elsewhere[198-202] and 
hence is not discussed in this review. 
 
CONCLUSIONS AND PERSPECTIVES
The existence, clonal selection, and enrichment of CSCs contributes to NB disease progression, resistance 
to therapeutic measures, and poor prognosis [Figure 2A]. It has been widely recognized that the treatment 
modalities that spare these CSC clones allow them to self-renew and recapitulate the non-stem tumor 
cell mass, subsequently leading to tumor relapse. In addition, the outcomes of recent investigations have 
recognized the formation of iCSCs and their influence in treatment resistance and disease evolution. It 
is apparent that some, if not all, current treatment components (radiation, chemotherapy drugs) inflict 
acquired genetic and molecular rearrangements in non-stem tumor cells and prompt the transformation 
into iCSCs that are extremely tumorigenic and equipped with self-renewing capacity, stemness 
maintenance, and drug resistance [Figure 2A]. It is critical to develop therapeutic measures that target 
both the pre-existing CSCs and the iCSCs, if we are to counter therapy resistance and successfully treat 
NB. Although a number of promising CSC surface markers for NB have been characterized and their 
cellular and molecular functions in stemness, therapy response, and disease progression have been realized 
(schematically summarized in Figure 2B), two crucial factors, (1) the lack of ubiquitous availability of 

Table 2. Short list of drug candidates that were investigated for their efficacy in killing and/or differentiation of NB-CSCs

Drug Targets Ref.
Retinoic Acid + proteasome inhibitor MG132 Nestin, Sox2, Oct4 Hämmerle et al. [168]

Dequalinium analogue, C-14 Metabolic Pathways Smith et al. [169]

Rapamycin p70S6K, S6RP Smith et al. [169]

Rapamycin AKT  Bahmad et al. [170]

Triciribine mTOR Bahmad et al. [170]

Oncolytic virus Nestin Mahller et al. [61]

Imetelstat, RNA TR oligonucleotide antagonist hTERT Castelo-Branco et al. [171]

Vorinostat, histone deacetylase inhibitor ABCB1, ABCC4, LMO2, SOX2, ERCC5, S100A10, IGFBP3, TCF3, VIM Zheng et al. [172]

imidazotriazine (GSK461364) PLK-1 Pajtler et al. [178]

Berberine Vimentin, fibronectin, E-cadherin, laminin, Smad, PI3/Akt, Ras-Raf-ERK Naveen et al. [179]

XAV939 a small molecule tankyrase (TNKS) 
inhibitor

TNKS, CD133 Tian et al. [183]

Cyclopamine (11-deoxojervine) Hedgehog signaling Schiapparell et al. [184]

Curcumin Stat3 Goel and Aggarwal[185]

Cucurbitacin I (triterpenoid) STAT3/JAK Gheeya et al. [186]

Honokiol (biphenolic compound) STAT3 signaling Prasad et al. [187]

Aqueous ethanolic extract of T. cordifolia NFkB, NCAM, MMPs Mishra and Kaur[189]

Aspirin (acetylsalicylic acid) p21Waf1, hypo-pRb1 Pozzoli et al. [190]

Rexinoid + IIF + EGCG MMP-2, MMP-9 and COX-2 Farabegoli et al. [191]

Drugs (combinations) tested, targeted molecular drivers and the studies are listed. A complete list if CSC-targeting compounds, mode of 
action in and beyond NB is discussed in detail elsewhere[188]
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specific candidate in all NB-CSCs within the tumor and (2) the presence of candidate marker(s) in normal 
non-tumorigenic stem cells highly limit their use in developing a CSC-targeted approach. Preliminary 
studies of the CSC-targeted approach to counter therapy resistance and as an adjuvant with current clinical 
therapy are encouraging. We believe that this review will provide an up-to-date understanding of NB-
CSCs in disease evolution and drug resistance. Overall, the documented evidence supports the enormous 
clinical potential of targeting CSCs to counter therapy resistance and disease evolution, and warrants 
further rigorous investigation.
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